Lecture Notes Advanced Statictical Mechanics (PHY541)

Spring 2020, Jacobus Verbaarschot

Lecture 1

Phase Transitions, Order of a phase transition, Thermodynamic limit, Spin models

Lecture 2

Landau-Peirels argument, Phases in 2d, Spontaneous symmetry breaking

Lecture 3

Fluctuations dissipation theorem, Critical Exponents, Scaling

Lecture 4

Two-parameter scaling, Landau Ginzburg theory

Lecture 5

Critical exponents of Landay Ginxburg theory, Inhomogeneous systems, Two-point correlation function

Lecture 6

Ginzburg Criterium, Central Limit Theorem, Universality --still to be scscanned

Lecture 7+1

1d Ising model, Transfer matrix, Correlation function

Lecture 8+1

Low T expansion, High T expansion, Mean Field Theory, Kramers-Wannier duality

Lecture 9+1

Onsager Solution of 2d Ising Model

Lecture 10+2

Solution of the 2d Ising Model, Tensor representation

Lecture 11+2

Discussion of the solution of the 2d Ising model

Lecture 12+2

XY Model

Lecture 13+3

Heisenberg model

Lecture 14+3

Heisenberg Model

Lecture 15+3

Solution Heisenberg model

Lecture 16+4

Goldstone's theorem

Lecture 17+4

Coleman-Mermin-Wagner theorem, Kosterliz-Thouless transition

Lecture 18+5

Physical picture of Kosterliz-Thouless transition

Lecture 19+5

Monte-Carlo simulations, Markov chains, Detailed balance

Lecture 20+5

Perron's theorem, Heat bath algorithm, Langevin equation, Fokker-Planck equation

Lecture 21+6

Stability analysis, Microcanonical simulations, Critical slowing down.

Lecture 22+6

Anomalouos dimensions, Kadanoff theory.

Lecture 23+6

Correlation function, Renormalization group

Lecture 24+7

Fixed Points, Classification, Renormalization group transformation

Lecture 25+7

Renormalization group for triangular Ising Model, Nienhuis-Nauenberg criterion, Crossover transition, Finite size scaline, $\epsilon$-Expansion.

Lecture 26+7

$\epsiolon$ expansion, Gaussian model, Wilson-Fisher fixed point, Dangerous irrelevant variables.

Lecture 27+8

One loop renormalization of the \phi^4 model

Lecture 28+8

Two loop renormalization of the \phi^4 model Analysis of renormalization group equations. Critical exponents of \phi^4 theory.

Lecture 29+8

Entanglement entropy.

Lecture 30+9

Examples of entanglement entropy. Volume law. Area law.

Lecture 31+9

Srednicki's calculation.

Lecture 32+9

Ryu-Takayangi formule. Tow-body SYK model.

Lecture 33+10

Path integral formulation of the SYK model. Mean field theory. (Added handwritten notes)

Lecture 34+10

Conformal invariance. Large q expansion. Entropy.

Lecture 35+10

Spectral density of the SYK model.