
So

logZ = �E0 +

Z 1

�1
⇢(E)dE(1 + e�2�E) (261)

with E0 the sum of the single particle energies and the single particle level density

⇢(E) =
N

⇡

p
1� E2. (262)

We thus have that

logZ = �E0 +
N

⇡

Z ⇡

0
d✓ cos2 ✓ log(1 + e�2� sin ✓). (263)

The low temperature limit is obtained by expanding the logarithm

logZ = �E0 +N
⇡

12�
. (264)

So the zero temperature entropy, which would be the constant term in logZ vanishes. The

hightemperature limit of the partition function is given by

logZ = �E0 +
N

2
log 2 + · · · , (265)

which is the logarithm of the total number of states.

15.5 Calculation of the Spectral Density

The most straigtforward way to calculate the spectral density is to use the moments to obtain

the Fourier transform of the spectral density,

⇢(t) =

Z
dE⇢(E)eiEt =

X (Et)2k(�1)k

k!
M2k, (266)

where we have assumed that ⇢(E) is an even function of E. In the limit that N � q, the indices

of the terms contributing to the Hamiltonian are almost always di↵erent, and we can assume

that the �↵ commute. Summing over all Wick contractions we obtain

M2p = (2p� 1)!!Mp
2 . (267)

These are the moments of a Gaussian distribution.

15.6 Path Integral Formulation of the SYK Model

For Dirac fermions we know very well how to write down the path integral of fermion fields.

Just replace the fermion operators by complex Grassmann variables. For Majorano fermions

we replace the real fermion operators, which can be written as � = c + c†, by real Grassmann

variables. The kinetic term of the Lagrangian is given by

L0 =

Z
d⌧�(⌧)

d

d⌧
�(⌧). (268)
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We thus obtain the path integral

Z =

Z
D�(⌧)e�

R
d⌧� d

d⌧ ��
P

↵��� J↵����↵������ . (269)

The free energy can be obtained using the replica trick

logZ = lim
n!0

Zn � 1

n
. (270)

To calculate Zn we given the fields an extra index, the replica index. However, since thermo-

dynamic properties do no depend on the number of replicas, we will do the calculation for one

replica.

The integral over the Gaussian random variables can be done by completing square. Denoting

the variance by �2 and using
Z

dJe�J2/2�2+JA ⇠ e
1
2�

2A2
(271)

we obtain

Z =

Z
D�(⌧)e�

R
d⌧� d

d⌧ �+
1
2�

2 P
↵���

R
d⌧d⌧ 0�↵(⌧)��(⌧)��(⌧)��(⌧)�↵(⌧ 0)��(⌧ 0)��(⌧ 0)��(⌧ 0) (272)

Next we introduce new variables by inserting a � function

�(G+
1

N

X

↵

�(⌧)�(tau0)) =

Z
D⌃(⌧)e

1
2

R
d⌧d⌧ 0⌃(⌧,⌧ 0)(G(⌧,⌧ 0)+ 1

N

P
↵ �(⌧)�(⌧ 0)). (273)

The integral over ⌃(⌧) has to be over the imaginary axis, but we continue it to real axis. We

thus find the partition function (we wrote it down for arbitrary q)

Z =

Z
D�(⌧)e�

R �
0 d⌧� d

d⌧ �+
�2

q!

R �
0 d⌧d⌧ 0G(⌧,⌧ 0)q+ 1

2

R
d⌧d⌧ 0⌃(⌧,⌧ 0)(G(⌧ 0,⌧)+ 1

N

P
↵ �(⌧)�(tau0) (274)

Now the the integral of �(⌧) can be done. It gives a Pfa�an. The action is thus given by

S = �
Z Z

d⌧d⌧ 0

N

2
Tr log(�(⌧, ⌧ 0) + ⌃(⌧, ⌧ 0)) +

N4�2

q!
Gq(⌧, ⌧ 0) +N⌃(⌧, ⌧ 0)G(⌧ 0, ⌧)

�
. (275)

Because of our choice of the variance, N only appears as a prefactor. For large N we can evaluate

the integral by a saddle-point approximation.
Z

d⌧ 00(�(⌧, ⌧ 00)
d

d⌧
+ ⌃(⌧, ⌧ 00))G(⌧ 00, ⌧ 0) = ��(⌧, ⌧ 0,

⌃(⌧, ⌧ 0) = J2Gq�1(⌧, ⌧ 0) (276)

The second equation is valid point by point. Because the source term is translationally invariant,

the solutions of the Dyson-Schwinger equations are also translationally invariant. It is simplest

to solve these equation by Fourier transforming the first equation

⌃(t� s) =
1p
2⇡

Z
dteiE(t�s)⌃(E),

G(s� t) =
1p
2⇡

Z
dE0eiE(s�t0)G(E0). (277)
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jacobus verbaarschot
^

jacobus verbaarschot
N^4

jacobus verbaarschot
N

jacobus verbaarschot
N

jacobus verbaarschot
q

jacobus verbaarschot
d/d\tau



After integration over s and then integrating �(E � E0), the first equation becomes
Z

dE⌃(E)G(E)eiE(t�t0) = � 1

2⇡

Z
dEeiE(t�t0). (278)

We thus find that

⌃(E)G(E) = � 1

2⇡
. (279)

We make the Ansatz

G(E) = �ib sign(E)/
p
|E|

↵
. (280)

Then

⌃(E) = �i
1

2⇡b
sign(E)

p
|E|

�↵
(281)

The Fourier transform of sign(E)
p
|E|↵ is given by

1p
⇡

Z
dEe�itEsign(E)

p
|E|

↵
=

�ip
⇡

Z
dE sin(tE)sign(E)

p
|E|

↵

=
�2ip
⇡

Z 1

0
dE sin(Et)sign(t)E↵/2

=
�2ip
⇡
t�

↵
2 �1sign(t)

Z 1

0
dE sin(E)E↵/2E↵/2

=
�2ip
⇡
t�

↵
2 �1sign(t) cos(↵⇡/4)�(1 + ↵/2) (282)

Inserting this in the second saddle point equation, we obtain


�i

1

2⇡b
(
(�2i)p

⇡
t↵/2�1 cos(�↵⇡/4)�(1� ↵/2)

�(
q � 1)sign(t)

= �ib
�2ip
⇡
t�

↵
2 �1sign(t) cos(↵⇡/4)�(1 + ↵/2) (283)

This gives that ↵ = 2(1� 2�) so that

G(t) = bsign(t)/|t|2�. (284)

.

The coe�cient b is also determined by this equation.

15.7 Di↵eomorphism Invariance

The mean field equations are inhomogenous equations, and will have a unique solution subject

to boundary conditions. We see immediately that if G(t, t0) is a solution than also G(t+a, t0+a)

is a solution. So for translational invariant boundary conditions, we have that the solution only

depends on the di↵erence of its arguments, ile G(t, t0) = G(t� t0). This also implies

G(t) = h�(t)�(0)i = h�(0)�(�t)i = �h�(�t)�(0)i = �G(�t). (285)
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jacobus verbaarschot
X

jacobus verbaarschot
q-1

jacobus verbaarschot
xxxx

jacobus verbaarschot
\Delta = 1/q

jacobus verbaarschot
(q-1)(\al/2-1) = -\al/2-1

jacobus verbaarschot
q\al/2=q-2














