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Preface 

It is hard to fit a graduate course on electromagnetic theory into one 
semester. On the other hand, it  is hard to stretch it to two semesters. This 
text is based on a two-semester MIT ccurse designed to solve the problem 
by a compromise: Allow approximately one and a half semesters for 
electromagnetic theory, including scattering theory, special relativity and 
Lagrangian field theory, and add approximately one-half semester on 
gravitation. 

It is assumed throughout that the reader has a physics background 
that includes an intermediate-level knowledge of electromagnetic pheno- 
mena and their theoretical description. This permits the text to be very 
theory-centered, starting in Chapters 1 and 2 with the simplest experi- 
mental facts (Coulomb’s law, the law of Biot and Savart, Faraday’s law) 
and proceeding to the corresponding differential equations; theoretical 
constructs, such as energy, momentum, and stress; and some applications, 
such as fields in matter, fields in the presence of conductors, and forces 
on matter. 

In Chapter 3, Maxwell’s equations are obtained by introducing the 
displacement current, thus making the modified form of Ampkre’s law 
consistent for fields in the presence of time-dependent charge and current 
densities. The remainder of Chapters 3-5 applies Maxwell’s equations to 
wave propagation, radiation, and scattering. 

In Chapter 6 ,  special relativity is introduced. It is also assumed here 
that the reader comes with prior knowledge of the historic and experi- 
mental background of the subject. The major thrust of the chapter is to 
translate the physics of relativistic invariance into the language of four- 
dimensional tensors. This prepares the way for Chapter 7, in which we 
study Lagrangian methods of formulating Lorentz-covariant theories of 
interacting particles and fields. 

The treatment of gravitation is intended as an introduction to the 
subject. It is not a substitute for a full-length study of general relativity, 
such as might be based on Wcinberg’s book.’ Paralleling the treatment 

‘Steven Weinberg, Gravitation and Coymology, New York: John Wiley & Sons. 1972. 

ix 



X Preface 

of electromagnetism in earlier chapters, we start from Newton’s law of 
gravitation. Together with the requirements of Lorentz covariance and 
the very precise proportionality of inertial and gravitational mass, this law 
requires that the gravitational potential consist of a second-rank (or 
higher) tensor. 

In complete analogy with the earlier treatment of the vector (electro- 
magnetic) field, following Schwinger,2 we develop a theory of the free 
tensor field. Just as Maxwell’s equations required that the vector field be 
coupled to a conserved vector source (the electric current density), the 
tensor field equations require that their tensor source be conserved. The 
only available candidate for such a tensor source is the stress-energy 
tensor, which in the weak field approximation we take as the stress-energy 
tensor of all particles and fields other than the gravitational field. This 
leads to a linear theory of gravitation that incorporates all the standard 
tests of general relativity (red shift, light deflection, Lense-Thirring effect, 
gravitational radiation) except for the precession of planetary orbits, 
whose calculation requires nonlinear corrections to the gravitational po- 
te nti a]. 

In order to remedy the weak field approximation, we note that the 
linear equations are not only approximate, but inconsistent. The reason 
is that the stress-energy tensor of the sources alone is not conserved, since 
the sources exchange energy and momentum with the gravitational field. 
The remedy is to recognize that the linear equations are, in fact, consistent 
in a coordinate system that eliminates the gravitational field, that is, one 
that brings the tensor g,, locally to Minkowskian form. The consistent 
equations in an arbitrary coordinate system can then be written down 
immediately-they are Einstein’s equations. The basic requirement is that 
the gravitational potential transform like a tensor under general coordinate 
transformations. 

Our approach to gravitation is not historical. However, it parallels the 
way electromagnetism developed: experiment + equations without the 
displacement current; consistency plus the displacement current + 
Maxwell’s equations. It seems quite probable that without Einstein the 
theory of gravitation would have developed in the same way, that is, in 
the way we have just described. Einstein remarkably preempted what 
might have been a half-century of development. Nevertheless, I believe 
it is useful, in an introduction for beginning students, to emphasize the 
field theoretic aspects of gravitation and the strong analogies between 
gravitation and the other fields that are studied in physics. 

The material in the book can be covered in a two-term course without 
crowding; achieving that goal has been a boundary condition from the 
start. Satisfying that condition required that choices be made. As a conse- 

’J. Schwinger, Particles, Sources and Fields, Addison-Wesley, 1970. 
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quence, there is no discussion of many interesting and useful subjects. 
Among them are standard techniques in solving electrostatic and magneto- 
static problems; propagation in the presence of boundaries, for example, 
cavities and wave guides; physics of plasmas and magnetohydrodynamics; 
particle motion in given fields and accelerators. In making these choices, 
we assumed that the graduate student reader would already have been 
exposed to some of these subjects in an earlier course. In addition, the 
subjects appear in the end-of-chapter problems sections. 

My esteemed colleague Kenneth Johnson once remarked to me that 
a textbook, as opposed to a treatise, should include everything a student 
must know, not everything the author does know. I have made an effort 
to hew to that principle; I believe I have deviated from it only in Chapter 
5 ,  on scattering. I have included a discussion of scattering because it has 
long been a special interest of mine; also, the chapter contains some 
material that I believe is not easily available elsewhere. It may be omitted 
without causing problems in the succeeding chapters. 

The two appendices (the first on vectors and tensors, the second on 
spherical harmonics) are included because, although these subjects are 
probably well known to most readers, their use recurs constantly 
throughout the book. In addition to the material in the appendices, some 
knowledge of Fourier transforms and complex variable theory is assumed. 

The problems at the end of each chapter serve three purposes. First, 
they give a student an opportunity to test his or her understanding of the 
material in the text. Second, as 1 mentioned earlier, they can serve as an 
introduction to or review of material not included in the text. Third, they 
can be used to develop, with the students’ help, examples, extensions, 
and generalizations of the material in the text. Included among these are 
a few problems that are at the mini-research-problem level. In presenting 
these, I have generally tried to outline a path for achieving the final result. 
These problems are marked with an asterisk. I have not deliberately 
included problems that require excessive cleverness to solve. For a teacher 
searching for a wider set of problems, I recommend the excellent text of 
J a ~ k s o n , ~  which has an extensive set. 

One last comment. I have not hesitated to introduce quantum inter- 
pretations, where appropriate, and even the Schroedinger equation on 
one occasion, in Chapter 3. I would expect a graduate student to have 
run across it (the Schroedinger equation) somewhere in graduate school 
by the time he or she reaches Chapter 3. 

Finally, I must acknowledge many colleagues for their help. Special 
thanks go to Professors Stanley Deser, Jeffrey Goldstone , Roman Jackiw, 
and Kenneth Johnson. I am grateful to the late Roger Gilson and to 
Evan Reidell, Peter Unrau, and Rachel Cohen for their help with the 

3J. D. Jackson, Classical Elrctrodynarnics, New York: John Wiley and Sons. 1962. 
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manuscript, and to Steven Weinherg and David Jackson for their excellent 
texts, from which I have freely borrowed. 

FRANCIS E. Low 
Cambridge, Massachussetts 
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CHAPTER 1 

Electrostatics 

1.1. COULOMB'S LAW 

I n  the first half of the eighteenth century, the basic facts of electrostatics 
were sorted out: the existence of two signs of transferable electric charge; 
the additive conservation of that charge; the existence of insulators and 
conductors. The process is described in a lively way by Whittaker. In the  
next half-century, the quantitative law of repulsion of like charges was 
determined by Priestley and extended to charges of both signs by Cou- 
lomb. By 1812. with the publication of the famous memoir of Poisson,' 
the science of electrostatics was understood almost in its present form: 
potentials, conductors, etc. Of course, the specific knowledge of the nature 
of the carriers of electric charge awaited the experimental discoveries of 
the late nineteenth and early twentieth century. 

The resultant formulation uf electrostatics starts from Coulomb's law 
for the force between two small particles, each carrying a positive o r  a 
negative charge. We call the charges 41 and q z ,  and their vector positions 
r ,  and r7,  rcspectively: 

(1.1.1) 

and 

F(1 o n  2) = -F(2 on 1). (1.1.2) 

Like charges repel. iiniike attract. Most important, the forces are linearly 
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additive. That is, there are no three-body electrostatic forces.3 Thus, with 
three charges present, the total force on 1 is found to be 

(1.1.3) 

If  r2 and r3 are close together, the form of (1.1.3) goes over to (1.1.1) 
with q 2 + 3  = q2 + q3.  Thus, charge is additive. It is also conserved. That 
is, positive charge is never found to appear on some surface without 
compensating positive charge disappearing or negative charge appearing 
somewhere else. 

Equation (1. I .  1) serves to define the electrostatic unit of charge. This 
is a charge that repels an equal charge 1 cm away with a force of 1 dyne. 

It is useful to define an electric field at a point r as the force that would 
act on a small test charge S q  at r divided by S q ,  where the magnitude of 
S q  is small enough so that its effect on the environment can be ignored. 
'Thus, the field, a property of the space point r,  is given by 

F(on S q  at r) 
E(r) = 

S q  

and, by (1.1.3) generalized to many charges, 

r - ri 
E(r) = q, - 

I lr-r,13. 

(1.1.4) 

(1.1.5) 

We can generalize (1.1.5) to an arbitrary charge distribution by defining 
a charge density at a point r as 

(1.1.6) 

where S q  is the charge in the very small three-dimensional volume element 
6r. The sum in (1.1.5) turns into a volume integral: 

r - rf  
E(r) = dr' p(r') ( 1.1.7) J' lr - rf 1' 

where tlr' represents the three-dimensional volume element. Note that in 

'This statement does not hold at the microscopic o r  atomic level. For example. the 
interactions between atoms (van der W a d s  forces) include three-body forces. These are, 
however. derived from thc underlying Iwo-body Coulanib intcraction. 
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spite of the singularity at rf  = r, the integral (1.1.7) is finite for a finite 
charge distribution, even when the point r is in the region containing 
charge. This is because the volume element dr’ in the neighborhood of a 
point r goes like 1 r’ - r l 2  for small I r - r‘ 1 ,  thereby canceling the singular- 
ity. 

We can return to the form (1.1.5) by imagining the charge distribution 
as consisting of very small clumps of charge q, at positions rj; the quantity 

(1.1.8) 
ith clump 

is the charge qi in the ith clump. Its volume must be small enough so that 
r’ in (1.1.7) does not vary significantly over the clump. 

The mathematical point charge limit keeps the integral 
[clump pdr’  = q constant as the size of the clump goes to zero. It is useful 
to give a density that behaves this way a name. It is called the delta 
function, with the properties 

6(r - r f )  = 0, r # r’ (1.1.9) 

and 

dr’ 6(r - r f )  = 1 (1 . l .  10) 

provided the r’ integration includes the point r. Of course, 6(r) is not a 
real function; however, as we shall see repeatedly, its use leads to helpful 
shortcuts, provided one takes care not to multiply 6(r) by functions that 
are singular at r = 0. 

Evidently, the fields of surface and line charge distributions can be 
written in the form (1.1.7), with the charge density including surface and 
line charge (i.e., one- and two-dimensional) delta functions. When the 
dimensionality of the delta function is in doubt, we add a superscript, thus 
tj3(r3) for a point charge, a2(r2) for a line charge, and 6’(r,) for a surface 
charge; here, r3. r2, and rl represent three-, two-, and one-dimensional 
vectors, respectively. Note that S 3 ,  a*, and 6’ can be expressed as products 
of one-dimensional delta functions. Thus, for example, a3(r3) = 
S ’ ( X ) ~ ~ ( Y ) ~ ’ ( Z ) ,  S2(r2) = 6 ’ ( x ) 6 ’ ( y ) ,  and 6 ’ ( r l )  = 6’(x). 

Given the charge distribution p(r), (1.1.7) tells us how to calculate 
the electric field at any point by a volume integral-if necessary, numeri- 
cally. We might therefore be tempted to terminate our study of electrostat- 
ics here and go on to magnetism. There are, however, a large number of 
electrostatic situations where we do not know p(r), but are nevertheless 
able to understand and predict the field configuration. In order to do that, 
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however, i t  is necessary to study the differential equations satisfied by the 
electric field. 

We start by observing from (1.1.7) that the electric field can be derived 
from a potential 4(r) .  That is, 

E(r) = -V+(r) ,  

where 

Equation ( 1.1.7) follows from ( 1 . 1  . 1 1) and (1.1.12) since 

(1.1.1 1) 

( I .  1.12) 

(1.1.13) 

(where G,, z,,, and e^, are unit sectors in the three coordinate directions) and 

so that, with similar equations for y and z ,  

and 

From (1.1.11) we learn that 

since 

(1.1. IS) 

(, 1 . 1 .16) 

(1.1.17) 

(1.1.1X) 

identically for any 4. Of course. we could have derived ( 1.1.17) directly 
by taking the curl of ( I .  1.7). 

On the other hand, given (1.1.17), we can derive the existence of a 
potential. We define 
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r 

(b(r) = - E(r‘) . dl’, ( 1.1.19) 

r(l 

where [dl’  represents a line integral along an arbitrary path from the 
point rll (where d, is defined to be zero) to the point r. We show that 4 
in (1.1.19) is independent of the path by calculating the difference of + 
defined by two paths, PI and P2:  

(1.1.20) 

where 4 E .  dl represents the line integral around a closed path C ,  given 

by going from rl, to r along PI and back from r to ro along Pz. 
c‘ 

By Stokes theorem, 

(1.1.21) 

where cis is any oriented surface S bounded by C .  Thus, since T x E = 
0, = +> and the integral defining d, is independent of the path from 
rl, to r .  

We note that changing ro corresponds to adding a constant to 4: 

and 

so that 

( 1.1.22) 

(1.1.23) 

with - \,r:’ E . d l  the additive constant (i t  is independent o f  r). 
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Finally, it is clear that - V 4  defined by (1.1.19) is the electric field. 
We show this for the x component: Let 

dr = $.v dx 

and choose the path to r + dr as ro to r followed by dr. Then 

- - 
dX 

= EI (1.1.24) 

in the limit dx + 0. 
In general, a vector function of position (which goes to zero sufficiently 

rapidly as r -+ m )  is completely determined by its curl and its divergence. 
In our case, a charge density confined to a finite rcgion of space will- 
according to (1.1.7)-gives rise to an electric field that goes to zero like 
l /r2; this is fast enough for the theorem to hold. (See Problem A.21.) We 
therefore turn to the calculation of V . E. 

For this purpose, we consider the field of a single point charge at the 
origin, 

r 
r -  

E = q , .  (1.1.25) 

V . E would appear to be given by 

Equation (1.1.26) clearly holds for r # 0. The singular point r = 0 
presents a problem: Consider the electric flux through a closed surface S 
enclosing the charge at the origin, that is, the surface integral of the 
electric field over a surface S,  

(1.1.27) 
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with the vector dS defined as the outward normal from the closed surface. 
The integral (1.1.27) is independent of the surface, provided the displace- 
ment from one surface to the other does not cross the origin. Thus, 

where d S I  and dS2 are outward normals viewed from the origin. The two 
surface vectors d S ,  and -dS2  are the outward normals of the surface 
bounding the volume contained between S, and Sz, provided S, is outside 
S r .  Thus, 

and by Gauss’ theorem 

(1.1.29) 

since the space between the surfaces does not include the singular point 
at  the origin. 

Consider first the integral (1.1.27) with the origin inside the surface. 
We choose the surface to be a sphere about the origin and find 

where d f l  is the solid angle subtended by d S .  Thus, 

I = 4Trq. (1.1.31) 

If S encloses several charges, we can calculate the contribution of each 
charge to I separately (since the fields are additive), yielding Gauss’ law: 

j- E .  dS  = 4772 q; (1.1.32) 
I 

where the sum is over all the charges inside the surface S .  
If the surface has no chargcs inside it, the integral E + dS is zero by 
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Gauss’ theorem: 

( 1.1.33) 

since V .  E = 0 away from charges. Clearly, however, C E cannot equal 
zero everywhere, since, i f  i t  did, the intcgral (1.1.32) would be zero 
instead of 47r C, q,. 

We can find the equation for V . E by considering finite charge density 
p(r). Then (1.1.32) tells us that for any closed surface, the flux through 
the surface is equal to 4 7 ~  times the total charge inside the surface: 

.Y 

(1.1.34) 

where the integral tlr is over the enclosed volume. Gauss’ theorem applied 
to ( I .  1.34) gives 

dr(V E - 4 r p )  = 0 ( 1.1.35) 

v 

for any volume V .  Thus, the integrand must be zero and we have the 
equation for the divergence of  E: 

C .  E = 4 ~ p .  (1.1.36) 

The special case of a point charge at the origin, for which p = q6(r) and 
E q ( r / r  ’), shows that C . (r/r’) acts as if  

r 
r.3 

r . - - = 4  7-r 6(r ) .  ( 1.1.37) 

Equation (1.1.36) yields a n  equation fur the electrostatic potential 4 

This is known as Poisson’s equation. In ii portion of space where p = 0, 
(1.1.38) bccomec 

C’(t, = 0, (1.1.39) 



1.2. Multipoles and Multipole Fields 9 

which is called Laplace's equation. A function satisfying Laplace's 
equation is called harmonic. 

As we remarked earlier, given the charge density p ,  the potential 4 
is determined (up to a constant) by the integral (1.1.12). We have given 
the subsequent development in (1.1.13-1.1.39) for three reasons. 

First, the integral form (1.1.32) can be a useful calculational tool in 
situations where there is sufficient symmetry to make the flux integration 
trivial. These applications are illustrated in the problems at the end of 
this chapter. 

Second, the differential equation (1.1.38) can be used when the actual 
charge distribution is not known and must be determined from boundary 
conditions, as in the case of charged conductors and dielectrics. 

Third, the Coulomb law does not correctly describe the electric field 
in nonstatic situations, where we shall see that V x E is no longer zero. 
However, the divergence equation does continue to hold. 

-~ ~ ~~ ~ ~~~~~ ~~ ~ ~ ~~ ~ ~~ ~ 

1.2. MULTIPOLES AND MULTIPOLE FIELDS 

?he electrostatic multipole expansion, which we take up in this section, 
provides an extremely useful and general way of characterizing a charge 
distribution and the potential to which i t  gives rise. Analogous expansions 
exist for magnetostatic and radiating systems [discussed in Chapter 2 
(Section 2.3) and Chapter 5 (Section 5. lo), respectively]. 

As shown in Appendix B, the electrostatic potential outside of an 
arbitrary finite charge distribution can be expressed as a power series in 
the inverse radius l l r :  

The Ith term in the series is called a multipole field (or potential) of order 
I ;  it can, in turn, be generated by a single multipole of order 1, which we 
now define, following Maxwell. 

A monopole is a point charge Qo; it gives rise to a potential [choosing 
= 01 

(1.2.1) 

where ro is the location of thc charge. 
A point dipole consists of a charge q at position ro + 1 and a charge 

-9 at ro. where we take the  limit 1 -+ 0, with Iq = p held fixed. p is called 
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the electric dipole moment of the pair of charges. The potential of a point 
dipole is given by 

We separate p into a unit vector i and a magnitude Q ,  with p = Q,i. 
We define higher moments by iterating the procedure: A quadrupole 

is defined by displacing equal and opposite dipoles, etc. Thus, the 2‘th 
pole gives rise to a potential 

(1.2.3) 

The potential +, is specified by 21 + 1 numbers: the polar angles 0, and 
azimuths cpi of the 1 unit vectors, and the magnitude Q, .  

On the other hand, an arbitrary charge distribution p(r) generates an 
electrostatic potential 

(1.2.4) 

which can, for r‘ outside the charge distribution, be expanded in two 
equivalent ways. The first is 

where the harmonic polynomials Pll). .;/ are defined in Appendix B: 

Pj:’ ,/(r) = X , ~ X , ~  . . . x,, - (traces times Kronecker deltas) (1.2.6) 

where the traces are subtracted to make the tensor P!:!,.,, traceless. The 
expansion (1.2.5) is then 

(1.2.7) 

where the potential 4::) I , ,  defined in (B.2.3), is 
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a a 1  . (r’) = - . . . _- 
ax:, a x k r ‘  

I , .  . . I /  

and the Cartesian lth rank tensor Qf;!,.;, is 

(1.2.8) 

(1.2.9) 

We call Ql:’ the 2’th pole moment of the charge distribution. Since 
Q::) ,/ is an Ith rank, traceless, symmetric tensor in three dimensions, the 
number of independent Ql:’ ,,’s is 21 + I, as shown in (B.2). 

The second equivalent expression for (1.2.4) is 

(1.2.10) 

x I 

4 n  YI.rn(6’9 9’) (1.2.11) = Z ~ r r l + l  
I-(1 21 + I m = - I  

where thc 2Ith pole moments are given by 

Note that here also the number of independcnt Ql.,,’s for each 1 is 21 + 1. 
An obvious question to ask is whether the general potential given by 
(1.2.11) can be reproduced by a series of Maxwell multipoles, one for 
each I. The answer is yes; the proof was given by Sylvester and can be 
found in that source of all wisdom, the 11th edition of the Encyclopedia 
Britannica; look for it under harmonic functions. We do not give the proof 
here. I t  is not trivial. Try it for I = 2 .  (See Problem 1.18.) 

The number 21 + 1 for the number of independent QI.,n’s is slightly 
deceptive, since the QI.n,’s depend on the coordinate system in addition 
to the intrinsic structure of the charge distribution. Since a coordinate 
system is specified by three parameters-for example, the three Euler 
angles with respect to a standard coordinate system-the number of intrin- 
sic components is, in general, 21 + 1 - 3 = 21 - 2. This fails to hold for 
I = 1 or 0. Since rotations about a vector leave the vector invariant, the 
number for I = 1 is 21 + 1 - 2 = 21 - 1 = 1, as it must be: the magnitude 
of the vector. For I = 0, the number is 1, since the charge is invariant to 
all rotations. The full effect of the freedom of rotations shows up for the 
first time for I = 2. Here, it is convenient to define a coordinate system 
that diagonalizes the Cartesian tensor Qf!). In this coordinate system, the 



12 Electrostatics 

tensor Ql:) vanishes for i # j ;  i t  has, in general, three nonvanishing com- 
ponents Q?, Q::), and Q g ) ,  with zero trace, that is, 

(1.2.13) 

Any two of the three (3;;)’s (no sum over i) characterize the intrinsic 
quadrupole structure of the charge distribution. 

1.3. ENERGY AND STRESS IN THE 
ELECTROSTATIC FIELD 

The work done in bringing a small charge S q ,  from far away to a point r, 
is 

r, 

SW, = - dl . ESq, = [@(r,) - 4(=c)]Sq, (1.3.1) I 
where we conventionally take #(a) to  be zero for a system whose charges 
are all contained in a finite volume. 

If we bring up several charges S q , ,  each to a position r l ,  we have, to 
lowest order in a,,, 

and for a continuous distribution (with E for electric) 

(1.3.2) 

This is the work done, to first order in S p ,  in changing p(r) to p(r) + Sp(r) 
and E to E + SE, where V SE = 47rSp. Thus, 

4lr 

and, integrating by parts (i.e., dropping a surface integral at m), we have 
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6W,.. = - dr E . SE 
4%- ‘ I  
8.n 

all to first order in Sp and 6E. 
Equation (1.3.3) can be integrated: The total work done is 

I j d r E j - G  8%- ‘I drE? 

(1.3.3) 

(1.3.4) 

where Ef is the field after the work has been done, EO before. 
If the initial charge configuration is a uniformly distributed finite 

charge over a vcry large volume I dr E;/8rr goes to zero. 
If ,  however, we are bringing together small clumps of charge, then 

J’ d r  E?/8rr will be different from zero for each clump and must be sub- 
tracted in the above formula. 

Assuming the first case, we can write 

W E  = I dr E’ = I dr 4(r) p(r) 
8%- 

or 

1 
W - -  d r d r ’ p ( r ) - - - -  p(r’) & - 2  ‘I Ir - r’I 

(1.3.5) 

(1.3.6) 

for the work done in assembling the charge density p .  Going to the limit 
of point charges (i.e., charges with radii small compared to the distance 
between them) we find that 

(1.3.7) 

is the work done in bringing ail the charges q, from r = x to r,. [The 
missing terms with i = j are left out because they would have been included 
in the initial energy of the separated charges. Of course, the point charge 
approximation could not be made for such terms, since the integral (1.3.6) 
would be infinite.] 

The electrostatic energy W in (1.3.7) has the property that, together 
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with the kinetic energy of the charges qi, 

it is conserved. That is, 

d 
- ( T +  dr W,) = o  

(1.3.8) 

(1.3.9) 

provided the forces on the charges are purely electrostatic and given by 
Coulomb’s law. 

We shall see later that a similar calculation can be made for a static 
(really, a slowly changing) magnetic field: 

( 1 a 3.10) 

Although (1.3.9) and (1.3.10) will have been dcrived for slowly 
changing fields, it turns out remarkably, as we shall see later, that the 
conservation law 

d 
dt 
- ( (T+W,+W, , )=O (1 -3.11) 

still holds for rapidly changing fields. This appears to be a lucky accident, 
since it holds for electrodynamics, but does not hold for other field theo- 
ries, in which an explicit interaction term appears in the conservation law. 
An example is discussed in Section 7.4. 

We turn next to stress in the electrostatic field. We calculate the total 
electrical force on the  charge inside a surface S .  Introducing the sum- 
mation convention we have 

F, = dr p(r) Ei(r) I 
- - J- dr E,(r)C E(r) 

4.n 

1 i )  E, 
= --- J’ dr E, - 

4.n ik, 

= J- J’ dr[- (E,E,)  - E, 2 . 
4.n dX, ? j E  dX, I a 

(1.3.12) 

(1.3.13) 

(1.3.14) 



1.3. Energy and Stress in the Electrostatic Field 15 

But, 

(1.3.15) 

(1.3.16) 

Therefore, since V x E = 0, dEi/dx, = aE,/lix, and (1.3.14) becomes 

dx, 2 

4?r 

Gauss’s theorem leads to 

F, = dSl TI, I 
where TI,, the Maxwell stress tensor, is given by 

E, E, - $ 6,,E2 
4?r 

(1.3.17) 

(1.3.18) 

( 1 .3.19) 

Equation (1.3.18) tells us that the force on charges inside an arbitrary 
surface S may be thought of as coming from a stress through that surface, 
where - T,, is the ith component of the force transmitted in the j direction 
per unit area into the surface. The minus sign exists because dS, in (1.3.18) 
is the outward normal. 

A simple example: Two charges are shown in Figure (1.1). If both 
are positive, as in Figure ( l . l a ) ,  the normal component of the field E,, at 
the surface equidistant from the two charges is zero, so that the first term 
in T,, gives zero force through that surface; the second term is negative 
and, hence, corresponds to a force into the surface, and hence a repulsion. 
This is as if the lines of force repel each other. 

For one positive and one negative charge, as in Figure ( l . lb ) ,  the 
situation is different: The parallel component of the field at the surface 
Ell = 0, E,, # 0. Hence, the first term in T,, is twice the second term, and 
the sign of the force changes, corresponding to an attraction. The lines of 
force are under tension along their length. 

Note that there is no contradiction between a right pointing force on 
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Ell f 0 E,, = 0 

the object on the right and simultaneously a left pointing force on an 
object on the left. This is, in fact, demanded by Newton’s third law. 

1.4. ELECTROSTATICS IN THE 
PRESENCE OF CONDUCTORS: 

SOLVING FOR ELECTROSTATIC CONFIGURATIONS 

The electrostatic field in a conductor must be zero. Otherwise, current 
would flow, and we would not be dcing electrostatics. Therefore, the 
potential difference between two points in or on the conductor must be 
zero, since 

2 

+ l z =  - E ‘ d l .  i I 

Therefore, the surface of the conductor is an equipotential, and the field 
at the conducting surface is normal to it. It then follows from Gauss’ law 
that the outgoing normal field at  the surface, E,,, will be given by 

E,, = 477m (1.4.1) 

where u is the surface charge density. Note that there can be no volume 
charge density in the conductor, since V . E = 0 there. Of course, IT cannot 
be chosen arbitrarily for a conducting surface. Only the total charge Q (if 
it is insulated) or the potential 6, ( i f  it is connected to a battery) can be so 
chosen. The surface charges will adjust themselves to make the conducting 
surfaces equipotentials. The basic calculational problem of electrostatics 
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is to find out how the charges have adjustcd themselves and to calculate 
the potential (and fields) they generate after doing so. 

We show first that given a charge density p and a set of conducting 
surfaccs S,. with cither Q, or  ( I l  known, the electric field is uniquely 
determined. 

Let @ I ,  +b2 bc two presumed different solutions for the potential. Then 

t I‘ 

where V is the space contained between the conductors. Both terms are 
zero. Since - ib2 is constant over the conducting surface, the first term 
is proportional to X,AQIA(I ,  = 0. The second term is zero because both 
$ I  and $2 satisfy the Poisson equation T2$ = -47rp with the same charge 
density p .  Therefore, I is zero so that (V(t,bI - @?))’ is zero, and $I  and 
$2 differ at most by a constant. Thus, the electric field is uniquely 
determined by the boundary conditions and Poisson’s equation. Note that 
if any set of conductors is joined by batteries, with given potential differ- 
ences between them and given total charge shared among them, the 
expression C,AQ,A(I, is still zero. 

The gencral electrostatic problem can therefore be formulated as 
follows: Given a set of conducting surfaces, the (appropriately specified) 
potentials and charges on the surfaces, and a given fixed charge distribu- 
tion p(r) in the space outside of the conducting surfaces, find the potential 
everywhere. 

There is no general method for solving this problem. For certain 
geometries, however, there are available specific methods, with which we 
assume the reader is familiar. These include the method of images, the 
use of special coordinate systems appropriate to the geometry, and the use 
of analytic functions of a complex variable for two-dimensional problems. 
Examples of all these are given in the problems at the end of the chapter. 

We wish to take up briefly two very general methods that are of use 
in many areas of physics. These are, first, the method of Green’s functions 
and, second, thc use of variational principles. 

Grcen’s functions makc i t  possible to reduce to quadratures a class of 
problems with given potentials or charges on conducting surfaces, and 
arbitrary spatial charge distribution. The formulation is as follows: given 
potentials (I, on conducting surfaces S,. and total charges Qh on conducting 
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surfaces Sb.4 The Green’s function G(r, r l )  is the potential produced by 
a unit point charge at r l ,  with zero potential on the S,’s and zero charge 
on the Sb’s. The potential is referred to zero at infinity. Thus, V2G(r, r , )  = 
-47rS(r - rl) ,  G(r, r l )  = 0 with r on each S ,  and is constant on each Sh 
with I dSb + VG(r, r l )  = 0. Let be the actual potential for given p ,  4,, 
and Qb. Consider 

with dSi  the inward normal to each conducting surface. On S, ,  the first 
integral vanishes, and the second is 

where Qc(rl) is the charge on S, for the Green’s function boundary 
condition. On S b ,  the second integral vanishes, and the first is 
47rQb . +,,(TI), where 4h(r1)  is the potential on S h  for the Green’s function 
boundary condition. 

Now use Gauss’ theorem: 

Z(rl) = - 47r dr p(r) G(r, r l )  + 47r d r  fi(r - r l )  @(r).  (1.4.4) I I 
Combining (1.4.4) and (1.4.3), we have 

so that CC, is given by integrals over presumed known functions. 

G(rl ,  r) .  Consider 
We show now that the Green’s function is symmetric: G(r, r l )  = 

I(rl ,  r d  = dSi  * [C(ri, r l )  VG(r,, r2) - G(ri, r2) VG(ri, r l ) ] .  

(1.4.6) 
i I 

4Note that given 4, corresponds to Dirichlet boundary conditions, but given Q, does 
not correspond to Neumann boundary conditions, since only the total charge on a surface 
is given. Nevertheless, given Q is the physically interesting case and by the uniqueness 
theorem determines the solution and the Green’s function. 



1.4. Electrostatics in the Presence of Conductors 19 

Clearly, I = 0, since on each surface C is constant, and either zero, or 
such that I VG(r, r ') * dS = 0. So, using Gauss' theorem, we obtain 

Although there is no general exact method for finding the field in the 
presence of a given configuration of conductors and charges, there is an 
exact variational principle that applies to a general electrostatic problem 
and can be used to generate approximate solutions. 

Suppose we have a given set of conductors, with label c ,  on which the 
potential + c  is given, another set of conductors, with label b ,  on which 
the charge Qb is given, and a given spatial charge density p(r). Then, as 
we have shown, the field E(r) is determined, as is the potential +(r) to 
within a constant. The variational principle we consider here is for the 
quantity' 

I = - dr(V+)* - 4~ drp$ - 477 2 Qb@(b) (1.4.8) 
2 'I I 

and states that I is an absolute minimum when the variational function 
$(r) equals the correct potential everywhere. In the variation of $ about 
the minimum, it must take on the assigned values + c  on the c conductors. 
In (1.4.8), the function +(h) signifies the constant value of the function 
$(r) on the surface of conductor b (where the potential +b is not given). 

To prove the principle, we let 

* = 4 + s *  (1.4.9) 

where + is the exact solution of the electrostatic problem. Then 

I ( $ )  = I(+) + d r  V$ . VS$ - 477 drp84 I I 
- 4 ~  2 QdICl(b) + dr(V611r)2 ( 1.4.10) 

h 

' 1  is called a functional of I). A functional is a number whose value depends on a 
function. We shall encounter this concept oftcn. 
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and, aftcr a partial integration, 

The surface element dS,, points into the surface of conductor 6 .  Conduc- 
tors c do not contribute, since a$‘. = 0. Thus, 

Therefore, I ( + )  is an  absolute minirnum for fi$ = 0 

( 1.4.12) 

1.5. SYSTEMS OF CONDUCTORS 

Suppose we have a set of conductors, each carrying a charge Qi. The 
potential on each conductor will be a linear function of the Ql’s: 

=  CIA,&^. ( 1 5 . 1 )  
I 

This follows from the linearity of the equations for the fields. Thus, a 
charge Q, on conductor 1, with boundary condition Q = 0 on the other 
conductors, leads to a potential +(‘)(r) that takes on the value 
4 ; ’ )  = p i l  0, on the ith conductor. Similarly, a charge Qz on 2 with Q = 

0 on the other conductors leads t o  a potential +(’)(r) that t‘ ‘1 k es on the 
value +f2)  = p I z Q z  on the ith conductor. If  both (1) and (2) carry charges 
Q ,  and (I2,  the potential is clearly the sum of these two, since the Laplace 
equation and boundary condition are satisfied. The generalization is 
(1.5.1). The pi,,’s are called coefficients of potential. 

Thc energy of the  configuration can be calculated in two ways: 

1. We bring charge SQ,  up to the ith conductor. The differential work 
done is 
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~ W = Z ~ , ~ Q , = C Y , Q ~ ~ Q ~ .  (1.5.2) 
I ' , I  

2. We know, in general, that 

(1.5.3) 

giving 

so that (since Ql, SQl are arbitrary) 

and the matrix p is symmetric. 

We have not considered a charge density p(r) here. Clearly, one 
would take such a charge density into account by first solving the problem 
of all neutral conductors with the given charge density p .  Then if $'(r) 
is that solution, the expression (1.5.1) becomes [with &' = +{'(r on i)] 

- 4f = C . P ~ , Q ~  (1.5.5) 
i 

with the p,, the same as before. +, - 4f is the potential produced on the 
conductor by the charges Q, alone. 

Returning to (1.5.1), we may solve for the Q's as functions of the 
4's. This is possible, since we know that 

unless all (2's are zero. Therefore, pl1 has an inverse, c,,, such that 

&I = c'!J # ) I .  (1.5.6) 

L p I , c , k  = and 

I 

The c,, are called coefficients of capacitance. Of course, c,, is also sym- 
metric. 

To calculate the generalized force Fi on the ith conductor, we displace 
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it at constant Q: 

(1.5.7) 

The generalized force F, is defined by the requirement that - F l a t ,  bc the 
work done in the displacement S t , .  Thus, F, can be a force or a torque, 
depending on whether 86, is a translation or a rotation. From (1.5.7) and 
(1 .S .3 ) ,  we find 

F,= - -CQ,Q,- .  1 8Pij 

2 1 . 1  a 51 
(1.5.8) 

Note: Differentiating at constant 4 would give the wrong answer. In fact, 

( 1.5 -9) 

This follows since, in matrix notation [+, Q are vectors, p ,  c are 
matrices, and (f, g) is a (real) vector inner product], 

(since p is symmetric} 

( 1 .5.10) 

The difference in sign comes about because in a displacement keeping the 
4's constant charge will flow, and the batteries holding the 4 's  constant 
will be doing work. It follows that the  derivative that gives F1 in (1.5.9) 
includes, in F , S [ , ,  both mechanical and electrical work. A correct account 
can be kept. The charge transported to the ith conductor is, from (1.5.6), 
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(1.5.11) 

and the work done by the batteries is 

The total work done at constant 4 is 

1 
2 

swT= -2 cpisci,4, = sw, + 6WM. 

where S WM is the mechanical work: 

in agreement with (1.5.8). 
The capacitance of a capacitor can be calculated from either set of 

coefficients. A capacitor consists of two conductors carrying equal and 
opposite charge. So, with Qt  = -Q2 = Q > 0, we have 

and 

and 

Q -  1 

A 4  PI1 + p22 - 2P12 
C (the capacitance) = - - 

Note that C > 0, since p i l  + pZz > (2p12(; otherwise, the energy, 

could become negative. 
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1.6. ELECTROSTATIC FIELDS IN MATTER 

We wish here to study macroscopic elcctrostatics in the presence o f  matter. 
We will make the assumption, following Lorentz, that the macroscopic 
equations we have been using 

T . E = 4 . i r p  (1.1.36) 

and 

Y X E = O  ( I .  1.17) 

hold microscopically, that is, at the atomic level. Thus, our basic equations 
are 

Y . e = 4T{’,,, (1.6.1) 

and 

T x e = O  (1.6.2) 

where we use lowercase letters to denote microscopic fields. The symbol 
,o,,~ stands for microscopic charge density. Evidently, e and p,,, will fluctuate 
over atomic scale distances. We eliminate these fluctuations by considering 
average fields and charge densities, where we average over a region con- 
taining many atoms. We then try t o  obtain equations for the averaged 
fields. 

A subtle issue arises here: Can a description of the interaction of 
fields and matter that docs not make use of quantum mechanics be correct? 
The answer is yes and no. No,  obviously, because ordinary matter and 
its atomic constituents cannot be accounted for by the laws of classical 
mechanics. Yes, because in many cases, once the basic structure of the 
system has been determined by quantum mechanics, interactions with 
electric fields can be charactcrized by a few parameters, in addition to 
macroscopic currents and charges. Examples are the dipole moment per 
unit volume P and the dielectric constant E ,  which we discuss in the 
following; the magnetic dipole moment per unit  volume M and magnetic 
permeability p ,  which we discuss in Section 2.4; and in addition all of the 
above as functions of frequency. which wc discuss in Chapter 3 on  time- 
dependent fields and currents. 

A subtler issue has to do with the validity of classical equations for 
the electric field. Discussion of this question of course requires the use of 
quantum field theory. The emission of a single photon by a single atom 
can not in general bc described clasically. However. the multiple photon 
emission by many atoms, each emitting one photon at a time, and their 
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subsequent absorption, can in many cases be described classically, even 
though the radiation itself is not in a classical state. This is largely a 
consequence of the linearity of the field equations. The source of the 
radiation, the charge and current densities of the radiating system, must 
be correctly described, classically or quantum mechanically as appropriate, 
The quantum behavior of matter may be taken into account, either by 
cautious phenomenology (the nineteenth century method) or by correct 
theory (current condensed matter physics). We will stick mostly to the 
nineteen century way, with the exception of the case of a dilute gas, where 
simple quantum mechanical calculations of the dielectric properties can 
be carried out. 

We proceed by averaging (1.6.1) and (1.6.2) over a region that 
contains a large number of atoms, but that is small compared to  the scale 
of spatial variation of the fields. We average with a smooth function f(x) 
such that 

cixf(x) = 1 I 
and such that the characteristic size A off  has the two properties 

A << A (1.6.3) 

where A is the scale of distance variation we hope to describe, and 

nA3 >> 1 (1.6.4) 

where n is the number of atoms per unit volume. A might be defined, 
for example, by 

We, of course, choose J ' ( x )  to be isotropic, that is, a function of x'. 
A simple model might be f = 3/47rR3 for r < R and f = 0 for Y > R ,  with 
some smoothing at the boundary. This modcl evidently gives A' = (3/5)R2. 

The averages arc calculated as 

dx'f(x - x,)ei(x,), (1.6.5) 

etc. This way of averaging has the advantage that it commutes with differ- 
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entiation. That is, 

ax, 
(1 h.6)  

Thus we find, from (1.6.1) and (1.6.2), for El = e,: 

V x E = O  (1.6.7) 

and 

V * E = 4 r p  (1.6.8) 

where ii is the average charge density. 
In order to determine p , we divide the charge density into two classes: 

One may think of pt as the charge density of charged atomic scale bodies, 
such as electrons or ions on the surface of a conductor. However, the 
division is not unique. For example, the induced “bound” surface charge 
on a dielectric sphere placed in an external field is, for a large dielectric 
constant, almost identical to the “true” (or “free”) surface charge induced 
on a conducting sphere. (See Problem 1.27). 

Our problem is to find a useful way of expressing the space averages 
of p r  and ph.  We call 

(1.6.9) 
- 
P f  = P ?  

the macroscopic charge density, which we presume to be independent of 
the applied field (except for its distribution on the surface of a conductor). 
There remains P h .  Evidently, different material systems will behave quite 
differently, and a separate analysis is really required for each one. In 
order to fix our ideas, i t  is convenient to consider the :..mplest possible 
system: a set of spherically symmetric atoms whose separations from each 
other are large compared to their common radius, that is, a dilute gas. 
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We consider an applied field Eo that is small compared to the internal 
fields of the atoms, that is, 

e 26 Volts 

ai3 Q B  
Eo%y-- - - -  - 5 x lo9 VoIts/cm (1.6.10) 

where e is the electron's charge and uR the Bohr radius: 

(1.6.11) 

Here, fi is Planck's constant divided by 27r and m is the electron mass. 
In view of (1.6.10), the effect of the applied field on the matter will 

be small, and we can confine ourselves to the linear approximation in an 
expansion in powers of the field. There are, of course, systems where the 
required inequality fails to apply, for example, in molecules with large 
permanent dipole moments as discussed in Section 2.4, or in highly excited 
atoms. Since the atoms in our model are far apart, the interaction between 
them will be largely governed by the multipole moments produced by the 
applied field. 

Since the atoms are neutral, the largest effect will come from the 
induced electric dipole moment. This moment will be proportional to the 
local electric field El at the position of the atom. For our model of widely 
separated atoms, we will have approximately El = E, the average electric 
field, so that 

p ,  = aE/i aE; .  (1.6.12) 

The polarizability a has the dimensions of a volume; the atomic unit of 
volume is a;, so that we expect a to be of order u i .  The field produced 
by the polarized atoms will then be of order 

so that 

6 E  a N  
Eo R' 
--- 

(1.6.13) 

(1.6.14) 

where N is the number of atoms in the sample creating the field 6 E ,  and 
R is a mean separation of the atoms. Thus, very crudely, 

6 E  total atomic volume . 
Eo total occupied volume ' 
-- (1.6.15) 
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for a gas, this ratio is -d/d, ,  where d is the gas density and d ,  the liquid 
or solid density of the same atom. For air at normal temperature and 
pressure, the ratio (1.6.1s) is about so the vacuum field is not 
appreciably perturbcd by the presence of the gas, and the effect of atoms 
on each other will be small. The local field El that polarizes the individual 
atom will be approximately equal to the average field E. We will rcturn 
to the question of atomic polarizability in Chapter 3. (See also Problem 
1.36.) 

A quadrupole moment can also be present; in an isotropic atom, 
however, the tensor quadrupole Q,, can only be induced by a tenwr field: 

Q,,=aQ(S+3) 
ax, ax, 

(1.6.16) 

The quadrupole polarizability tug in (1.6.16) has the dimensionality L s ,  
so we expect for an atom to be -a;,. The field generated by the 
induced moment, in analogy with (1,6.13), will be 

or 

(1.6.17) 

so that 

6EQ - total atomic volume a; 
E,, total occupied volume R 2 .  

~ x -  (1.6.19) 

This is smaller than the dipole effect by about 10 and is thus completely 
negligible. Higher moments clearly make even smaller contributions. 

If we modify our model by bringing the atoms closer together, for 
exaniple as a dense gas, or a solid or liquid, it will n o  longer be possible 
to ignore the interatomic interactions. I t  will still be true that the effective 
field 6 E  generated by the atomic dipoles will be of the order of magnitude 
given by (1.6.1s); however, the ratio in (1.6.15) can now be of the order 
of unity, so that the effect of the atomic polarization will be not only large 
but also not simply calculable. (For a quite successful way of estimating 
El for a denser system, see Problem 1.36.) We still expect the atomic 
polarization to be a linear function of the average field in the neighborhood 
of the atom, and we still expect the higher multipole moments to make 
negligible contributions. However, in addition t o  the density dependence, 
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a significant change will be that the relation between p and E may, in 
general, be tensorial: 

1?1 (1.6.20) 

where the tensor all would depend on the symmetry of the material. A 
locally isotropic material, or  a crystal with cubic symmetry, would revert 
to the scalar relation with ail = aa,,. 

Before proceeding, we observe that material not locally isotropic can 
also possess clectric moments even in the absence of an applied field. A 
crystal without reflection symmetry, for example, can have a permanent 
electric moment. Such a material is called ferroelectric or pyroelectric. We 
can obtain an order-of-magnitude estimate of the field produced outside a 
material whose atoms are permanently polarized with a dipole moment 
pO.  It will bc 

where N is the number of atoms in the sample and R a mean distance to 
the field point. Following the reasoning used to arrive at (1.6.15), we find 

With p , ,  - e( i t3 t ,  where 5 is a number of very rough order-of-magnitude 
uni ty ,  we have 

which is a very large macroscopic field. This field is reduced by two effects. 
First, the parameter ( turns out to be quite small since the energetics of 
the quantum states mitigates against a large dipole moment. Second, since 
the conductivity of the material i$ never exactly zero, the dipole moment 
of thc sample tends to be canceled by a migration of electrons to the 
surface. Similar reasoning shows that permanent quadrupole moments can 
generate macroscopic fields of rough order, Volts/cm. Although these 
permanent fields are of considerable interest, they do not require further 
discussion here, since they play the role of fixed applied fields in our 
discussion of electrostatics. 

The final result: Only the dipole field is important in most macroscopic 
electrostatics. For i t ,  the average potential will be given by the average 
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dipole moment per unit volume [which we call P(r)] by the dipole formula 

1 dr 'P(r ' ) .V- .  
( r  - r ' (  

(1 6 2 1 )  

To see this unambiguously, we calculate the averaged value of the poten- 
tial 4 p  arising from the atomic dipole moments: 

(I .6.22) 

where we have legitimately used the formula for the field of a point dipole, 
since in the averaging process, most of the range of r will be far from the 
dipole r , .  

Now let r - r, = R - R' with R' the new integration variable. Then 
(1.6.22) becomes 

We see that C,f(R' - rr)p, essentially counts all dipoles inside the averag- 
ing distance o f f ,  so that E,f(R' - rr)pf = P, the dipole moment per unit 
volume. Returning to (1.6.21), we see that it can be rewritten 

(1.6.24) 

We now have a choice. We clearly will use Gauss' theorem, but we 
may either treat the dielectric boundary as a continuous (but rapid) change 
from finite P to 0, in which case we would have no surface term, and a 
potential 

(1.6.25) 

corresponding to an average bound charge density 

(1.6.26) 
- 
p,, = -v . P ;  

or, we could treat the integral as confined to the dielectric with a sharp 
surface S ,  in which case we would have 
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corresponding to a P b  = -V.P and a surface charge (Tb = Pnormal on the 
surface. Obviously, if there is a sharp boundary, (1.6.25) must produce 
(1.6.27) in the limit. This clearly comes about because V . P approximates 
a delta function on the surface. 

We can now return to our original averaged equations. We call Pf=  
p ,  Ph = - V .  P, and find, from (1.6.26), (1.6.8), and (1.6.7), 

V x E = O  (1.6.7) 

and 

v . E  = 477p - 4TV . P .  (1.6.28) 

We are moved to define an electric displacement 

D = E + 4 r P  (1.6.29) 

which satisfies the equation 

V . D = 4 ~ p .  (1.6.30) 

Equations ( I  .6.7) and (1.6.30) determine how we should treat a sharp 
boundary. From (1.6.7) we find, using Stokes’ theorem o n  the rectangle 
shown in Figure 1.2~2, and AxlAl--tO, that Etengentlal must be continuous 
across the surface. For the D boundary condition, we use Gauss’ theorem 
and the pillbox as shown in Figure 1.26, with A x l a  + O ,  to find AD,, = 
4 x u ,  where u is the free surface charge density. 

Equations (1.6.7) and (1.6.30) require a relation between E and D to 

boundary 

boundary 
f h/ 

Figure 1.2. 

fa) 



32 Electrostatics 

determine the configuration. Since the system is linear, the earlier argu- 
ments of this section show that P must be proportional to E, that is, 

Pi = x,] E, (remember the summation convention) ( I  .6.31) 

where for a dilute gas ,ylr = na,] ,  with n the number of dipoles per unit 
volume. Therefore, 

Dl = (6, + 4rx , ] )E ,  = ell E,, (1.6.32) 

where a symmetric all  will produce a symmetric e r r .  E , ]  is called the 
dielectric tensor. An isotropic material as will be the case here would 
require E , ,  = E . a,, and D = EE. E is called the dielectric constant. 

1.7. ENERGY IN A DIELECTRIC MEDIUM 

From the basic equations (1.6.7) and (1,6,3U), we learn that there exists 
a potential 4 such that E = -V4. Therefore, the work done in bringing 
an infinitesimal charge S q  to a point r is 

SW = 6q@(r) ,  ( I  .7.1) 

where wc have set $ ( x )  = 0, as usual. For a distributed charge, 

SW = tlrSp(r)$(r) I 

or 

(1.7.2) 

( 1.7.3) 

I n  the integration by parts, we have ignored surface terms on 
conducting surfaces. These are implicitly included in (1.7.2); if made 
explicit, thc surface term in the Gauss' theorem integration by parts 
would have canceled the i3Q4 surface contribution to S W, so that (1.7.3) 
continues to hold in the presence of conductors. 

We consider here only linear media, for which 
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D, = E , ,  E,. 

Then 

4 n  
(1.7.4) 

(1.7.5) 

where E ;  = ( E , ,  + ~ , , ) /2  is the symmetric part of E , , :  E ;  = ( E ~ ,  - ~, , ) /2  is 
the antisymmetric part. 

The first term in (1.7.5) can be integrated since 

+(E, Ei)  
E:SE, E, = 

2 
(1.7.6) 

However, the integral of 6 W A  = E ;  6E, E, depends on the path of integra- 
tion. In particular, a closed path in E space will not, in general, integrate 
to zero. Take a path in the E,,E,-plane. Then by Stokes' theorem 

SW" = E;',, (E; dE,, - E,, d E , ) l 8 ~  1p 
- /, (area enclosed by the path) 
- E , , ,  

4T 
(1.7.7) 

Thus, a static, antisymmetric component in the dielectric tensor indi- 
cate$ a medium that absorbs or produces energy.6 An energy-conserving 
system must therefore have a symmetric dielectric tensor, E,, = E , , ,  to 
which case we rcstrict ourselves here. The work done in charging the 
systcm is then 

8.n 
(1.7.8) 

and may be identified with the electrostatic contribution to the free energy 
of the sy5tem. 

Equation (1.7.8) has a remarkable property. It appears to express the 
electrostatic energy 

w,,, = -- tir eL 
8.x 'I (1.7.9) 

"Wc will discus\ ahcorptioii foi- time-tlcpcnclcnt fields i n  Chapter 3. 
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(where the subscript m indicates that W,,, is calculated from the micro- 
scopic field strength) as a quadratic functional of the averaged field 
strength and polarization, E and P = (D - E)/47~;  that is, it appears to 
ignore fluctuations of the microscopic field. 

Actually, in the absence of conductors, the quadratic dependence is 
only apparent. We can see this by writing the field E as 

E = Eo + E,, (1.7.10) 

where Eo is the field produced by the macroscopic charge density p and 
E,, the field produced by the polarization charge density p,, = -V  . P. The 
electrostatic energy change produced by introducing the dielectric medium 
is 

AW = - dr(E D - Ec) 
87T 'I 

= L(r[(E + E,,) . (D - 
87T 

Ell) - 

(1.7.11) 

4 n P . E 0 ] ,  (1.7.12) 

where P is the polarization density. In the absence of conductors, the  first 
term in (1.7.12) vanishes after an integration by parts, since V . (D - Eo) = 

0 and (E + Eo) = -V(4 + There remains 

A W =  - -  d r P . E o  
2 'I (1.7.13) 

which is a linear functional of the microscopic polarization and bilinear 
only in the applied field. 

Equation (1.7.13) also holds in the presence of conductors, although 
the proof is more complicated. 

I t  should be noted that following (1.7.8), we referred to W as the 
electrostatic contribution to the free energy (as opposed to internal en- 
ergy) of the system. This is because in calculating the work done in 
electrifying our system, we kept the dielectric constant, and hence the 
matter density and temperature, fixed. 

The change in free energy F is defined by 

6 F =  6(lJ - TS)  (1.7.14) 

where U is the internal energy, T the absolute temperature, and S the 
entropy. Therefore, 
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S F =  SU - TSS - SST 

= S W - S S T  (1.7.15) 

where 6W is the work done on the system. 

ical work done on a gas: 
The work S W includes mechanical work, such as the familiar mechan- 

SW,, = -PSV (1.7.16) 

and the electrical work done on a dielectric medium: 

dr(E * SD - Eo.  SEo) 
4a 

(1.7.17) 

As before, Eo is the applied field, that is, the field that would be present 
in the absence of the dielectric sample. We see thus that at constant T 
and V ,  S F  = 6 W,. 

The arguments leading to (1.7.13) also lead to 

(1.7.18) 

showing that the independent variables in the free energy should be vol- 
ume (or density), temperature, and Eo. 

We then learn, from (1.7.15), that 

and, from (1.7.18), that 

(1.7.19) 

(1.7.20) 

where (1.7.20) and (1.7.18), in fact, define 6F/[SEo(r)] as the functional 
derivative of F with respect to Eo(r). Here p is the matter density of the 
material. 

The internal energy is given by 

U = F + T S  

(1.7.21) 



36 Electrostatics 

The electrical contribution to the internal energy is therefore, from 
(1.7.13) for AW and A W  = AU in (1.7.21). 

(1.7.22) 

Forces and stresses may be obtained by calculating the change in F 
resulting from appropriate displacements. For example, the total force or 
torque F, on a dielectric would be calculated as 

(1.7.23) 

where 6, is the appropriate conjugate variable: for force, a fixed coordinate 
in the dielectric, for example, the center of mass, for torque an infinitesi- 
mal angle of rotation about a coordinate axis. If there are conductors 
present, the arguments of Section 1.5 show that the total charge on each 
conductor must be held fixed in (1.7.23). 

The calculation of internal stresses in a dielectric is harder, but can 
be carried out by considering internal displacements. A straightforward 
treatment of stresses in a fluid dielectric is given in Panofsky and P h i l l i p ~ . ~  

CHAPTER 1 PROBLEMS 

Application of Gauss’ and Coulomb’s law to simple systems 

1.1. 

1.2. 

Consider a spherically symmetric charge distribution, p = p ( r ) .  As- 
suming the resultant electric field E to be radial, E = iE , . ( r ) ,  show 
that E , ( r )  is given by 

1 

where Q ( r )  is the charge inside r .  

Consider a cylindrically symmetric charge distribution, that is, d = 
d ( p ) ,  where z ,  p ,  and cp are cylindrical coordinates, and d is now 
the charge density. Assuming the field to be radial, E = ?,,.E,,(p), 
show that E , ( p )  is given by 

’W. K .  H. Panofsky and M. Phillips, Cla.uicnl Elec~ici tv  und Magtierism, Reading, 
MA: Addison-Wesley, Chap. 6 .  
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where Q ( p )  is the total charge per unit length inside the radius p .  

1.3. Consider a largc, rectangular charged plane, with uniform surface 
charge density u, lying at z = 0. Near the center of the plane and 
near z = 0, assume by symmetry that the field is in the z direction, 
E = 2: E : ( z ) .  Then show that 

1.4. Now let the charged plane at z = 0 extend from x = - I ,  to x = l2 
and from y = - I  to y = I .  Investigate the  acsumption that at x = y = 
0. the fields E ,  and E,  are zero, and E; is independent of x and y .  
Give the conditions on I , ,  12. I ,  and 7 under which the result of 
Problem 1.3 is approximately correct. 

1.5. Do the smie for the situation of Problem 1.2, where the cylindrical 
distribution runs from z = -I, to z = 12. Hint: The final azimuthal 
integral can be done by going to thc complex plane. Let z = P. 

1.6. Prove that a conductor is an electrostatic shield. That is, show that 
the (static) field inside an empty hollow conductor is zero. 

1.7. From Problem 1.6 it follows that a conductor inside a charged 
conducting shield will not become charged even if put in electrical 
contact with the outer conductor. This is independent of the shape 
of either conductor, but depends, via Gauss' law, etc., on the inverse 
square law. For a slightly different force law, the inner conductor 
will normally become charged when connected to a charged outer 
conductor. The calculation of that charge is difficult except for 
specially shaped conductors. Consider now that both conductors are 
thin spheres. concentric, with radii b and a,  with b > a. The outer 
conductor h carries a charge Q and is electrically connected to the 
inner conductor. 
(a) Calculate the chargc S Q  induced on  the inner conductor if the 

force law is derivcd from a potential 

where L >> b. Note that this form of potential would result 
from n theory with massive photons. 
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(b) Same as (a) but with 

with ( E (  << 1. 
(c) Same as (a) and (b) but with 

with ( € 1  << 1 and -1  < p < 1. 

Problems with images 

1.8. Two conducting plates make an angle of 90" with each other. Let 
one plate be in the yz-plane, with y > 0; the other in the xz-plane, 
with x > 0; and place a point charge Q at x = XIJ > 0, J.' = yo > 0, 
z = 0. This configuration can be solved with images. Where and 
what are they? 

1.9. Two conducting planes make an angle of 45" with each other. A 
point Q is placed at a distance R from the vertex, half-way between 
the plates. This configuration can be solved with images. Where and 
what are they? 

1.10. A point charge Q is placed at a distance L from the center of a 
grounded conducting sphere of radius R < L .  Show that the con- 
figuration is solved with an image charge Q' placed at a distance 
R' = R'/L from the center of the sphere. Of course, R' < R. 
Determine Q' as a function of Q9 R ,  and L .  

1.11. The same as Problem 1.10, except with a ncutral isolated conducting 
circular cylinder, radius R ,  and a line charge A a distance L from 
the center of the cylinder. 

1.12. A point dipole is at a distance L and pointing away from the center 
of a grounded sphere of radius R. Using the method of images, find 
(a) The charge induced on the sphere. 
(b) The electric dipole moment (with respect to the center of the 

sphere) induced on the sphere. 

1.13. Two isolated conducting spheres of radii R ,  and R2 are placed a 
distance L apart, with L >> R ,  and I, >> R 2 .  A charge Q is placed 
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on sphere 1. This configuration can be solved by successive approxi- 
mations involving images, images of images, etc. 

(a) Calculate the lowest order (in R l o r 2 / L )  contribution to the force 
between the spheres. Carry the calculation one step farther, 
sufficient to identify the power of RI  or 21L of the next 
correction. 

(b) If you calculated the force by setting it equal to the force 
between the image charges, your calculation was correct. Can 
you justify this statement? Although the answer “no” may be 
correct (i.e., you cannot justify this statement), it is not accept- 
able. 

Problems involving spherical harmonics 

1.14. An isolated conducting sphere is placed in a uniform electric field 
E(, in the z direction, so that the applied potential is 

40 = -Enz - - -Eorcos 0 = -E,r P l ( C 0 S  0) * 

Find the potential 84 generated by the induced charge distribution 
on the surface of the sphere. From it, find the charge distribution 
itself and the dipole moment of the sphere. Assume that the sources 
of E,, are far enough away so that they are unaffected by the 
introduction of the sphere. 

1.15. (a) Suppose the applied field vanishes at the center of the sphere, 
with 

Find the potential &(r) that corresponds to this field, the poten- 
tial 8 4  generated by the induced charge distribution on the 
sphere, the induced charge distribution itself, and the total 
charge, dipole moment, and quadrupole moment of the sphere. 

(b) How would you arrange a charge distribution to create this 
applied field near the sphere? 

1.16. A nonconducting, very thin shell of radius h carries a surface charge 
distribution 

1 
2 

u = CT~~(COS 0 + - sin B cos 9). 

Find the electrostatic potential for r > b and r < b ,  assuming the 
field to be finite everywhere and no other charge to be present. 

1.17. Solve the problem of a point charge and a grounded conducting 
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sphere by expanding the Coulomb potential of the point charge in 
spherical harmonics with respect to the center of the sphere, solving 
for the potential for each I and resumming. 

"1.18. Show that a single Maxwell quadrupole, characterized by two unit 
vectors iiL, ti2 and a magnitude Q, can produce the correct 
asymptotic potential of an arbitrarily confined 1 = 2 charge distribu- 
tion. Clearly, the plane of2, and n^? must contain two of the  principle 
axes of the quadrupole. However, yo11 must choose the right two. 

Problems in two dimensions involving the use of analytic functions 

(Prerequrrile: Sornc knowledge of complex function theory.) 

- 

1.19. When the potential is independent of one rectangular coordinate, 
the I.aplace equation for the potential 4 becomes 

$4 $4  
rls' dy 

+ ~ = 0 .  -_ 

The real and imaginary parts of any analytic function satisfy this 
equation, as we now show. 
(a) An analytic function of a complex variable 

w =  f ( z ) ,  

has a derivative 

which is independent of the path by which Az + O .  With z = 
x + iy and w = 11 + i v ,  show that this path indcpendence 
implies the Cauchy-Riemann equations 

f l l l  i) and - = - - dlC - nu 
.- - - 
rlx i ) y  il-y (7.r 

(h) Show that thc Cauchy-Riemann equations imply that I I  and u 
are harmonic. 

(c )  It  is conventional to choose the imaginary part of IY, u to be 
the potential.x With this choice. show that thc lines of force 
are lines of constant [ I .  

1.20. Given one or more two-dimensional conductors (i .e. ,  three-dimen- 
sional cylinders), one looks For a function LV = J ' ( z )  such that the 
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cylinders are lines of constant u .  The potential problem is thus 
automatically solved. Show then that the charge density on the 
conductor is 1 / 4 n  d d d l ,  where dl is the length variable along the 
conductor. To illustrate this technique, consider the function 

defined to be the positive square root for x > 0 when y approaches 
zero from above and analytic in the cut plane (cut from y = 0, x = 

(a) Find the equation for equipotential surfaces. 
(b) The equipotential u = 0 is obtained by letting y -+ 0 from above. 

For 0 < y << x ,  give u as a function of x and y and find the charge 
density on the upper surface of the conductor as a function of 

(c )  The value of w for y < 0 is found by analytically continuing 
around the singularity. Use this procedure to calculate the 
charge density under the plate. 

Note that although the charge density is singular as x-+  0, the 
integrated charge in a finite region of x is finite. Also, since the 
total charge is infinite (in three dimensions), there is no uniqueness 
here. In practice, the conditions that determine and b will come 
from boundary conditions at x. (See Problems 1.22 and 1.23.) 

0 to y = 0, x = =). 

X. 

1.21. The potential of a line charge A is 2A log p ,  where p is the cylindrical 
radius. If the line charge is at position p’, the potential at p is 

If the charge is distributed with a density ~+(p’), the resultant poten- 
tial will be 

where thc area element dp’ = p ’  dp ’  d p ’ ,  and \ p  - p’l  = 
(p’  + p” - 2 p p ‘  cos(q - c p ’ ) ) “ ’ .  Show that the two-dimensional 
potential has a “multipole” expansion, for p outside of the charge 
distribution, 
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where po is an arbitrary length scale, A the total line charge, 

A = dp’  a ( p ’ ) ,  I 
and 

You should make use of the identity 

Iz - z‘l = Ip2 + p ’2  - 2pp‘cos(cp - cp’)I”2 

where z is the complex variable z = p P ,  and Re log(z - z ’ )  = 
loglz - z‘I. 

1.22. Consider the function 

defined to be real and positive for 1x1 < b and y + O  from above. 
and analytic in the cut plane from y = 0, x = -h  to y = 0, x = h. 

(a) Find the value of w for x = h + E ,  y = 0 and x = -b - E ,  y = 0. 
(b) Find the value of w as x + -+ x. From this, find the physical 

system represented here. 

1.23. Consider the analytic function w ( z )  given implicitly by 

(clearly, dimensional coordinates would scale z by a length unit and 
w by a potential unit). Let w = LI + i u ,  with u as the potential. 

(a) What is the line u = 0 in  the x ,  y plane? 
(h) What is the line u = 1 in the x , y  plane? 
(c) What is the electrostatic problem solved by this function? 
(d) Sketch the equipotential lines with u = 1 - E and u = E ,  when E 

is very small. 
(e) Give the potential and charge densities on both sides of the 

conducting surfaces as x --+ x .  

(f) Near x = y = 0 ,  the relation between w and z is w = cr I&, where 
(Y is a constant. Relate the constant cr to the potential difference 
and distance between the plates of this capacitor. 
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Problems involving dielectrics 

1.24. Formulate and prove the uniqueness theorem for conductors and 
dielectrics with E ( X )  > 0. 

1.25. Formulate and prove a variational principle for dielectrics and con- 
ductors analogous to (1.4.8). 

1.26. A point charge q in vacuum is a distance x = 1 from the plane 
surface of a dielectric extending to x = a. The dielectric constant is a 
constant, E .  The fields for this configuration of charges can be found 
using the method of images: The potential outside the dielectric is 
given by the Coulomb potential of the charge q plus the Coulomb 
potential of an image charge q’ in the dielectric. The potential in 
the dielectric is given by the Coulomb potential of an image charge 
q” outside of the dielectric. Find the location and values of the two 
image charges. Calculate the force on the dielectric as the Coulomb 
force between 9 and q‘; then verify that this is correct by integrating 
the stress tensor over an appropriate surface. Is there another reason 
for believing the result? 

1.27. A dielectric sphere with dielectric constant E is placed in a uniform 
electric field Eo (whose source is far enough away to be unaffected 
by the sphere). Find the electric field outside the sphere and the 
induced electric dipole moment of the sphere. Compare the result 
for large E to that for a conducting sphere. 

1.28. The problem of a point charge q a vector distance b from a neutral 
dielectric sphere of radius a cannot be solved with images; however, 
an integral for the correct potential at  radius r can be obtained using 
the method of Problem 1.21, The answer for the potential outside 
the sphere ( r  > a )  is 

+ = -  + a +  
Ir - bl 

where 

I a ( E  - 1) a +  = -q-- 
b e + 1  

with 
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where y = 1 + E and y = a'//hr. Show that this answer is correct and 
give a similar answer for the potential inside the sphere ( r  < a) .  

Miscellaneous problems 

1.29. Prove that the mean value of the electrostatic potential in vacuum 
averaged over the surface of a sphere is equal to the potential at 
thc center of the  sphere, provided there is no charge inside the 
sphere. 

1.30. Find the equation for the lines of force in the xy plane around an 
electric dipole lying along the x-axis. The line of force points in the 
direction of the electric field, so its diffcrential equation is 

!LA, E,, 
rlx E,. 

Hint: Use polar coordinates in the plane to obtain an equation r = 
r , , f ' (O).  Sketch a few lines. 

1.31. Repeat Problem 1.30 for a quadrupolc with a potential 

1 - 3 cos2 H 
r 3  4 =  

The answer is straightforward in the first quadrant (0 s 0 d 7r/2).  
What happens in the second quadrant ( ~ 1 2  5 H S T T ) ?  

1.32. (a) Calculate, from first principles and the definition of electric 
dipole moment, the force between two dipoles pl and pz.  Is 

(b) Calculate the torque T~~ exerted by p,  on p'. Is 712 = - - T ~ ~ ?  If 

1.33. Prove directly. using a Green's type theorem, that the coefficients 

1.34. (a) Find the Green's function for a conducting insulated sphere. 

Fzl = -Flz'? 

so, fine. If not, explain what happened. 

of potential arc symmetric: p,, = P , ~ .  

(h) Find the Grecn's function for a conducting sphere held at fixcd 

(c) Verify the symmetry G(r, r , )  = G ( r , ,  r )  for both cases. 
potential. 

1.35. Thc simplest clectrostatic variational calculation i s  quite com- 
plicated. Consider, for example, the problem of finding the field 
produced by a constant chajge density 

p = p o .  r < ( I  

and 
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Try a variational function 

A $ = -  r” ’ r > a  

@ = B r ” ‘ + C ,  r < a .  

From the boundary condition at r = a ,  find C as a function of A ,  
B, and a .  Calculate the variational integral I and minimize with 
respect to A and B .  There remains a dimensionless function of n 
and rn. Show that the minimum of I occurs for II = 1 and rn = 2, 
the correct values. 

1.36. There is a very successful model that takes into account the interac- 
tion of atomic dipoles with each other in calculating the dielectric 
constant. This model leads to a formula known as the Clausius- 
Mossotti relation. The argument starts by noting [as shown in 
(1.6.23)] that the macroscopic (i.e., average) field E is generated by 
external sources and by the average dipole moment per unit volume 
P of the dielectric. Thus, 

r - r’ 
E(r) = E (from external sources) - 0 cir’P(r’) - ___ .  

Ir - rrI3 

Presumably, the part of the above dr’ integration coming from large 
values of 1 r - r’ I gives a good approximation to the contribution of 
distant dipoles to the local field at an atom. However, the contribu- 
tion of nearby dipoles must be explicitly summed. A remarkable 
slight of hand follows: the integral over dr’ coming from a very 
small, but macroscopic, sphere surrounding the atom at r is sub- 
tracted from the above formula and replaced by the sum of the 
fields of the point dipoles in that neighborhood. Thus, 

(r - r’) dr’P(r’) . ___ - v E pi.---- 
lr - r’)’ ,In\rdr lr - r ,J3*  

r - r, 
E,,,cai(r) = E + V 

,n,,de I 3pherr 
<phcre 

Now comes the slight of hand: For the two extremes of a crystal 
with cubic symmetry, on the  one hand, and for randomly placed 
dipoles, on the other, the sum over i vanishes. Also, for a small 
enough sphere, P(r) will be approxirnatcly constant over the sphere. 
With these assumptions, show 

47rP 
E,,,,;,, = E + -- 

3 

and from this 
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E - 1  477 
E + 2  3 

- na -- - 

where a is the atomic polarizability and n the number of atoms per 
unit volume. This formula predicts that the measurable quantity 

( E  + 2)n 
t - - 1  

for a given substance should be approximately independent of 
external parameters, such as pressure and temperature, Note that 
weak coupling between the atoms corresponds to small n a ,  so that 

~ - 1 = 4 7 ~ n a .  

*1.37. For an interesting problem employing standard electrostatic 
methods, see Problem 2.14 (magnetic levitation of a super- 
conducting sphere). 
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CHAPTER 2 

Steady Currents and 
Magnetostatics 

2.1. STEADY CURRENTS 

w e  describe the flow of currents in a medium by a vector current density 
j (x) ,  where j (x)  . dS  is the charge crossing the surface element dS  in unit 
time, that is, the current through dS. Total charge is conserved. Thus, 
with p(x, t )  the charge density, the decrease of charge in a volume V must 
equal the flow of current through the boundary surface S :  

V S 

or 

I’ V 

for any volume V ;  hence, 

aP - + V - j  = 0 .  
at 

(2.1.1) 

(2.1.2) 

Equation (2.1.2) is called the continuity equation. The conservation of 
total charge is the global reflection of the local law. [Almost all the known 
conserved quantities in physics have local densities that satisfy a local 
equation like (2.1.2). We shall see many of them.] For a static situation 
dpldt  = 0 and V j = 0. That is the case we will be considering in this 
section. 

47 



48 Steady Currents and Magnetostatics 

For a large class of media and sufficiently small electric fields, macro- 
scopic currents are generated according to  Ohm's law: 

j = a E  

or more generally, 

(2.1.3) 

j ,  = u,, E, . (2.1.4) 

The tensor (T,, is called the conductivity. The rate at which work is done 
on currents, producing heat, is 

nw = 1 dr E,j, = / dr E,a,, E, 
ri t  

(2.1.5) 

so that the syrnmerric part o f  a,, must be positive. The antisymmetric part 
of (T,, does not contribute to tlWldt. An example of an antisymmetric 
conductivity tensor can be found in the Hall effect. where cr,, has an 
antisymmetric component 

a$ = constant c l IA  Bk (2.1.6) 

with B, the magnetic field. (See Problem 3.5.) 
The equations that govern the conducting medium are,  with (2.1.4). 

v x E = 0 ,  (2.1.7) 

and 

(2.1.8) 

identical to the equations for a dielectric medium, with the conductivity 
replacing the dielectric constant and j replacing D. Equations (2.1.3), 
(2.1.7), and (2.1.8) imply Ohm's law for the relation between the potential 
difference A@ along a conductor and the current f flowing through it: 

Aq5 = RI (2.1.9) 

where R is called the resistance of the conductor. R is simply related to 
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the conductivity for a cylindrical conductor: 

(2.1.10) 
L R = - -  

AU ’ 

where L is the length and A the cross-sectional area of the cylinder. 
A current in conductors can be generated by electromagnetic induc- 

tion (to be discussed later in this section) or by a chemical or thermal 
source of energy (for example a voltaic cell). We give a brief discussion 
of the latter here. 

A voltaic cell is usually an arrangement of two electrodes of different 
material immersed in an ionized fluid, or electrolyte, such that it is ener- 
getically profitable to transport positive ions to one electrode (the positive 
terminal) and negative ions to the other electrode (the negative terminal). 
The electrochemical energy per unit charge transferred is called the elec- 
tromotive force of the cell. Charge will build up on the electrodes until 
the opposing potential difference of the electrodes A 4  = 8. Thus, the 
open circuit voltage of a cell is equal to X .  

When the external circuit is closed, positive charge will flow in the 
external circuit from + to -. and inside the cell from - to +. What 
happens to the external potential A4? At I = 0, A 4  = %. It is reasonable 
to expand A4 about % in a power series in I and to keep the first two 
terms: 

We call r the internal resistance of the cell. r must be positive since when 
current Z flows, the electrochemical power produced is % I .  This power 
cannot be smaller than the power A 4 1  transformed into heat in the exter- 
nal resistance. Thus, 

% I  2 A + l  (2.1.12) 

or 

r 2 0 .  (2.1.13) 

For the equality to hold, there would have to  be no dissipation in the cell 
itself, and the cell would be a perfect conductor. Normally, r > 0 and 

(2.1.14) 
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2.2. MAGNETIC FIELDS 

Units 
We work in mixed Gaussian units: e.s.u. for electric field and charge, 
e.m.u. for magnetic fields (gauss or oersted). Current is fixed by units of 
charge and time: I i s  in e.s.u/sec. Note that 1 Ampere = 1 Coulomb/sec = 
3 x lo9 e.s.u./sec. Magnetic units start with the force between magnets, 
treated as dipoles. Thus, as in electrostatics, two unit magnetic poles 
situated 1 cm apart exert a force of 1 dyne on each other. Since magnetic 
poles do not appear in nature, one calculates (in principle) the force 
between two small, widely separated magnetic dipoles: 

or, with rI2 = r2 - r l .  

(2.2.2) 

With F in dynes and rI2 in centimeters, (2.2.2) determines magnetic mo- 
ment in e.m.u. The magnetic field B produced by a moment m is then 
given in gauss by 

The magnetostatics of permanent magnets had been clarified by the 
end of the eighteenth century. However, there was at that time no known 
connection between magnetic and electric phenomena. Then, in 1820, 
Oersted discovered the magnetic field surrounding a wire carrying a steady 
current. Within 12 years, Ampl.re, Biot, Savart, Faraday, and others had 
worked out the physics of magnetic fields and steady currents, culminating 
in Faraday's discovery of electromagnetic induction. 

In working through this subject, we start from the discovery by Biot 
and Savart that the magnetic field at a point r due to a circuit carrying a 
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current I could be calculated from the formula 

(r - r') dl' x ___ 
Ir - r 1 1 3 '  B(r) = - 

C 'P c' (2.2,4) 

where $dl '  signifies a line integral around the circuit and r' is the 
position vector of dl ' .  The constant c has the dimension of velocity, 
c = 3 x 10"'cm/sec. 

Equation (2.2.4) contains a strong hint as to the force of a magnetic 
field on a circuit. Let us use (2.2.4) to calculate the force of B on a 
hypothetical magnetic pole p.  It is 

We recognize 

(2.2.5) 

where Bp(r') is the magnetic field that would 
hypothetical pole at r. Thus, 

(2.2.6) 

be produced at r' by the 

FC"",, = - - ' f dl' X Bp(r'), (2.2.7) 
C 

and if we assume that action is equal and opposite to reaction (a treach- 
erous assumption here, as we shall see later, but correct for circuits 
carrying steady currents), we find that the force on a circuit is suggested 
to be 

(2.2.8) 
C 

The artificiality of the use of poles could be avoided-we could arrive at 
the same result (2.2.8) by considering a real dipole instead of a hypothet- 
ical pole. More important, the formula (2.2.8) is experimentally correct. 
Thus, one can calculate the magnetic field due to a current in a wire as if 
it were due to a sum of contributions from each circuit element dl', with 

I (r - r') 
c / r  - r1l3 

dB = -dl '  X _____ (2.2.9) 

and the force on a circuit ns if it were the sum of forces on each circuit 
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elcment dl’ of 

I 
d F = - d l ’  X B .  

C 
(2.2.10) 

We might try to guess the field of a single moving charge from (2.2.9) 
and the magnetic force on a single moving charge from (2.2.10). To do  
this, we note that with ti charges per unit volume, each of magnitude q 
and velocity v,  

I = nquA (2.2.11) 

where A is the cross-sectional area of the wire. Multiplying by d l ld l  
converts u to v, and multiplying A by dl produces the volume of the 
current element dl .  Thus, Id1 = Nqv, whcrc N is the number of charges 
in (if. With one charge, we would guess from (2.2.9) 

v r - r ’  
B , , = q - X - - - - -  

c Ir - r‘j3 
(2.2.12) 

and from (2.2.10) 

V 

c 
F, = 9 - X B ,  (2.2.13) 

the Lorentz force law. 
Remarkably, it turns out that (2.2.13) is exactly right (if F is properly 

interpreted) and (2.2.12) is approximately right for low frequencies and 
velocities 4 c. 

One disconcerting discovery is that (2.2.12) and (2.2.13) d o  no/ satisfy 
Newton’s third law. Thus,  

(2.2.14) 

o r  

and 

5 )  
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But 

vI x (v2 x r) = v I  * rv2 - v I  . v2r (2.2.17) 

and 

v2 x (vI  x (-r))  = -v2 * rvI  + v I  . v2r; (2.2.18) 

the two expressions are only opposite when 

V I  . r v 2  - v 2 .  rvI = 0 or r x (v2 x v l )  = 0 ,  

that is, either v2 11 v ,  or r I to the plane of vI  and v2. We shall see later 
that in spite of this inequality of action and reaction, momentum can still 
be defined for electromagnetic systems and is conserved; however, one 
must add to the particle momentum a field momentum that gives overall 
balance. 

We should, however, check for action and reaction in the case of 
circuits carrying steady currents. Thus, for the force of circuit 2 on circuit 
I ,  we have 

Fzon = 111 f dll X B2(r l )  
c 

C'l 

(2.2.19) 

or 

(rl - r2) . (2.2.20) 1 dll . dl2 
Fzon I = % [ f d l z  f d l ,  - 

c 

The first integral is zero, since (r, - r2)/r:2 = -V1l/rl2 and I(,, d l l  . Vll / r12  = 0 for every r2. Thus, 

(2.2.21) 

which evidently satisfies the law of action and reaction. We can also read 
off the sign of the force for ZI and I 2  in the same sense: It is attractive. 
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We turn now to different ways of expressing the basic formula (2.2.4). 
As we pointed out earlier, Id1 = nqvdjr, or 

~ d i  = pvdjr = jd3r (2.2.22) 

where d’r is the volume element of the wire, p the charge density of the 
moving charge, v its velocity, and j the current density. More directly, 

id1 = j A d =  jd’r. (2.2.23) 

Therefore, a continuous distribution of current-imagine many wires lined 
up together-generates a field 

j(d) r - r‘ 
dr‘-  X ~ 

c Ir - r y  

and a field B exerts a volume force on a current j of 

(2.2.24) 

(2.2.25) 

“Volume force” f means that the actual force on an element of current 
occupying a volume V is 

V 

(2.2.26) 

The formulae we have derived are sufficient to calculate the magnetic 
field B of a given steady current distribution. Since the current is steady, 
we must have, in the absence of an indefinite piling up of charge density, 
V . j = O .  

Wc note that (2.2.24) is 

or 

(2.2.27) 

(2.2.28) 

From (2.2.28) we can derive the differential equations satisfied by B 
[analogous to (1.1.17) and (1.1.36) for the electric field]. 



First. 

V . B = O  
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(2.2.2 9) 

since B is a curl. Second, 

The first term vanishes, since V j = 0. To see this, note that 

= I dr' 1 V'  -j(r') = 0 .  

The second term in (2.2.30) is (47r/c)j(r). The source equation for B is 
therefore 

47rj V X B = - .  
C 

(2.2.31) 

Ampsre's circuital law follows directly from (2.2.31) by integration over 
any open surface bounded by a curve C: 

V x B . d S = -  d S . j  (2.2.32) 
4= c I 

S 

or by Stokes' theorem, 

(2.2.33) 

where lencloaed is the current flowing through the surface S. 
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Finally, (2.2.28) invites us to define a vector potential 

(2.2.34) 

with 

U = V x A .  (2.2.35) 

Note that (2.2.29) implies the possibility of introducing a vector potential, 
for which (2.2.34) supplied an explicit formula. 

The notion of gauge invariance makes its first appearance here. We 
can always add the gradient of a scalar T'$ to any A without changing the 
field B ,  since 0 x (V$) = 0. The choice of A among all these possibilities 
is called the choice of gauge. The transformation 

A+A+V11 ,  (2.2.36) 

is called a gauge transformation, and U is said to be gauge invariant. The 
gauge choice in (2.2.34) is evidently V + A = (1. Note that (2.2.36) informs 
us that we can always find a 4 to make V .  A = 0. Suppose Q . A(, f 0. 
Then let A ,  = A. + 04. We can make 0. A ,  = V . A() + V2$ = 0 by solving 
the equation V2+ = -V  . A,,, which is always possible. 

The underlying theories that physicists work with today are all theories 
with gauge invariance under transformations similar to (2.2.36). Not 
surprisingly, they are called gauge theories. In  particular, the so-called 
standard model of the strong, weak, and electromagnetic interactions has 
all interactions mediated by gauge fields: eight colored gluon fields for the 
strong interactions, the W' and 2,) fields for the weak interactions, and 
of course the electromagnetic field. 

2.3. MAGNETIC MULTIPOLES 

Starting from (2.2.34) for the vector potential 

(2.2.34) 

with V . j = 0, we can expand A(r) in a power series in r ' i r  (convergent 
for r '  < r ) :  

1 ( - l ) /  / 1  
A(r) = - 2 ~ 1 dr'j(r') (r' C) - 

c / I !  r 
(2.3.1) 
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We consider first the terms l = 0 and 1 = 1, and then go on to the 
general term. First, 1 = 0: 

A""(r) = - dr'j(r'). (2.3.2) 
cr ' I  

A'"'(r) can be seen to be zero from the identity 

c?ix 1 . 0 = dr x, - = - dr -llk(r) = - 1 dr j,(r). (2.3.3) I ax, 

Thus, there is n o  vector potential of order l l r  for large r and, hence, no 
magnetic field of order l l r 2 .  This conclusion has nothing to do with the 
nonexistence of magnetic poles. If magnetic poles existed, there, of course, 
would be magnetostatic fields going like l / rz ,  where r would be the 
distance from the pole. There still would be no llr' field generated by 
steady electric currents. Note that a single moving point charge does not 
constitute a steady current and, hence, will give rise to a l / r 2  field. 

The term 1 = 1: 

I t  is useful here to change to tensor notation: 

(2.3.4) 

(2.3.5) 

We proceed by decomposing the term j i x ;  into symmetric and antisym- 
metric parts: 

1 .  1 
2 2 

/ , x i  = - ( j , x ;  + jxx:) + - (j,x; - j , x : ) .  

The first term in (2.3.6) integrates to zero, as in (2.3.3): 

(2.3.6) 

(2.3.7) 
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The second term in (2.3.6), inserted into (2.3.5), gives 

We define the magnetic moment density M by 

r ’ x  j (d )  M(r’) = 
2c ’ 

(2.3.8) 

(2.3.9) 

so that. since 

1 1 
- (r’ x j) x V = - [-r’j . V + j(r’ . V)], 
2 2 

(2.3.10) 
1 dr’ M(r’) x V - I r 

A(’)(!-) = - 

1 
r 

= - m x V -  (2.3.11) 

where rn is the magnetic moment, 

(2.3.12) 

The magnetic field of the moment m is 

or, since V2(1/r) = 0 for r # 0, 

1 
B(’) = (m + V)  C - 

r 

1 
= V(m + V) - 

r 

(2.3.14) 

corresponding to a magnetic “potential” 
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m . r  
#J*(r) = -. 

r 3  
(2.3.15) 

In general, of course, one cannot express B as the gradient of a 
potential, since V X B # 0. However, in a region where V x B = 0, that 
is, outside of a current-carrying region, one can define a potential +*, 
called the magnetic pseudopotential, such that 

B = -V#J* .  (2.3.16) 

We discuss the magnetic dipole further by considering two special 
cases: 

1. A circuit carrying current I :  

2c ’f m = - I d r r x j = -  1 r x d l  
2c 

(2.3.17) 

C’ c 

where d l  is in the direction of the current, or by Stokes’ theorem, 

I 
m = - A ,  

C 
(2.3.18) 

where A is the “area” of any surface bounded by the circuit C: 

A =  d S ,  i 
with the direction of d S  determined by the right-hand rule applied 
to the circuit C .  

2. A point particle of charge q and velocity v in orbit, radius vector 
ri, : 

or 

(2.3.19) 

where li, is the angular momentum of the particle. The factor q/2rnc 
is called the gyromagnetic ratio of the particle. Note that in this 
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example j(r, t )  = qvI,6(r - rJt)) is not a constant. Nevertheless, 
the formula for the magnetic moment turns out to be correct if one 
first time-averages m over the fast orbital motion. 

The general term, (2.3.1), can be rewritten in tensor form: 

The above expression for AI(r) permits the construction of a pscudo- 
potential that we give without proof (but see Problem 2.12 for the case 
I = 2): 

M(r’) * r 
. (2.3.21) 

(1 + l)! r 3  

Recall the analogous electrostatic formula 

(1.3.1) 

which showed that the potential of an arbitrary charge distribution can be 
written as a sum of inultipoles of order I ,  each multipole itself being an 
integral over r’ of Maxwell multipoles with the tensor structure 

Similarly. (P*(r) is given as a sum of multipoles of order I, each 
multipole itself being an integral over r‘ of a Maxwell multipole of the 
tensor structure 

and magnitude 

mopIlc1lc = a: ,/ I M(r,)  
(1 + l)!  

Q r  (2.3.24) 

As usual, only the symmetric, trace-free part of Q;nognet‘c contributes to 
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the integral (2.3.21) for I$*. Since there is no magnetic monopole, the 
Maxwell multipoles can be thought of as coming from successive displace- 
ment of a dipole, rather than a charge. 

2.4. MAGNETIC FIELDS IN MATTER 

We deal only briefly here with the averaging process since the essential 
issues are very similar to the electrostatic case. As in that case, we define 
an average field 

dr' f (r  - r')b(r') (2.4.1) 

where b is the microscopic field. The differential equations for b, 

(2.2.3 1) 

and 

become, on averaging, 

and 

V - b = O  (2.2.29) 

V . B = O  (2.4.2) 

47r - 
V X  B = - j,,, . 

C 
(2.4.3) 

It remains to calculate j,,,. An applied magnetic field will induce a 
magnetic dipole density, the dipole moment per unit volume M. The 
vector potential due to M will be given by (2.3.10) 

(2.4 -4) 

(2.4.5) 

Evidently, V '  x M(r') plays the same role with respect to j/c as -V - P 
does with respect to P h .  In integrating (2.4.4) by parts to arrive at (2.4.5), 
we have as usual dropped surface terms, understanding that they will 
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emerge from the behavior of V X M at an (approximate) discontinuity. 
Thus, we see that 

j n l  = cV x M + j, (2.4.6) 

where jf is the conduction current of moving charges. Calling i f= j, we 
have from (2.4.2), (2.4.3), and (2.4.6), the field equations 

V . B = O  (2.4.2) 

and 

(2,4.7) 
47rj V x B = ~ + 4vV X M. 

C 

Analogous to our definition of D in electrostatics, we define 

H = B - 4 r M ,  

leading to the final form for (2.4.7): 

471j 
V X H = -  

c 

(2.4.8) 

(2.4.9) 

Together with the relation between B and H, (2.4.9) and (2.4.2) determine 
the magnetic field. 

A word on nomenclature: Before the electrical origin of magnetic 
fields was known, the electrical analogue to B seemed to be D, and the 
analogue to H seemed to be E, the differences in the right-hand sides 
reflecting the absence of magnetic poles and currents. Consequently, the 
historic name given to the vector H is magnetic field, that given to B is 
magnetic induction, one conventionally measured in oersteds, the other 
in gauss. We do not differentiate these units from each other. 

The boundary conditions on B and H at a material discontinuity follow 
as usual from (2.4.2) and (2.4.9). A Gaussian pillbox applied to (2.4.2) 
tells us that Bnormal is continuous; a Stokesian rectangle applied to (2.4.9) 
tells us that 

where K is the surface current, that is, the current going through the 
infinitesimal Stokesian rectangle per unit length along the tangent under 
consideration. A surface current requires an infinite current density and 
hence infinite conductivity. For finite conductivity, we shall see that the 
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“surface” current is finite near the surface, and hence there is no 
AHt,,gent,a,, even for a sharply bounded surface. 

If B is a linear function of H, B, = p,,HJ, where the tensor po is called 
the permeability. As usual, the isotropic case has pl, = S,p .  

We discuss briefly the relation between B and H. First, let us consider 
permanent magnets. These are endowed with a fixed dipole moment M(r) 
per unit volume, giving rise to an effective pole volume density -V  . M 
and pole surface density Mnormal. (We do not discuss the atomic physics 
of permanent magnetization.) The equations determining the field con- 
figuration are 

(2.4.9) 

and 

Thus, since j = 0, 

V * B = O .  (2.4.2) 

and so 

v24* = 4rrv * M 

(2.4.10) 

(2.4.11) 

(2.4.12) 

plus boundary conditions determines +*  and, hence, H and B. 
Second, let us consider paramagnetic substances: p > 1. These consist 

of atoms possessing permanent magnetic dipole moments, which in the 
normal state are randomly oriented, cancel out, and average to zero. The 
presence of a magnetic field will polarize the moments and tend to align 
them with itself. A simple classical calculation shows this effect. Consider 
a gas of atoms, each having a permanent magnetic moment p,  in an 
externally applied field Bo. The energy of the magnetic moment in the 
field is 

W = - p  . B 0 

and the Boltzmann distribution function for p is 

(2.4.13) 

The mean value of p will be in the direction of Bo, so I. = ~ B B o / B o  
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and 

To obtain some notion of the order of magnitude of pBolkT,  we take 
p to be one electron Bohr magneton (eh/2rnec) and measure Bo in tesla 
(lo4 gauss) and T in degrees absolute. We then find 

(2.4.15) 

so that even for high fields and low temperatures pBBoIkT is quite small. 
The calculation of I. is very simple for pBolkT<< 1. From (2.2.14) 

I I 

we" I *Udk  ' d w  w 2 n w  

- 1  FZBo __. I - - -~ P2B0 (2.4.16) 
3kT I 

P I  

j e w W k  1 nw 
I * =  I 

k T  j d w  

- I  - 1  

and the atomic paramagnetic polarizability is' 

(2.4.17) 

Let us see what this volume is. With p = eh/2mr, where e and m are the 
charge and mass, respectively, of an electron, 

( y p  = L(L )2 
3kT 2mc 

(2.4.18) 

(2.4.19) 1 3  
= - 0 k  T 

'Thc formula (2.3.17) is called the Langevin-Debyc equation. I t  evidently holds equally 
well for a collection of freely rotating electric dipolrs. 
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with T in degrees absolute. Here, ulr is the Bohr radius, uH = 
cm. 

Thus, except for very low temperatures, the paramagnetic suscepti- 
bilities arc small compared to the electric ones. Note that the high T limit 
calculated here is necessary for the classical calculation to be valid; that 
is, kT must be larger than the alignment energy p B O ,  since otherwise the 
integral over angles, dR, would have to be replaced by a sum over discrete 
levels. 

Third, we consider diamagnetic materials. Diamagnetism is present in 
all matter; however, i t  is dominated by paramagnetism when the latter is 
present. 

Diamagnetism comes from a basic property of magnetic interactions 
(called Lenz's law): They oppose any change in the magnetic field. The 
mechanism used is electromagnetic induction, which will be addressed in 
Section 2.7.* A careful calculation of the polarizability of an electron orbit 
must wait until then. However, we can make a rough estimate of the 
order of magnitude. The magnetic moment p of an orbiting electron in 
an arorn, we have seen in (2.3.19), is 

x 

eL 
2mc 

p=-, (2.4.20) 

where L is the angular momentum of the electron. L, in turn, will have 
a component that is proportional to B and will not average to zero over 
many orbits. Dimensionally, 

L x mr'w (2.4.21) 

where r is the radius of the orbit and w a frequency of rotation caused 
hy the magnetic field. This characteristic frequency3 associated with the 
magnetic field is 

eB 
mc 

uc-- ,  (2.4.22) 

'in fact, one is treading on dangerous ground in attempting a quantitative classical 
calculation of diamagnetism, since it is a famoils theorem of classical statistical mechanics 
that a temporally constant magnetic field can have no effect on  a thermodynamic system at 
cquilibriurn: Paramagnetic and diamagnctic cffects cancel. Thcreforc, some consequences of 
quantum mechanics must he added to  the calculation. For example, the derivation given 
above of (2.4.17) assumes the existence of  a permanent unique magnetic moment-not 
possible in classical mechanics. The derivation to he given i n  Section 2.7 assumcs the 
existence of  uniquc orbits and time scalcs for the ficld free motion of the system, which is 
again not possible in classical mechanics. 

'Think of the equation vir  = F + (e/c)r x R, and note the characteristic frequency w ,  
contained in  r/r. F in this equation stands for the sum of the electric forces on the electron. 
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giving 

, r 2 B ;  (2.4.23) e eB e2 p - - . m r 2 . - = -  

2mc rnc me= 

Thus, the diamagnetic polarizability of an atom is very roughly 

e2 
( Y L I  - - a; 1 

mc2 
(2.4.24) 

which is smaller than the electric polarizability by a factor 
(e2/mc2)laB = (1/137)2. It is also smaller than the paramagnetic polariz- 
ability by a factor 7'/(137)2, so that diamagnetism is normally observed 
only in materials for which the paramagnetic susceptibility vanishes. This 
occurs when the intrinsic atomic or molecular moment p [as in (2.4.17)] 
vanishes identically for reasons of symmetry. 

2.5. MOTIONAL ELECTROMOTIVE FORCE AND 
ELECTROMAGNETIC INDUCTION 

If we move a conductor through a magnetic field, the evlc X B force will 
act on electrons, giving an effective electric field Ecf= v/c x B.  Thus, in 
general, if a circuit in a magnetic field is displaced, we can expect an 
effective electric field to be generated in the conducting wire, and we will 
find an effective electromotive force 

(2.5.1) 
c. c 

Note here that v is the velocity of displacement of the circuit element dl. 
We define the magnetic flux through the circuit 

(2.5.2) 

where S is any surface bounded by C ,  and the normal dS and the direction 
of circulation d l  are connected by the right-hand rule. Note that since 
V . B = 0, cf, is independent of the surface S. 

As we displace and deform the circuit, the flux @ will normally change. 
We now show that that rate of change determines the effective electro- 
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motive force via the equation 

(2.5.3) 

Note that (2.5.3) is not Faraday's law, since the magnetic field is not 
changing with time. 

With B given by a vector potential A, the flux @ is 

(2.5.4) 

and, as we change from contour C, to contour Cz, we have 

S @ =  A - d l -  A . d l .  (2.5.5) 
c'2 f f  CI 

We parametrize the path of the contour with a parameter r such that 

x,  = X i ( . ) ,  0 5 7 5 1 ,  X i ( 1 )  = Xj(0). (2.5.6) 

Then 
1 

0 

I 

(2.5.8) 

We integrate the first term in (2.5.8) by parts; the integrated term is 
zero, because 6x and x have the same values at T = 1 and at r = 0. There 
results 

I 

(2.5.9) 

We recognize that ( d x i / d r )  d r  = dx, (i.e., the dl, of a line integral) and - dx, S X ,  = B . S X  x d l .  (ax, - 3 
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Equation (2.5.9) then becomes 

I S @  = - 

and 

SX x B dl (2.5. lo) 

(2.5.11) 

which is the equation we set out to prove. 
Faraday's law of induction was, of course, a great experimental discov- 

cry. Nevertheless, i t  is interesting to observe that it follows from (2.5.11) 
and the assumption of Galilean (or of Lorentz) invariance. Imagine a 
magnet and a circuit. Consider two operations. First, move the circuit 
between the pole pieces of the magnet. An electromotive force %ti.f given 
by (2.5.11) will appear in the circuit, a corresponding current I = 8,,/R 
will flow, and the total charge transferred (e.g., deposited from an clectro- 
lyte or measured by a ballistic galvanometer) will be 

(2.5.12) 

all this rio rnutttr how slowly the circuit is moved. Second, move the 
magnet past the circuit with equal and opposite velocity. (In the rest frame 
of the magnet, this operation looks the 5ame as thc first one.) If we are 
not to be able to tell one reference system from another, the second 
operation must induce an electromotive force in the circuit having the 
5ame value as In this case, however, the electromotive force is 
genuinely induced, as discovered by Faraday. The law is the same as 
(2.5.11), of course: 

y -  1 do 
1 -  

c dt 
(2.5.13) 

where now 8 is a true electromotive force and d @ / d t  the rate of change 
of flux through the circuit. Obviously, we could have a third operation, 
where both the circuit and magnet move in opposite directions. The result 
is again the same equation (2.5.13), now with E = total electromotive 
force-true and motional-and d@/di the total change of flux through C ,  
whether from the motion of C, or a change of magnetic field, or  both. 

We deduce the differential equation corresponding to the integral 
relation (2.5.13) by holding the circuit fixed. Then (2.5.13) is equivalent 
to 
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for any surface S ;  hence, 

(2.5.15) 

This is the differential form of Faraday's law. Note that E has now acquired 
a curl. 

2.6. MAGNETIC ENERGY AND FORCE 

Analogously to our procedure in electrostatics, we calculate the rate at 
which thc induced electric field acting on the current causes a loss of 
magnetic field energy. It is 

We transform this expression as follows: 

= L l d r  E X V . H  
47T 

(2.6.1) 

(2.6.2) 

and, after dropping a surface term that vanishes, provided E x H goes to 
zero faster than U r 2 ,  we obtain 

(2.6.2) 

where the symbol means the gradient differentiates E, but is algebraic- 
ally to the right of E. We remedy this position by putting V algebraically 
to the left of E and changing the sign. Equation (2.6.2) then becomes 
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for the loss of energy by the field. As in the electric case, we can integrate 
(2 .6 .3 ) ,  provided the medium is linear and the permeability tensor sym- 
metric. We find 

W = -  d r H . B .  
87r 'I (2.6.4) 

We can discuss systems of current circuits, analogous to conductors 
in the electric case. We limit ourselves here to nonmagnetic media. The 
analogues to charge and potential are flux and current. To see this, we 
introduce the vector potential A: 

which for a system of circuits becomes 

or, by Stokes' theorem, 

w = - 1 c / l a ?  

2c I 

(2.6.5) 

(2.6.6) 

where l j  is the current in and Qj  the flux through the ith circuit. 

functions of each other: 
As with charge and potential, the fluxes and currents are linear 

a, = c C  L, , I~ .  (2.6.7) 
I 

The L,,'s are called coefficients of induction. Note that L,/ is defined so 
that the electromotive force in Ci induced by a changing current in C, is 
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dl. 
gi = - Ljj  (no sum). (2.6.8) 

dt 

We list several sometimes useful expressions for the energy W of a 
system of current carrying circuits: 

1 
2c i 

w = - c, I$); 

1 
2 i,j 

= - 2 I ;  LJ]  (2.6.9) 

and defining a matrix Gjj  which is the inverse of the matrix L,, we have 

1 
W = - 2 Ql Gj,Q, . 

2c2 1.1 
(2.6.10) 

For an extended current j(r), in the absence of a magnetic medium 
(P = 

W = -  d r A . j  
2c ' I  
1 1 

= -1 d r d r ' j  (rr) *- Ir - r'I j(r). 
2c2 

(2.6.11) 

The contribution to W in (2.6.11) from two separated circuits, 1 and 
2, is 

so that 

(2.6.12) 

The idealization of line currents in (2.6.12) cannot be made for the 

The generalized force on a circuit is given, with 8& a generalized 
diagonal element of the inductance matrix. (See Problem 2.16.) 
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displacement of the circuit, by 

(as we have seen in the  electrostatic case). S o  

(2.6.13) 

in agreement with (2.2.21). 
As in the electric case, the calculation of forces on material bodies is 

difficult. As in the electric case, however, we can find the total force on 
all the current (free or bound) in a region surrounded by vacuum as 
follows. The total force on currents inside the volume V is 

c 
V 

which we transform into 

F = - dr(V x B) x R .  
4rr ' I  

In tensor notation, 

since d,Bk = 0, we rewrite (2.6.15) as 

leading to a magnetic stress tensor 

(2.6.14) 

(2.6.15) 

(2.6.16) 

(2.5.17) 

and a total force on the currents inside V 
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(2,6.18) 

where S is the surface enclosing V .  dSk  is, of course, the outward normal. 
Since the surface S in (2.6.18) is in vacuum, the microscopic and macro- 
scopic B are equal. 

2.7. DIAMAGNETISM 

We return now to the question of diamagnetism, which was discussed 
qualitatively in Section 2.4. 

We consider an isolated atom, containing n electrons and a heavy 
nucleus. Imagine applying a constant magnetic field Bo to the atom. A 
famous result, due to Larmor, is that, to first order in Bo, the system looks 
just like the same system with B,) = 0, but rotating gently with a rotational 
angular velocity (called Larmor precession) 

(2.7.1) 

where e is the charge of the electron (negative!) and rn, its mass. We 
prove the result by considering the equation of motion for each electron 
e: 

d 'I-, V 
m, 7 = F,, + e X Bo 

dt C 
(2.7.2) 

where F, is the total remaining force on the eth electron, assumed velocity- 
independent and angular-momentum conserving, thus, for example, elec- 
trostat ic. 

What happens when we rotate the system about a point with a fixed 
angular velocity o? We specify a vector A as 

A = t4, + jA,, + k4; (2.7.3) 

where A , ,  A,,,  A ,  are the components of A along the rotating axes. The 
rotation of the coordinate axes is described as 

dk - = o x k  A (2.7.4) -_ di - ~ x i ,  - 
dt dt  dt  

_ -  dj  - o x j ,  
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so that 

d A  -- - C O X . ~ + -  d A  

dt d Etl 

where 

-- dA -dA, dA -dA, - I - + j A + k-. 
d [ t ]  dt dt dt 

(2.7.5) 

(2.7.6) 

That is, d A l d [ t ]  is the rate of change of A seen by an observer in the 
rotating coordinate system. Applying (2.7.5) to (2.7.2), we have 

dr e dr 
dltl ) c [d ( t ]  

+ ~ O ~ ~ + C O X ( C O X ~ ~ )  = F , + -  - p + ~ ~ r ,  

(2.7.7) 

If we set w = wL = -eBo/2mec and neglect quadratic terms in w or B, we 
return to the B-less equation 

d 're 
me-  - &I2 - Fe9 

(2.7.8) 

as stated earlier. Thus, the solution of (2.7.8) for the components of the 
r's are as if there were no field and no rotation. The neglect of quadratic 
terms is justified if o L r  -e d r / d [ t ]  and wLdrld[r]  @ d2r/d[r l2 ,  which for 
ordinary atoms and magnetic fields is true. 

The velocity of each electron is now 

dr, dr, _ -  . - - + wL X r,; 
dt d [ t ]  

(2.7.9) 

the angular momentum of each electron is 

dr 
X re) (2.7.10) d re 1, = m,r,, x - = mere x 2 + mere x (w 

dt d"1 

and the magnetic moment of each electron orbit is 

e e dr ,  e 
2m,c 2c d [ t ]  2c 

(2,7.11) m=- I ,  = - r ,  x - + - r, x (wl ,  x re.) . 

Of course, we have taken the origin of r (i.e., the center of rotation) at 
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the center of the atom. Adding up all the electrons in the atom and 
averaging over atoms [assuming that the first term on the right-hand side 
of (2.7.11) averages to zero], we have for the average dipole moment per 
atom m 

for a diamagnetic polarizability 

zz  e2 
f f D = - -  

6m,c2 

(2.7.12) 

(2.7.13) 

(2.7.14) 

in agreement with our earlier estimate. 
It remains to be shown that as the magnetic field is turned on, starting 

from zero, the induced electric field converts the original motion of the 
system to the Larmor precessing motion. 

We proceed by deriving a differential equation for the time depen- 
dence of the magnetic moment of an atom, averaged over many atoms 
and many cycles of the fast atomic motion. 

The equation governing the motion of the electrons in an atom is 

(2.7.15) 

where F, is the force of the nucleus and other electrons on e ,  Be the 
magnetic field acting on e ,  and E, the induced electric field acting on e .  
We neglect nuclear motion and take r, to be the radius vector from the 
nucleus to e .  

We take the cross product of re with (2.7.15) and sum over e .  Since 
the force F, is angular-momentum conserving, it drops out and we have 
the equation 

e ) (2.7.16) dL d 'rP 
- = m C, rp x ~ = E r e  x e 
dt dt2 e 

where L is the total angular momentum of the electrons about the nucleus. 
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The triple vector product r,. x (vt, x B , )  is 

B, x (v, x r,) 1 d 
2 2 dt 

+ - - (rr.rr, . B, - rzR,) - - 

(2.7.17) 

so that 

rc x E, - - rcrl, . - ‘ j B P  - rz *)). (2.7.18) 
2c ’ (  dr dt 

We simplify (2.7.18) by assuming that the spatial variation of B is 
small over the atom, so that B, can be replaced by B, and dB,ldt by aBlat. 
We cannot do  the same for E,, since the coefficient Err will average to 
zero over many cycles of the fast motion and over many atoms. We 
therefore expand E, about the nucleus of the atom: 

where 6E is linear in rp, but such that 

averages to zero (see Problem 2.17). The result is 

(2.7.19) 

d L  e d e  
- = ~ L x B + ~ - 2 (rcrt, - R - rfB) + 2 r ,  x 6E 
dt 2mc d t 2 ~  e e 

a B rf ”) (2.7.20) 
at  

or 
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d e2 
(2.7.2 1) ~ = oL x M + - __ 2 (r<,re . B - rzB) + e 2 re x 6E.  

dM 
d t  d t  4mc2 c e 

We average over atoms and find 

(2.7.22) 

where M = Ceme is the total magnetic dipole moment, M = eL/2mc. 

that case, starting with M, and B that are both zero, we find 
We can solve (2.7.22) easily for a field B in one direction, say, t .  In 

(2.7.23) 

confirming our earlier guess, (2.7.14). Evidently, the component of M in 
the x , y  plane precesses around the field with the precession frequency 
w L ,  as expected. 

CHAPTER 2 PROBLEMS 

2.1. Show that the functions p ( x ,  t )  = 4f (x  - x,(t))  and j(x, 1)  = 
q ( d x J d t ) f ( x  - x,,(t)) with x,(t) an arbitrary function of t  satisfy the 
continuity equation 

- + V . j = O  aP 
at 

and are therefore possible candidates for charge and current density. 
For a point particle, the function f ( x  - x,(t))  would go over to 

2.2. Two closed metal surfaces are immersed in a conducting fluid. Con- 
struct and prove a uniqueness theorem for the current and field. 

2.3. Two metal spheres, one very small, the other of radius b,  are 
immersed in a conducting medium of conductivity u. The centers 
of the spheres are separated by a distance L.  The small sphere has 
a current I” flowing out of it; the sphere of radius b is maintained 
at a potential V with respect to a very large conductor containing 
the system. What is the total current I flowing into the large sphere? 

2.4. Current I,, enters an “infinite” thin conducting plane (of conductivity 

s ” x  - x,,(t)). 
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u) at a point and departs at infinity. Assuming the flow is uniform 
across the width A of the thin plane, give a formula for the electro- 
static potential at a point p ,  cp in the plane. 

2.5. A circular hole of radius a is cut from the. plane of Problem 2.4. 
Its center is a distance b > a from the entrance point of the current. 
Using the method of Problem 1.21, find a formula for the electro- 
static potential at p ,  9. 

2.6. A current I of uniform current density flows down a circular cylindri- 
cal wire of radius b. Using Ampere's circuital law, find the magnetic 
field at a distance p from the center of the wire, for p < b and 
p > b .  

2.7. Imagine a uniform current lo flowing in the z direction for 
Ip - p1 1 < b and in the --z direction for Ip - p21 < b,  where 
Ipl - p2( < b. Draw a picture of the resultant current distribution 
and give a formula for the (uniform) magnetic field in the overlap 
area. Now let (p, - p2J .--* 0 and lo + M so that ZDlpl - p21 remains 
finite. Give a formula for the resultant current distribution as a 
function of p and cp. 

2.8. Calculate the field B inside and outside of a perfect solenoid, that 
is, an infinite thin cylinder of radius a carrying a uniform circulating 
current density j = f X $JS(p - pa) ,  where $ is the unit radial vector 
from the axis of the cylinder to the point p. f i  is a unit vector parallel 
to the axis of the cylinder. Check that your answer is consistent with 
Ampere's circuital law (2.2.33). 

2.9. Calculate the B and H fields of a magnetized spherical shell of radius 
b with a constant dipole moment per unit volume M. 

2.10. Calculate the B and H fields on the axis of a circular cylindrical 
magnet of radius a and length h with a constant dipole moment per 
unit volume M. Give the fields both inside and outside the magnet. 

2.11. A spherical shell of radius K carries a uniform charge distribution 
of surface charge density u. The shell is rotated about an axis with 
constant angular velocity w. Find the magnetic field B inside and 
outside the sphere. 

Suppose you wish to wind a current-carrying wire around a 
sphere in such a way that the field inside the sphere is uniform. 
How should the wire be wound? 

2.12. Study the next approximation in r'Ir to the magnetic field of a 
confined current. That is, from the general formula 

C 
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find the term following the dipole field. In particular, find the 
magnetic scalar potential and show that it is a quadrupole field. 

2.13. A current distribution J(r) exists in vacuum in the space z > 0, a11 
x and y .  The space z < 0 is filled with a medium of permeability p .  

Show that a B field satisfying the field equation and boundary 
conditions is given by the following: 
(a) For z > 0, the unperturbed B field of the current J(r), to which 

must be added the B field of an image current L(r) with 

and 

L z ( x ,  y ,  z )  = - ( p  - + 1)Jz(& y ,  - z ) .  
(b) The B field for z < 0 is given by the unperturbed field of an 

(c) The equations do not appear at first sight to lead to a unique 

*2.14. A superconductor behaves like a perfect diamagnet, that is, a 
material with p=O. An interesting property of a superconducting 
sphere is that it is repelled by a magnetic field and, therefore, can 
be balanced above a magnet. 
(a) Simulate the magnetic field as resulting from a very long circu- 

lar cylindrical magnet of radius b and uniform magnetization 
M ,  with the - M  pole far enough away to neglect. The super- 
conducting sphere, with radius a ,  is placed at a vertical height 
h above the center of the positive face of the magnet. Calculate 
the force on the sphere. Take a << h and carry out a multipole 
expansion of the B field generated by the superconducting 
sphere in the presence of the magnet. Then integrate the stress 
tensor around the sphere to get the force. You will have to 
keep the dipole and quadrupole terms to obtain a nonvanishing 
magnetic force. 

image current 2 / 4 1  + p)J (r). 

solution. What makes the solution unique? 

(b) Study the vertical stability of the suspension. 
(c) Study the horizontal stability of the suspension. (Answer: 

Stable for blh > V%.) 

2.15. Assume that force F is invariant (up to  and including terms of order 
u lc )  to a change of coordinate system going from one observer to 
another (the primed observer) with relative velocity v .  From this, 
assuming E' = E + O(u/c), B' = B + O(u/c), and the Lorentz force 
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law, show that 

2.16. A current is carried by a wire of radius r .  The wire is in the form 
of a circular loop, of radius a, with LI >> r .  
(a) Calculate the self-inductance L of the loop accurate to order 

(b) From this result, estimate the tension in the wire when carrying 

2.17. Complete the argument leading from (2.7.18) to (2.7.20) by showing 
that C r, x 6E, where 6E is linear in re, averages to zero over many 
cycles of fast motion and over many atoms. 

2.18. Solve Eq. (2.7.21) for the M I  , the components of M perpendicular 
to m,,  given the initial value of M,.  Assume oL is in a fixed 
direction, but has arbitrary time dependence. 

l/log(u/r). 

a current 1. Make sure your answer is a tension. 
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CHAPTER 3 

Time-Dependent Fields 
and Currents 

3.1. MAXWELL'S EQUATIONS 

T h e  static and quasistatic (including electromagnetic induction) equations 
for E are 

(3.1.1) 

and 

for B they are 

and 

V . B = O  (3.1.3) 

47rj V X B = - .  
c 

(3.1.4) 

Equations (3.1.3) and (3.1.1) are clearly consistent; however, if p is 
time-dependent, the continuity equation, (2.1.2), tells us that V * j will not 
vanish, and (3.1.4) will be inconsistent. We repair this inconsistency in 
the simplest possible way. We add a term 47rjlc to the right-hand side of 

81 
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(3.1.4): 

Consistency requires 

V . ( j  + j‘) = 0 

or, from the continuity equation, 

(3.1.5) 

(3.1.6) 

Assuming (again, the simplest assumption) that (3.1.2) still holds, we find 

1 aE = v . - -  
4 7 ~  at 

from which 

1 dE 
477 at 

j = - - +  V X Q  

(3.1.7) 

(3.1.8) 

where Q can be any vector. Again, the simplest assumption is Q = 0. This 
yields a new, consistent equation to replace (3.1.4): 

l a E  4 ~ j  V x B =--+ -. 
c at c 

(3.1.9) 

Maxwell called the new current j’ the displacement current. Together with 
j, the “total” current is “conserved,” in the sense that no flux of j + j’ 
emerges from a closed surface, that is, V . (j + j’) = 0. 

Maxwell’s full equations require us to look in a new way at the causal 
relationships between the fields. 

First, observe that two of the equations involve time derivatives: 

- CV X B - 47rj (3.1.10) 
dE - _  
at 

and 
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- - c V X E .  dB 
at 
- _  (3.1.11) 

It follows that the right-hand sides of (3.1.10) and (3.1.11) tell us how E 
and B change. This is not the way the static equations led us to think: 
Current was viewed as causing a magnetic field and changing magnetic 
field as causing an electromotive force. When we come to the study of 
radiation, we will see how our normal way of thinking about causality 
can be restored. Nevertheless, as a mathematical physics boundary value 
problem, one must think of (3.1.10) and (3.1.11) as calculating dBldt  and 
dE/dt, given B, E, and j as functions of position at an initial time. 

Second, observe that taking the divergence of (3.1.10) and (3.1.11) 
leads to the time derivatives of the divergence equations (3.1.2) and 
(3,1.3). Thus, from (3.1.10), 

dE a 
V . - = - 4 T V . j = 4 r -  or - ( V . E - 4 7 r p ) = 0 ,  (3.1.12) 

at at at 

and from (3.1.11), 

(3.1.13) 

so that provided the divergence equations hold at one time, the equations 
for dElat and aBlat will guarantee that they hold for all time. Clearly, 
therefore, the divergence equations should be viewed as enforcing certain 
boundary conditions on the E and B fields, whereas the time derivative 
equations are the dynamical equations. Just as in most physical theories, 
one formulates the time-dependent problem as the prediction of the future 
(or past) state from the present. For example, in mechanics, we specify r 
and dr ld t ,  and then predict the future course of r and drldt via Newton’s 
second law. Similarly, in quantum theory, we give the wave function at 
one time and use the Schrodinger equation to predict its value at another 
time. We see that the analogous problem in electrodynamics is to give E 
and B at one time, subject to the constraints V . E = 47rp and V B = 0. 
Maxwell’s equations then predict the future (or past) values of E and B. 

This assumes, of course, that p and j are given functions of space 
and time, satisfying the continuity equation V . j + (ap/dt) = 0. When we 
consider the interaction of particles and fields as complete dynamical 
systems, p and j can no longer be considered as given functions. Their 
time dependence must be calculated as well. We will, of course, come 
back to this. For the moment, however, we suppose that the sources p 
and j are composed of heavy objects (magnets, large capacitors, atomic 
nuclei, etc.) on which the reaction of the fields can be ignored. 
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- ~-~~ 

3.2. ELECTROMAGNETIC FIELDS IN MATTER 

In order to obtain equations for the macroscopic fields, we proceed to 
average the microscopic fields e and b, as we did in Sections 1.6 and 2.4. 
In our earlier discussions of electric and magnetic fields in matter, we 
relied heavily on the explicit form of the integrals giving the static fields 
as functions of the charge and current densities. Since those integrals no 
longer hold in the time-dependent regime we are now considering, we 
must proceed differently. Instead of working with the solutions, we work 
directly with the differential equations for the microscopic fields. These 
are first the homogeneous equations 

C * h = O  (3.2.1) 

and 

1 ab 
c at 

V x e = - - - - .  (3.2.2) 

The spatially averaged fields R and E clearly satisfy the same 
equations: 

V . B = O  (3.2.3) 

and 

1 a R  V X E =  - - - .  
c at 

(3.2.4) 

Note that we average our fields over space, but not time. The space 
average is necessary to smooth the fluctuations of thc microscopic fields 
in going from atom to atom. Therefore, the averaging function must 
extend over a volume that contains many atoms. On the other hand, we 
need the time resolution to be fine enough to describe light emitted by 
atoms-that is, to be finer than a characteristic atomic time. In dealing 
with normal atomic phenomena, there is, therefore, no need for, and 
nothing to be gained by, a time average. As emphasized in Section 1.6, 
it is necessary that the averaging volume, although large enough to contain 
many atoms, must be small enough to resolve the distances we wish to 
study. These requirements are easily compatible for visible light and a gas 
at normal temperature and pressure, as we show below, following (3.2.34). 

The inhomogeneous microscopic equations 
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and 

Q . e = 477p,, (3.2.5) 

l 8 e  477 
c at  c 

V X b = - - + - j,,, 

are averaged to give 

V * E = 4 r P n ,  

and 

l a E  4 a T  
c at c 

V x B = -- + -J,,, 

(3.2.6) 

(3.2.7) 

(3.2.8) 

In order to carry out the required averages, we again separate pn, and 
j,, into bound and free components: 

and 

(3.2.9) 

(3.2.10) 

jTt and Tr. will be thc macroscopically observed charge and current den- 
sities: 

and 

P; = P 

- 
j,= j. 

(3.2.11) 

(3.2.12) 

We continue with our model of Section 1.6 in which P O  and j ,  are assumed 
to come from neutral atoms or molecules. Therefore, we can write 

(3.2.13) 

where r,, is the location of the nth neutral atom or molecule. p,,(x) falls 
rapidly to zero for x larger than u E ,  an atomic radius, and J dxp,,(x) = 0.  
Similarly, 

(3.2.14) 

However, here, as we shall see, we cannot [as we did in (2.3.3)] require 
J j (x )  dx  = 0. 
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We now average: 

or, with r’ - r,, = x, 

Since x is rcstricted by p,, to be 5 u , ~ ,  and f ,  the averaging function, 
varies on a scale that includes many atoms, we expand f in powers of x, 
up to and including the linear term. The first term vanishes by the assumed 
neutrality of p,?. The second term gives 

(3.2.16) 

or 

where 

Ph = - V P(r) (3.2.17) 

(3.2.18) 

p,, is the dipole moment of the nth atom and P the average dipole moment 
per unit volume. 

We may neglect the next term in the expansion, since we will be 
considering electric and magnetic fields that are weak enough that a linear 
thcory suffices. Thus, the next term has a contribution that is independent 
of the electric field and does not contribute to our linear equation, plus a 
contribution which is linear in the electric field and does but is negligible 
compared to (3.2.16) for the reasons given in Section 1.6. 

For:,,, we carry out a similar expansion: 

(3.2.19) 

The first term in (3.2.20) involves 
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JP, dpn dxj,z(x)= - d x x C . j , , =  d x - x = - -  I s I at dt 

so that the first term becomes 

(3.2.21) 

(3.2.22) 

The second term we write using a tensorial notation. Its ith component 
is 

(3.2.23) 

We decompose xkjni into a symmetric and antisymmetric part. We neglect 
the symmetric part for the same reasons as those given above following 
(3.2.18). The antisymmetric part will, of course, give our usual magnetic 
dipole density. Thus, (3.2.23), antisymmetrized, becomes 

(3.2.25) 

or 

where m, is the magnetic moment of the nth atom. Equation (3.2.26) 
then leads to 

where M is the magnetic moment per unit volume. Thus, we have 

- aP - 
P b = - V ’ P  and j , , = - + c V x M .  (3.2.28) 

at 
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The averaged inhomogeneous equations are therefore 

V . E = 4 r p - 4 7 ~ V . P  (3.2.29) 

and 
47rj 

(3.2.30) l 8 E  47raP 
c at c at C 

V x B = -- + - - + 4nV X M + - 

so, introducing the D and H fields, we have 

C * D = 4 ~ p  (3.2.31) 

and 

(3.2.32) I d D  4 ~ r j  
c at C 

V X H = - - +  -, 

Equations (3.2.31) and (3.2.32), together with the homogeneous 
equations (3.2.3) and (3.2.4), determine the boundary conditions to be 
imposed at a material discontinuity: 

and 

Together with the constitutive relations between E and D on the one 
hand, and H and B on the other, these equations and boundary conditions 
determine the t ime dependence of the fields. However, unlike the matter- 
free case, the fields at one time in the presence of matter do not determine 
the fields at all later times. This is because there is a finite time and space 
lag between the imposition of an electric field and the appearance of a 
nonvanishing polarization. Consequently, the relation between the macro- 
scopic electric field and the polarization will be 

P/(r, 1 )  = dt’ ,y l l (r ,  t - 1 ‘ )  E l ( r ,  f’), (3.2.34) i 
- 5  

where ,yI, is the susceptibility tensor at  position r.  The relationship between 
E and P will be linear, as indicated, for fields that arc weak compared 
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with the internal fields in matter (el& - 5 x 10" V/cm). The space lag 
whose scale would be set by atomic sizes, -lO-'cm, is left out of (3.2.34), 
because our fields are averaged over a volume containing many atoms, so 
that whatever space lag existed would be washed out. 

That x depends only on t - t' assumes that the affect of the field E 
at time t '  on the polarization at time t only depends on the difference 
f - t ' ,  in a way that is independent of the time t ' .  We say (3.2.34) is time- 
translation-invariant. Equation (3.2.34) shows that specifying E at one 
time is not, in general, enough information to determine E at later times, 
since the integral over t' requires E to be known at all previous times. 
There are still physically obvious sets of consistent initial conditions, but 
they depend explicitly on the geometry under consideration. In addition, 
they require specifying the entire previous history of the system. A simple 
example is discussed in Section 3.5 and Problem 3.14. 

The t - t' dependence of x is governed by the characteristic frequenc- 
ies of atomic motion. Since these are the same frequencies that atoms 
radiate, it is necessary to keep track of the temporal nonlocality of x .  
Note that if we wish to describe the spatial variation of the fields, consis- 
tency requires that our averaging process allow us to resolve the length 
scale of wavelengths, which, in turn, must be much larger than atomic 
lengths to justify our assumption of spatial locality. This is the case for 
atomic radiation. With f the radiation frequency and A its wavelength, 
we have, very approximately, A - c/f - 4rrc / (e2 /aBh)  = 1000 A. On the 
other hand, a l O O O w  cube of gas contains about lo5 atoms at normal 
temperature and pressure. 

Equation (3.2.34) invites a Fourier transform. With 

and 

we have 

where 

(3.2.35) 

(3.2.36) 

x 

g,,(r, w )  = dtX,,(r, t )  era'. (3 .2 .38)  S 
- T- 
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It follows that 

where E ; , ,  the dielectric tensor, is given by 

(3.2.39) 

(3.2.40) 

and, of course, 

D(r, t )  = E(r, t )  + 47rP(r, t ) .  

Since the boundary conditions (3.2.33) must hold at all times, they must 
also hold for the Fourier transformed fields. 

The rules for complex conjugation of the Fourier transformed fields 
and dielectric constants follow directly from the reality of the fields them- 
selves: 

(3.2.42) 

An important property of the dielectric constant follows from the 
presumption that if the field E is zero before f = 0, the polarization P and 
displacement D(t) should also be zero before t = 0. If E(t) = 0 €or t < 0, 
then 

I 

(3.2.43) 
n - 

and so E(w) is analytic in the upper half w plane.’ Conversely, if k ( w )  is 
analytic in the upper half w plane, then 

(3.2.44) 

vanishes for t < 0. This can be seen from (3.2.44) by closing the o contour 

‘Strictly speaking, E ( w )  for real w is the boundary as w approaches the real axis of a 
function that is analytic i n  the upper half w plane. Wc see here for the first time the 
importance of analytic functions to notions of causality. 
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in the upper half-plane, presuming E(w) to go to zero sufficiently rapidly 
as w +  00. 

- 
Similarly, 

(3.2.45) 
0 

-, 
so that D(o) must also be analytic in the upper half w plane. Finally, since 

G i ( w )  = e i j ( w )  E j ( o ) ,  (3.2.46) 

E, , (w)  must also be analytic in the upper half-plane. One can rule out 
upper half-plane poles of E, since they would have to be compensated by 
zeroes of E. However, E ( w )  is essentially arbitrary (except for its ana- 
lyticity properties) and cannot be required to have zeroes at a predeter- 
mined value of w .  Remarkably, the upper half-plane analyticity of e ( w )  
is almost sufficient to guarantee causal propagation in a material medium 
(i.e., signal propagation with velocity limited by light velocity c). It must 
be supplemented only by the requirement that field energy can be lost, 
but not gained from the medium. This is shown in Problems 3.13 and 
3.14. We turn in the next section to a discussion of field energy in a 
dielectric. 

3.3. MOMENTUM AND ENERGY 

We consider the force on charges and currents in the absence of dielectric 
matter. The total force on charges and currents inside a volume V is 

V 

(3.3.1) 

We substitute V . (E/47r) for p and c(V x B/47r) - 1 / 4 ~  dE/dt for j to 
obtain 

We follow a by now familiar path: 
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and 

Putting it all together, we obtain 

(3.3.6) 

where Ttk is the sum of the familiar electric and magnetic stress tensors 
(1.3.19) and (2.6.17). The new term on the right of (3.3.6) is the time 
derivative of a vector 

(3.3.7) 

Transpose -dp,,ldr to the left-hand side of (3.3.6) and recognize that 
F = dp, , /d t ,  where p,, is the material momentum of the charges and 
currents acted on by the fields.2 Thus, we have 

(3.3.8) 

which clearly identifies pem as the electromagnetic momentum contained 
in the volume V .  

We turn next to energy. In this case, we prefer to keep the possibility 
of describing dielectric media. The dynamical equations are then 

(3.3.9) 

and 

’We know that this statement holds for  nonrelativistic systems. For relativistic systems, 
the final equation (3.3.8) is correct, although the forcc defined as dp, , , ldt  does not have 
simple relativistic properties. We will come back 10 this issue when we discuss relativity in 
Chapter 6 .  
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l d D  47lj T X H = - -  + -. 
c at c 

(3.3.10) 

Now dot H into (3.3.9), E into (3.3.10), and subtract. There results 

+ ( E .  V x H - H .  V x E) (3.3.11) 
C 

or, if we integrate over a volume V ,  

V V V 

V s 

where 9, the Poynting vector, is 

C @ = - E X H .  
471 

(3.3.13) 

(3.3.14) 

Equation (3.3.13) clearly is an energy balance equation: On the left is the 
rate at which field energy is lost, on the right the two loss mechanisms, 
doing work on charges and escaping through the surface surrounding V .  
The increase in electrical field energy (including possible absorption by 
matter) is 

(3.3.15) 

with an analogous term for magnetic energy. For a material with a 
symmetric, time-independent susceptibility tensor 

6D, = er l6E1  

and 

(3.3.16) 

(3.3.17) 
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so that (3.3.15) can be integrated to give 

(3.3.18) 

To study the general case, we consider a situation in which the field 
is cycled from zero to zero, and integrate 6 W to see if energy is absorbed 
in the process. The total absorption will be 

L 

dD 1 ..=-I 4n x d r j d r E . -  at (3.3.19) 

and, for passive matter, must be nonnegative. We evaluate (3.3.19) by 
inserting Fourier transforms for E and D: 

1 

(3.3.20) 

or 
Y 

- - 
h W =  - dr dwiwE,(w) € , A ( - @ )  E h ( - w ) .  (3.3.21) 

4.n 'I - x  I 
We introduce the real and imaginary parts of E ,  and el!,: 

and 

It follows from (3.2.41) and (3.2.42) that R, and 
w and I ,  and e:k are odd functions of w .  Thus, 

are even functions of 

x 

w d w [ ( R , R k  + - ( I , R h  - ZhR,) e ; ] .  (3.3.24) 

We see that absorption comes (for w > 0) from the anti-hermitian part of 
e l k :  
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which must be a nonnegative matrix, that is, 

( f j * ( E a ) , k f k )  

(3.3.25) 

(3.3.26) 

for any vector f. 
For the special case of a scalar dielectric constant e ,  (3.3.26) becomes 

Im E( w )  > 0 (3.3.27) 

for w > 0. 
Upper half-plane analyticity and imaginary part positivity on the real 

axis further restrict the properties of E .  

First, they imply that E ( W )  has no zeros in the upper half w plane. 
Second, they relate the signs of the real part and the imaginary part of 
& on the real axis: They must be equal. (See Problems 3.13 and 3.14.) 

We shall see in the next section an example in which the upper half- 
plane analyticity of E ( W )  is closely related to the positivity of ca. This is 
not surprising since both these properties are related to the passivity of 
matter. Clearly, if there is power being put into matter, then the absorp- 
tion AW can be negative, and the polarization density in the medium can 
precede the application of the electric field. 

3.4. POLARIZABILITY AND ABSORPTION 
BY ATOMIC SYSTEMS 

We consider an atom in a uniform but time-dependent electric field, and 
calculate the Schrodinger wave function t,b(r,, . . . , r,,, t )  for the atom, 
where rl, . . . , r, are the coordinates of the electrons in the atom. The 
neglect of the motion of the nucleus is a very good approximation and 
does not affect the conclusions we shall draw. 

The applied field is 



96 Time-Dependent Fields and Currents 

and the Hamiltonian is 

H = HO + HI (3.4.1) 

where H I  = - E  X and X is the electric dipole operator of the atom: 

x = e C r,, 
I t  

We try to solve the Schrodinger equation 

H* 
i at 

(3.4.2) 

(3.4.3) 

in the presence of E. Since we are looking for linear effects, we will use 
first-order perturbation theory to calculate + and then use Ic, to calculate 
the expected value of the dipole operator X: 

We solve (3.4.3) by assuming' I/J=+~,++,, where is first-order in 
E. satisfies the equation 

(3.43) 

and will be taken here as the ground state wave function, Uge- 'W'" 'h  , for 
which 

Of course, this is appropriate only for a system at a temperature T such 
that no  significant excitation is present. 

We rewrite (3.4.3) as 

(3.4.7) 

The zeroth-order term is satisfied by (3.4.5); the first-order equation 
is 

'Wc take the ground state to be nondegenerate 
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To solve (3.4.8), we expand 
Ho : 

in the complete set of eigenfunctions of 

$1 = c c,(t) u,,. 
,I 

(3.4 * 9) 

Since Hr,u, = Wnu,,, our equation (3.4.8) becomes 

(3.4.10) 

We look for solutions 

x 

dt1iw) dwe-iwr-i(W,l/fi)r i c,, = 

-x 

from which 

(3.4.11) 

c (wo - w, + hw)d , , (w)  u,, = - x . - m (3.4.12) 
n 6 u0 

and hence 

and 

- x  

where s dr stands for s d r ,  drz  . . . dr, , .  Note that we have calculated the 
driven part of $, . One can always add to $, a solution of the homogeneous 
equation, c,, = c,,(o) e-iwnf’‘ , with c,,(O) completely arbitrary. However, 
in the real world such an added term with n # 0 would damp out rapidly 
by radiation. An added term with n = 0 is simply a change of normalization 
that must be canceled in the integral (3.4.4). 
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Continuing from (3.4.13), we calculate the electric dipole moment: 

The zeroth-order term is zero, since reflection invariance of Ho requires 
a nondegenerate uo to be either even or odd under the transformation 
r -+ - r .  The first-order term is 

(X) = $O*X$, dr + complex conjugate I 
or 

where XnO is the electric dipole matrix element from uo to u,: 

XlrO = n,TXu0 dr . I 
We explicitly add the complex conjugate to obtain 

(3.4.15) 

(3.4.16) 

(3.4.17) 

(3.4.18) 

Next, change w to - w  in the second term of (3.4.18): 

z 

- x  

(3.4.19) 

where we have used the hermiticity -of the operator X,- that is, 
Xif, = Xn", and the reflection property of E, that is, E*(-w)  = E ( w ) .  We 
then have a final formula for polarizability by an applied field: 
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1. (3.4.20) 
Xl0/,X/,l~1 X,OnX,nO + w,, - w,, + hw w,, - w,, - flu 

There are some important properties of a,, to be noted. First, the 
numerators for each n are Hermitian matrices in i , j  space. That is, 

Therefore, any anti-Hermitian part must come in some way from the 
denominators. 

Second, the numerator matrices in (3.4.20) are nonnegative. That is, 
since (X,)o, ,(X,), ,o = (Xj )o , , (Xj )&,  any vector V j  will make 

Third, if the Hamiltonian Ho is real-not only self-adjoint, but real- 
then the wave functions u,, can also be chosen to be real, and XIOn = Xinor 
so that a,] is automatically symmetric. The Hamiltonian Ho can always be 
made real if time reversal holds. Thus, time reversal invariance produces a 
symmetric aII .  Note that afixed magnetic field Bo will violate time reversal 
invariance since the v x B/c force depends on the sign of the velocity, 
which reverses under time reversal. (See Problem 3.5.) 

Fourth, when hw is equal to W ,  - Wo for some n,  the first term of 
(3.4.20) for a,,(w) becomes infinite. This comes about because we have 
ignored the fact that the excited atoms can radiate. Classically, this radi- 
ation limits the amplitude of oscillation that can be produced by the 
applied field and therefore keeps ( X I )  finite. (See Problem 4.8 and Section 
5.9.) Quantum mechanically, the possibility of radiation gives the energy 
level W,, a width, which appears as a negative imaginary part 

4 

. rn w,, -+ w, - 1 - 
2 

(3.4.22) 

and prevents the pole from appearing at real values of w ,  or, in this 
approximation, anywhere in the upper half-plane. 

Fifth, the polarizability a l k ( w )  + 0 as w 4 30, provided the sum 
C,, IXO,, l 2  converges. This is presumably a general property of material 
systems, where the convergence of the sum reflects the inability of matter 
to follow an infinitely rapid oscillation. It then follows that the dielectric 
tensor approaches lim,,,, e l k ( w )  = alk. 

4Time reversal invariance is discussed briefly in Section 6.1 
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C C' 

0 0  r\ 00 

original contour defonned contoui 

Figure 3.1. 

Finally, we turn to the question of absorption. Recall that q , ( w )  
will be causal if 

(3.4.23) 

Lanishes for r < 0 ,  provided E(t) vanishes for t <()-that is, provided 
E ( w )  is analytic in  the upper half-plane. For that to be the case, we must 
for t < 0 be able to close the contour in (3.4.23) in the upper half w plane. 
We will be able to do so [since a,,(o) is an analytic function of w ,  except 
on the real axis] if we define the integral (3.4.23) to be calculated with w 
slightly above the real axis. This prescription guarantees that our causal 
condition will hold. At the same time, it gives a finite definition to the 
integral (3.4.23), as well as to the sum (3.4.20) for a,, in the case where 
W, + hw is in a continuum region of the W,,'s. 

Consider as an example the integral 

(3.4.24) 

where w1 is real, g(w) is analytic in thc upper half-plane and on the real 
axis, and the contour C is above the real axis. Then for i < O ,  we can 
close the contour in the upper half w plane and find f ( t )  = 0. For t > 0, 
we proceed by deforming the contour (as shown in Figure 3.1) onto the 
real axis, except for a semicircle of radius y ,  which we will eventually let 
shrink to zero. f ( r )  is then given by 

(3.4.25) 
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The first two integrals in (3.4.25) define the Cauchy principle value 
P.  In the C' integral, since g is analytic on the real axis, we can expand 
w about w o :  

w = w(, + ye iH (3.4.26) 

and keep the only term that fails to vanish as y-+ 0: 

so that 

(3.4.28) 
dw e - I w r  

g( a) + .rri e -'W"rg( wo),  
( 4 1  - & 

A suitable mnemonic for l / (wcl  - w )  is thus 

1 = p- 1 + i r 6 ( w o  - w )  (3.4.29) lim 
y-0 a{! - w - iy WCJ - 

where the first term is real, the second imaginary. 

case, the Schrodinger equation) leads to an algebraic equation 
Note that if the Fourier transform of a differential equation (in our 

then the solution f can contain a term A 6 ( w o  - w )  with arbitrary A ,  since 
x 6 ( x )  = 0. The result for f ( f ) ,  (3.4.28), shows that causality requires the 
coefficient of S(wo - w )  to be i.rrg(wo). 

Returning to (3.4.20), we see that for w > 0, (Y,k has an anti-Hermitian 
part 

corresponding to absorption of energy from the external field by the 
atomic target. 
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3.5. FREE FIELDS IN ISOTROPIC MATERIALS 

We look here for monochromatic free field solutions of Maxwell's 
equations in isotropic materials with scalar dielectric constant E ( w ) ,  per- 
meability ~ ( w ) ,  and conductivity r ( w ) .  (We will take up anisotropic 
media in Section 3.7.) The equations are, with all quantities depending 
on time like e-'"', 

(3.5.1) 
1 V x H = - ( - i w D  + 47rj) 
C 

and 

w 

C 
V X E z i - B .  (3 .S .2) 

The constraint (divergence) equations are automatically satisfied for 
w # 0. 

Set 

B 

P 
j = a E ,  D = E E  and H = - - ,  

Equation (3.5.1) becomes 

47ria w 
= -i -( E + -) E .  (3.5.3) 

We see that conductivity is equivalent to an imaginary part of E ,  with a 
pole at w = 0 representing finite static conductivity. We may therefore 
assume that 47rialw is included in E ,  giving the simpler equation 

(3.5.4) 

We can eliminate either E or B, and find propagation equations for 
E and B alone. Thus, from (3.5.2), B = ( c / i w ) V  X E, substituted in 
(3.5.4), gives 
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whereas substituting E from (3.5.4) into (3.5.2) yields 

(3.5.5) 

(3.5.6) 

Equations (3.5.5) and (3.5.6) are equivalent, in that if E is a solution of 
(3.5.5), then B = const. V X E satisfies (3.5.6); if B satisfies (3.5.6), then 
E = const. l/e(V x (BIp)) satisfies (3.5.5). Thus, either equation 
describes the propagation of a monochromatic electromagnetic signal in 
a linear isotropic material medium. 

Of course, there are many solutions for a given E , p , and w ; the choice 
between them requires a specification of spatial boundary conditions. We 
will return to this point later. For now we confine ourselves to homogene- 
ous media, so that E and p are spatial constants. In that case, (3.5.5) and 
(3.5.6) become 

w 2  

c2 
-V2E = - E ~ E  (3.5.7) 

with 

and 

with 

and 

V * E = O  

w 2  

C 2  
-V2B = - E ~ B  

V * B = O  

iw iw ~p 

(3.5.8) 

( 3  5 9 )  

The solutions of (3.5.9) with definite wave number k are, with w 2  = 
c 2 k 2 / E p ,  

E = eik.x (3.5.10) 
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W 

and 

(33.11) 

(3.5.12) 

(3.5.13) 

Thus, the solution, for given k and w ,  with c 2 k 2 / c k  = w2, is 
determined by the vector e,  which must be transverse (e * k = 0). For each 
k and w , there are two linearly independent directions of polarization, 
e,,. For example, with k in the z direction, these modes could be e,, = ̂e, 
and eA2 = ey. 

The most general complex vector e,, represents a state of elliptic 
polarization. Recall that the real fields E, and B, are calculated by 
taking the real part of the complex vectors E and B. With e,, = el + ie2, 
orthogonal to k,  we have, at any one point x, with 4 = k + x, 

A 

E, = Re(el + ie2)e ' w r + ' J ,  or E,. = e l  cos(wt - 4 )  + e2sin(wt - 4) 
(3.5.14) 

which describes an ellipse in the e l ,  e2-plane. There are two special cases: 
e ,  parallel to e2, in which E,. varies without changing direction. This is 
called plane, or linearly polarized. Second, e ,  is equal in magnitude and 
perpendicular to e2. This is circularly polarized: E,. moves along a circle 
of radius \ e l l  = ie21. 

The handedness of the polarization is defined by the screw sense of 
the rotation of the electric field with respect to the direction of propa- 
gation. Let the direction of propagation be z ,  with x, y ,  z being a right- 
handed system, and e = G., + ic,, so that E, = 2 ,  cos w t  + $,, sin wl  moves 
like a right-handed screw. Thus, e ,  = ̂e, 2 i$, is right/left circular 
polarized. 

The most general solutions of the propagation equations in the iso- 
tropic medium are, with G,,, chosen once and for all for each k,  

'There seems to be some disagreement i n  the literature on  the definition of  left and 
right circular polarization. Our choice makcs right circular polarization coincide with positive 
photon helicity. See Section 3.8 for a discussion of helicity. 
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E(r, t )  = I dw I dk z eA, ei(k.x-wr) a(k, w ,  A,) (3.5.15) 
k2=epw21c2 A (  

and 

z k x eA, a(k, w ,  hi). (3.5.16) dk ei(k.x - w t )  5 
0 A ,  

Before continuing, we distinguish between two situations. First, a 
signal that lasts for a finite time is described by a function f ( t )  with a 
Fourier transform f " ( w )  = I ( f ( t ) / 6 ) e i w r  dt, such that integrated fluxes, 
like lf(r) g(t) dt ,  will be given by 

Second is the case of a monochromatic signal, or a sum of monochro- 
matic signals for which 

and 

f ( t )  = Re(fo e- iwf)  

g ( t )  = Re(go e-"'') ; 

the time-integrated flux will, of course, be infinite; the item of interest 
will usually be the time-averaged flux (or energy density). From 

f = (Refo) cos wr + (Imfo) sin wt 

g = (Re go) cos or + (Im go) sin w t  (3.5.18) 

we have 

(3.5.19) 

We can now calculate the average energy density and energy flux of 
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a polarized monochromatic plane wave (with real E and p ) :  

The energy density is, from (3.3.13), 

ES Bf 
8 l r  8lrp 

u = E - + - - ,  

whose time average, from (3.5.19), is 

E e ? . e , + , - e ; . e ,  
C Z k 2  I u =- . -  

2 8 l r  W E ”  

E - - - ef * e h .  
8 l r  

Note that the magnetic and electric contributions to U are equal. 
The time-averaged flux of energy is, from (3.3.14), 

c -  1 c2 k __ 
B = - E x H = - . - ~ * . ~  A h  - 

477 2 41r WE” 

(3.5.22) 

(3.5.23) 

(3.5.24) 

corresponding to a velocity C I ~ .  
How do we take into account the imaginary part of ep in the equation 

(3.5.25) 

We can understand most clearly what happens here by observing that for 
V& complex, either k or w (or both) must be complex. Therefore, our 
considerations cannot apply to a medium occupying all of space for all 
time, since complex w implies an exponentially growing field in time 
(either future or past), complex k an exponentially growing field in space. 
Imposing consistent initial conditions requires that the dielectric be of 
limited spatial extent (including possibly semi-infinite). The incoming field 
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may then be specified in free space outside the dielectric for all previous 
times, with the field in the dielectric zero for all previous times. 

We shall see next how a sensible formulation of boundary conditions 
and time development presents itself naturally with a semi-infinite 
medium. For this purpose, we consider the simplest possible situation: a 
semi-infinite dielectric to the right of x = 0, and a plane polarized electro- 
magnetic wave incident normally from the left. 

The incident electric field is E = 2, Einc with 

--z 

where b < 0. 
We chose f ( w )  to be analytic in the upper half w plane. This ensures 

that E = 0 for ( x / c )  - t - (b / c )  > 0; in particular, at t = 0, E and aEldt 
vanish for x > 6 .  It also makes E independent of the path of the w integral 
in the upper half-plane, provided f (w)  +. 0 sufficiently rapidly as w + m. 

The incident magnetic field is B = CzBinc with 

Maxwell’s equations become, for this simple geometry, 

dE - l a B  
ax c at 
_ _  

and 

a~ iau _ -  - 
ax c at 

where 

D = 2 , D  and B = H .  

(3 .5 .28)  

(3.5.29) 

The divergence equations are satisfied identically. 

(3.5.29). They are E and R continuous. 
The boundary conditions at x = 0 follow directly from (3.5.28) and 
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The appropriate solution of (3.5.28) and (3.5.29), with p = 1 and 6 
a function of w ,  is 

[erw41c. - R(w)  e - lw""] f (w) ,  x < 0 (3.5.30) E = dw e - ~ ~ I - ( ~ ~ b / c )  I 
and 

E = dw e-'"' ( r w h / c ) T ( w )  f ( w ) ,  x > O  (3.5.31) I 
where R ( w )  is the reflected amplitude and T ( w )  the transmitted ampli- 
tude. The wave number in the dielectric is k'  = w&/c. In order for E 
not to grow exponentially, we must choose Im k '  > 0. 

The magnetic field is given by 

The boundary conditions at x = 0 are 

and 

so that 

and 

l - R = T  

l + R = f i T  

2 T = -  
l + f i  

x < o  

x > o .  

(3 5 3 2 )  

(3.5.33) 

(3.5.34) 

( 3  .s 3 5 )  

(3.5.36) 

This solution gives E and B the desired properties: for t < 0, 

E = Einc 7 (3.5.37) 
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B = Binc 

and 

(3.5.38) 

(3.5.39) 

(3.5.40) 

This follows from the known properties of E ( w ) :  E ( W )  is analytic and 
nonzero in the upper half-plane, and & -+ 1 as w -+ a since we have 
chosen Im k' > 0. Therefore, T,  R,  and k' are analytic in the upper half- 
plane, k'  -+ wlc as o + 00, and the reflected and transmitted waves vanish 
for t < 0. Therefore, we have correctly incorporated the initial condition 
E = Einc and B = Binc into our solution. Given these analytic properties, 
one can also show that the wavefronts propagate causaly, that is, that no 
transmitted or reflected wave shows up before transmission at velocity c 
would permit it to do so. (See Problems 3.13 and 3.14.) 

3.6. REFLECTION AND REFRACTION 

We consider now a plane wave of polarization 2, wave number k,  and 
frequency w = ck incident in the x-y plane from the left in air (or 
vacuum) on the plane surface of a dielectric medium with an index 
of refraction n = extending from x = 0 to the right. We take p = 1. 
The angle of incidence is 8, the angle of refraction 8'.  We take the 
polarization (which we define as the E direction) in the plane of incidence. 
This is illustrated in Figure 3.2. (See also Problem 3.7.) 

The boundary conditions at x = 0 must hold for all y and z, so that 
k ,  and k ,  must be continuous across the boundary (taken here at x = 0). 
Thus, with o2 = c2k2 = c2kr2/E, we have k" = k2 E or, since k, = 0, 

k.:2 + k.; = ( k f  + k : ) E .  (3.6.1) 

Considcr first real ~ p .  Then we have k ;  = k 2  sin2@ and k;  = k" sin28', so 

sin 0' k 1 
sin 0 k '  & 
-=-=- (3.6.2) 

which is Snell's law. 
For complex E ,  we return to (3.6.1). We consider first the case of 
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& =  1 E f  1 
4 Y  

I 
I 
I 
I 
I 
I 
I 

2 

Figure 3.2. 

high conductivity, 4.rrulw 1,  for which 

and 

(3.6.3) 

- k x \ / 2 r o l w .  , beyond the so that all fields in the conductor damp out like e 
skin depth 

(3.6.4) 

the fields go rapidly to zero. 
If E has only a small imaginary part, the real part of k.:, will be 

determined, as usual, as Re k,: = k ‘  cos 8’ with 0’ given by Snell’s law. 
The imaginary part, Im k.:, will be given by the equation 

(Re k.;. + i Im  k.i.)2 + k ;  = k2E (3.6.5) 
and 
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Im E 
k2 ImkL=--- 

2 Re k: 

k sin 8' 
- ImE,  
2 cos @sin 19 

- - (3.6.6) 

neglecting (Im k.L.)2. Thus to a good approximation (for small Im E ) ,  the 
transmitted wave behaves as if E is real, except, as we  move into the 
medium, for a damping given by 

with Im k: given by (3.6.6). The direction of energy flow is given by the 
real part of the wave number, Re k' = & Re k: + gY k,,. 

In going from (3.6.5) to (3.6.6), we have chosen the positive root of 
(3.6.5) for k.:. For a medium extending to a, this choice is evidently 
required and, as we have seen in the previous section, is consistent with 
the causality requirement that --+ 1 as w + m. If the medium ex- 
tends only a finite distance in the x-direction, there will be a second set 
of boundary conditions at the second surface. In order to ensure that our 
solution corresponds to the physical input (incident wave on left, reflected 
wave on left, transmitted wave on right with no incident wave on right), 
we will have to use both roots of (3.6.5) in our solution. However, if the 
wave has substantially decayed by the time it hits the second boundary, 
the numerical effect of this change is small. In the following we assume 
that the second surface is far enough away to be neglected. 

We return now to the first surface and construct the solution that 
satisfies the boundary conditions. 

The electric field is given, for x < 0, by 

E = er(k,x+h,y-wr)  - , i(-k,,x+k,y-wr) 
eR 

(where eR is the reflected amplitude) and, for x > 0, by 

The minus sign preceding eR in (3.6.8) is chosen for convenience. 
Thus, with 

(3.6.8) 

(3.6.9) 

(3.6.10) z(kAx+Avy--wI) - bR ei( - k ,x+  k,y - w l )  B = b e  



112 Time-Dependent Fields and Currents 

for x < 0, and 

ck 
b = - x e ,  

0 

(3.6.11) 

(3.6.12) 

(3.6.13) 
w 

and 

ck' 
bT = - X e 7 .  (3.6.14) 

w 

The condition V E = 0 determines the vectors e, eR, and e7. to be 

e, = -sin 8 

4,. = cos 8 

e& = R sin 8 

eKJ, = R cos 8 

e:. = -Tsin 0' 

and 

e;, = T cos 8' 

(3.6.15) 

(3.6.16) 

(3.6.17) 

(3.6.18) 

(3.6.19) 

(3.6.20) 

where R and T,  the scalar reflection and transmission amplitudes, are to 
be determined from the boundary conditions: AE, = 0 and ABZ = 0. From 
AE,, = 0, we find 

cos 8(l - R )  = cos B'T, (3.6.21) 

and from AB,  = 0, we find 

k k '  - ( I  i- R )  = - 'r 
wc W C  

(3.6.22) 

The solution for R and T is 
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k‘cost? - kcost?’ 
k ’  cos 8 + k cos 8’ 

R =  

2k cos 8 

k ’  cos 0 + k cos 8’ 
T =  

(3.6.23) 

(3.6.24) 

(See Problem 3.4 for a discussion of cnergy balance). 
There are two interesting limiting cases to consider. First, high conduc- 

tivity, where k’ will dominate in (3.6.23) and make R = 1. Second, 
Im E = 0. Then k: and k‘’ are real, and (3.6.23) shows that R can vanish. 
This happens at 8, (Brewster’s angle) when 

k’ cos 8 = k cos 8‘ 

or, since k ’  = &k, 

sin 28, = sin 28;$.  (3.6.25) 

Equation (3.6.25), together with Snell’s law, has one root: 8 + 8’ = 
r / 2 .  Thus, at an angle of incidence eL3 such that the reflected and refracted 
rays are orthogonal, there will be no reflection of an incident field polar- 
ized in the plane of incidence. 

One can understand this phenomenon by remembering that reflection 
consists of radiation by dipole moments of the dielectric. A dipole polariz- 
ation with direction e’ cannot radiate in its direction of polarization (as 
we shall learn later). Since e‘ is perpendicular to k ‘  and kK is also perpend- 
icular to k’ ,  kK is in the direction of e’ and, hence, there is no reflection 
at the Brewster angle. (See Figure 3.3.) 

Figure 3.3. 

- -m 
x 
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3.7. PROPAGATION IN ANISOTROPIC MEDIA 

We now consider a tensor dielectric constant, which we assume to be real 
and symmetric. (We could as easily take eij to be Hermitian; however, an 
anti-Hermitian component-i.e., absorption-is a significant complication 
that we do not discuss. It would normally be treated perturbatively, and/or 
numerically.) We assume unit magnetic permeability. Note that a scalar 
permeability would not be a significant complication, but a tensor perme- 
ability would. 

The relevant equations are as always (for a fixed wave number) 

W 

c 
- b = k X e  (3.7.1) 

w 
k X b = - - d  C (3.7.2) 

and 

di = Ei,ej .  (3.7.3) 

We see from (3.7.1-3.7.3) that there are two sets of right-handed 
coordinate systems associated with these vectors: k, d, and b on the one 
hand, and e, b, and @ =  (c/477)e x b on the other. Further, since k, e, 
and d are all orthogonal to b, they are coplanar. In general, e X h and k 
are not in the same direction. Therefore, the direction of energy flow and 
that of k will be, in general, different, An exception that we shall see 
below is the ordinary ray of a monoaxial crystal. 

The controlling equation for e is obtained by substituting (3.7.1) into 
(3.7.2) to yield 

w2 2 
W 

C 
[k X (k X e)li = - 7 q je j  Or k2ei - k . ek.  ’ = - c2 ~ . . e .  11 I ’  (3.7.4) 

Equation (3.7.4) has an orthogonality property between the solutions 
with different eigenvalues of u2, say, er  with a’, and e f  with w i ,  to wit 

This is derived in the usual way by multiplying (3.7.4) for el by e f ,  (3.7.4) 
for e f  by e?, and subtracting. The left-hand side vanishes, leaving 
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Note, however, that in refraction it is o that is the same in both media, 
not k; therefore, this orthogonality does not hold between the two modes 
of propagation for given w .  

To study (3.7.4), we choose coordinate axes x ,  that diagonalize ejj. 
That is, 

Z Empep = E,e, (no sum) (3.7.6) 
P 

where E ,  are the eigenvalues of E,,, considered here to be known functions 
of w .  In the x ,  coordinate system, (3.7.4) becomes 

2 w2 
k ek, - k ea = - - E , e ,  (no sum). 

C 2  
(3.7.7) 

We expect there to be, for each k ,  three eigenvalues for w2,  for which 
we can solve (3.7.7). 

The first eigenvalue is universal and uninteresting: e ,  = k,,which gives 
w = 0. There remain two eigenvalues. We first “solve” (3.7.7) for e,: 

(3.7.8) 
k . ek, 

k - - E ,  

e ,  = 
2 o2 

C 2  

and, multiplying by k ,  and summing, we obtain 

k2, k e = 2 kaen = k . e x  
01 a 2 w2 

k - - e n  
C 2  

so that, for k . e # 0,  

= l  k2, 

and, with 1 = C k t l k 2 ,  
a 

(3.7.9) 

(3.7.10) 

= 0. (3.7.11) , ( k:: - $ ) = o  or 2 k k ,  
w2 

C 2  

c, 
k2 - - E ,  k2 - - E ,  
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Multiplying (3.7.1 1 ) by 

( k 2  - 5 E I ) ( k 2  - $ E 2 ) ( k 2  - $ 6.) 

gives a quadratic equation for w2 with two roots. Note that if it is 
necessary to take dispersion in E ,  into account, so that E,, itself is a 
function of w ,  the eigenvalues of w are not obtained simply by solving 
the quadratic equation (3.7.11). In the following we will assume that over 
the width of the wave packet with which we are dealing the dispersion 
can be ignored, that is, the E ,  may be taken as given positive constants. 

Here, we again point out that we have solved the first of two obvious 
problems. This is to find the propagating mode frequencies and polariza- 
tions, given the wave number k in the medium. The converse is also 
straightforward: Given a frequency w and a direction of propagation k*,  
find the wave number and polarizations of the two modes. The second, 
and harder, problem arises in analyzing refraction in a biaxial crystal. 
There one is given the incident frequency w and wave vector k,  and 
trivially determines the two components of the transmitted wave number 
that lie in the boundary bctween the media and, hence, are continuous 
across the boundary. The problem is then to find the third component of 
the wave number and polarization of the propagating modes. (See Prob- 
lem 3.11.) 

We turn now to the simple example of a monoaxial crystal, that is, 
one in which two of the eigenvalues, say, and e 3 ,  are equal. Then any 
pair of orthogonal axes in thc 1,3-plane are eigenvectors of the E matrix, 
and we can directly construct a solution of (3.7.1) and (3.7.2) by choosing 
the 1-axis so that k lies in the 1,2-plane, e along the 3-axis, and b perpen- 
dicular to k in the 1,2-plane. Since e3 is an eigenvector of E, ,  with eigenvalue 
e l ,  d is also along the 3-axis, with value d = ele. This is illustrated in 
Figure 3.4. 

' t  

Figure 3.4. 
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Since k 4 e = 0 for this mode, equation (3.7.4) yields 

(3.7.12) 

where the subscript 0 stands for ordinary. Further, the direction of energy 
flow for this ray (the ordinary ray) is in the direction of k ,  so that the 
ordinary ray behaves as if it were propagating in an isotropic medium. 

For given k,  the second mode (the extraordinary ray) will have its d 
vector d, perpendicular to 
Its frequency will be given 

k and to the e vector eo,-of the ordinary ray. 
by (3.7.11), that is, 

(3.7.13) or W z  = c 2  + k f ~ 2  
€ 1  € 2  

The vectorial nature of the extraordinary mode can be easily con- 
structed. With k = ( k l ,  k2 ) ,  we have d, + k = 0, or, in an obvious notation, 
e, = (el, e2) is perpendicular to ei,ki = ( E l k l ,  E2k2). So, 

e, = ( - e 2 k 2 ,  q k l )  X constant. (3.7.14) 

The direction of energy flow is 

8 ~c e x b m e  x (k X e) = e2k - e . k e  

or 

so that the direction of energy flow is 

(3.7.15) 

This is also the direction of the group velocity that follows from (3.7.13), 
still neglecting dispersion: 

In general, an incident ray on a monoaxial 

(3.7.16) 

crystal will require, at 
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given w ,  both modes to satisfy the boundary conditions. Since the ordin- 
ary mode frequency wave number relation is independent of angle, thc 
refracted light will contain both modes, the ordinary ray refracting aecord- 
ing to Snell’s law, with E = E, , the extraordinary ray refracting with a 
different angular dependence. (See Problem 3.11 .) 

3.8. HELICITY AND ANGULAR MOMENTUM 

We have seen that a polarization vector 

2, + icy 
e+  = ___ v5 (3.8.1) 

represents a right-handed circularly polarized wave advancing in the z 
direction. 

(3.8.2) 

is its left-handed counterpart. 
The vectors (3.8.1) and (3.8.2) transform particularly simply under 

rotations. We consider a primed coordinate system that is rotated clock- 
wise by an angle 6’ about the z-axis (where x, y ,  z form a right-handed 
coordinate system). This is shown in Figure 3.5. 

Evidently, 

A,  e ,  = 2, cos tl + i?,, sin @ 

el. = G I  cos 6’ + 2, sin 6 A ,  

(3.8.3) 

(3.8.4) 

so that 

A ,  e ,  i2: = 2, cos tl + GI sin d) * i ( 2 ,  cos H + 2, sin 0) 

= (2, _t cos tl 7 i sin d ( 3 ,  t El,) (3.8.5) 

or 

e + .  (3.8.6) e: = 

Vectors with the transformation property (3.8.6) are said to have helicity 
5 1. There is a corresponding property of the components. Thus, with 
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Y 
f 

Figure 3.5. 

e = Zxer + 2ye,, = e^:e: + 21e; (3.8.7) 

we have 

e,-e,.Z,e., I - * L I  +G:.2,,e,, and eJ=^eJ.^e,e,+i?i,.e,e,, A (3.8.8) 

or, from (3.8.3) and (3.8.4), 

e: = cos Be, + sin Be, 

ei, = cos Be, - sin Be., 

(3.8.9) 

(3.8.10) 

and from 

e = e + e +  +e-e-=e:e!+ + e y e '  (3.8.11) 

and (3.8.6), we find 

(3.8.12) *t0 e ' t=e , e -  . 

Note the opposite definition of e, from that of e,. 
There is an intimate connection between the helicity and the angular 

momentum of a plane wave of wave number k and frequency w ,  propagat- 
ing in empty space in the z direction. The relation, as we shall now show, 
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is 

W L  
W 

A=---’ (3.8.13) 

where A is the helicity of the wave, L,  the z-component of the electromag- 
netic angular momentum, and W the electromagnetic energy. For a single 
photon, with W = hw and A = ? 1, we would find, from (3.8.13), 

L z  = + h ,  (3.8.14) 

suggesting that the intrinsic spin angular momentum of a photon is * 1 .  
We calculate the angular momentum of an electromagnetic distur- 

bance propagating with approximate wave number ko, approximate fre- 
quency wc,, and approximate polarization & k i2),. These parameters must 
all be approximate, since for a wave of definite wave number both the 
energy and angular momentum would be infinite; therefore, the wave 
must be bounded in all three directions; the polarization must be modified 
as well to maintain transversality. 

We review first the angular momentum integral for charges and 
currents in free space. We have for the force density on charges 

f = pE -t j x B ,  (3.8.15) 

and from (3.3.6), 

(3.8.16) 

(where Tlk  is the Maxwell stress tensor). From (3.3.6), we derived the 
expression 

V 

(3.3.7) 

for the electromagnetic momentum pe.,,, 
Similarly, the torque density is 

r = r  x f or r . =  I E . .  i l k  x.f 1 k (3.8.17) 

so that, with L,, the angular momentum of matter, we have 
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I -- - - Id  I d r [ r  X (E X B)], -k € i l k  drX,diTk, (3.8.18) dLm, 
dt 4rrc dt 

or, with 

1 
4TC 

L,.,,. = - I r x (E x B) dr, (3.8.19) 

(3.8.20) 

Since E,&Tk[ = 0 ( E  is antisymmetric,T symmetric), we have from (3.8.20) 
an angular momentum flux density 

@ii = Ei jk  XjTkir (3.8.21) 

and for fields that go to zero sufficiently rapidly, a field angular momentum 

dr 
4 T C  

L?.,?. = \ -r x (E x B). (3.8.22) 

Our next task is to evaluate the integral for Le.m. for an approximate 
monochromatic plane wave. We call oo and ko the approximate values of 
the frequency and wave vector. 

We start with the general expression (3.8.22). We express the fields 
in terms of their Fourier transforms, automatically satisfying the free field 
equations. Thus, with a convenient normalization, 

and 

wi thw=clk l  a n d k . a = O .  
The energy in the electromagnetic field is 

(3.8.23) 

(3.8.24) 

(3.8.25) 
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the momentum is 

P = dkla12kw; i 
they have the approximate ratio 

(3.8.26) 

(3 3.27) 

The terms in the integrals for these conserved qualities that come from 
products of a with a or a* with a* must be zero, since otherwise their 
time dependence would violate the conservation law. 

The angular momentum is a little harder. With L given by (3.8.19) 
and E and B by (3.8.23) and (3.8.24), we have 

+ C.C. (3.8.28) x [ dk k x a(k) e'k'r-r"r I 
Here again, we have droppcd products of a with a and a* with a*. 

i V k ,  e-'"' r ,  do thc r integral, and find 
To carry out the integral in (3.8.28), we replace by 

L = Re dk dk' iVk,G3(k - k') x [a*(k') w' X (k x a(k)] e i (w' -w) ' .  

(3.8.29) 
.I 

We integrate by parts, carry out the indicated derivatives, and then 
set k = k' ,  leaving 

} (3.8.30) VA wa:(k) k X T u , ( k )  + -; a* x aw . 
I I 

Equation (3.8.30) decomposes the angular momentum into two terms. 
The first depends in detail on the structure and location of the wave 
packet; the second does not. We study a wave packet chosen to maintain 
the monochromatic and planar nature of the field to the maximum extent 
possible, consistent with the requirement that the total energy in the field 
be finite. Thus, we let 
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a& = [(a,y ? ia?,) k, - (k, k ik,) a,] e-'k.rob(k); (3.8.31) 

b(k) is a real function of k - ko, with widths Akx, Ak,,, and Akz much 
smaller than ko. The vectorial coefficient in (3.8.31) is chosen to ensure 
the transversality of a.  The wave vector ko is in the z direction. 

Evidently, the explicit phase -ik . ro displaces the wave packet by a 
vector ro and adds an orbital angular momentum Lorb = ro X P to the 
angular momentum. We can now easily calculate the energy, momentum, 
and angular momentum carried by the wave function (3.8.31), neglecting 
the spread in wave numbers Ak compared with k,. We find 

W = 2cki dk lb  1 2 ,  (3.8.32) 

and 

L = ro x P 2 Z k o k o ~  dk)b lz ;  (3.8.34) 

corrections are of order (Ak)2/kg. The second term in (3.8.34) corresponds 
in quantum theory to a spin angular momentum. Our result states that 
the wave with helicity 2 1 carries an angular momentum 

(3.8.35) W L; = +--. 
wo 

Note that setting W = hwo leads to L,  = k h .  

CHAPTER 3 PROBLEMS 

3.1 At t = 0, a charge density po(r) is found to exist in a medium with 
constant real dielectric constant E and conductivity (T. Assume that 

(a) Show that the charge density decays according to 
drp(r) = Qo is finite. 

p(r, t )  = p,,(r) e-(4mf"e)f 

(b) Where does the charge go? Show explicitly that the outgoing 
current correctly accounts for the disappearance of the charge 
for the special case of a spherically symmetric pr,.  



124 Time-Dependent Fields and Currents 

3.2 One could try to construct a model of a finite size charged particle 
by postulating a charge density p(r, t )  = qf(r - y(t)) ,  where y ( t )  is 
the trajectory of a fixed point in the charge distribution and r the 
point in space at which one is specifying the charge density. If (I is 
the total charge, we must have 

J 

A point charge would then have f(x) = a3(x). 

go with p above would be 
We have seen in Problem 2.1 that a suitable current density to 

The limit of a point charge is singular, since the electric field at 
the position of a point particle is infinite. This singularity does not 
occur for a finite size charged particle, such as suggested above. The 
field equations would be, as usual, 

1 dB 
c at  

V x E = - - -  

V . E = 4 ~ p  

l d E  47~j  
c d t  c 

V X B = - - + -  

and V - B = 0, with p and j as given above. The particle motion 
(nonrelativistic) would be given, following Newton and Lorentz, by 
the equation 

c dt 

(a) Suppose there are n charges, each with charge q l ,  mass m,, and 
coordinate y I .  Give the appropriate generalization of the Maxwell 
and Newton - Lorentz equations. 

(b) Show that there is a conserved energy in a volume V ,  consisting 
of the sum of the electromagnetic energy and the kinetic energy 
of the charged particles contained in V [as in (1.3.11)], provided 
that the surface integral of the Poynting flux integrated over the 
bounding surface of the volume vanishes, and that no particle is 
close enough to the boundary for p(r, t )  to be different from zero 
on it. For this purpose, assume that f(x) vanishes for 1x1 > b, a 
particle radius. 
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We can extend the volume to include all space, provided the 
energy integral converges and the integrated Poynting flux goes 
to zero as r + 00. 

(c) Show that there is a conserved momentum in a volume V ,  again 
consisting of the sum of the electromagnetic momentum (3 .3 .7)  
and the momentum of the charged particles contained in V .  
Formulate the conditions under which this holds. 

*(d) Let f(x) be spherically symmetric, that is, f(x) = f(lx1). One 
might expect in this case that there would be a similar conser- 
vation law for angular momentum. Try it. Show that the usual 
definition works only for a point particle, that is, for f(x) = 
S'(x). There is, however, a way of constructing a conserved 

angular momentum for this case, which we will take up when 
we come to Lagrangians (Chapter 7 ) .  

3.3 Imagine a wave packet incident on a plane dielectric boundary. We 
study the energy balance in the process for real E .  Since E, and H, 
are continuous, so is (E X H),z. Here, t stands for tangential and n 
for normal. More interesting is the time and area integral of the 
Poynting flux, over an appropriate closed surface: 

I =  dt 8 . d S  ii I 1  s 

which equals 

I = w,(t,) - W"(tl) 

where Wu(t )  is the electromagnetic energy contained in the enclosed 
volume V at time t .  If t2 and t l  are, respectively, after the time of 
departure and before the time of arrival of the wave packet at the 
surface S ,  then I = 0. 

Let W be the incident energy, W ,  the reflected energy, and W7. 
the transmitted energy. Show (using the example worked out in the 
text) that the condition I = 0 is equivalent to W = W, + W T ,  

3.4 Calculate the dipole moment of a classical atom in a constant mag- 
netic field Bo. Let the electric field be given by E = Eo e-"", with Eo 
constant in space and the atom modeled by an electron bound as an 
isotropic harmonic oscillator to its center. Let oo be the resonant 
frequency of the oscillator and m the mass of the electron. 
(a) Write the Newton-Lorentz equation of motion for the electron 

(charge - e )  in the presence of the fields E and Bo. 
(b) Look for a solution r = ro e - jw'  and find the equation satisfied 

by ro. 
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(c) Solve for ro by expanding in powers of Bo, keeping terms linear 

(d) Show that a gas of such atoms, I Z  per unit volume, would have 
in Bo. 

a tensor dielectric constant 

E,, = E O a r l  + i E I E f l k B O k  

where the Coefficient E ~ ,  the Faraday coefficient, is given by 

with wL = eBO/2mc, the Larmor frequency. 
(e) Considering only the zeroth-order term eO, give an expression 

for the dielectric constant ~ ~ ( w ) :  from it calculate the absorption 
of energy by the dielectric from an applied field E(r )  = 

d w f ( w )  e P i w r .  Remember that causality requires that the inte- 
gral over w in the neighborhood of a singularity of €0 be calcu- 
lated by circling into the upper half w plane. 

3.5 Rotation of light in a magnetic field: Consider a beam of light moving 
through a medium whose dielectric constant is 

E l /  = E o a l ,  + i t , € r , 3 .  

eo and t ,  are real numbers. 

(a) Show that right and left circularly polarized beams propagate 
in the 3 direction with no absorption, but different dielectric 
constants. 

(b) Calculate the angle of rotation per unit length of a plane polar- 
ized beam propagating in the t direction. 

3.6 A monochromatic plane polarized electromagnetic wave in vacuum 
is normally incident on a flat surface bounding a medium of real 
permeability p ,  real dielectric constant t ,  and conductivity u. The 
circular frequency of the wave is w .  Assume the wave incident 
from the left. Then the incident wave is 

E, = e, e f ( L t - m r )  

and 

B, = $, x el e r ( A r  "") 

where k = w / c ,  the fixed vector el is in the y ,  z-plane, and it is 
understood that the real part is to be taken. The reflected wave is 
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( R  is the reflection coefficient) and 

The transmitted wave is 

and 

B, = e i ~ e i ( k ’ ~ r - ~ t )  

T is the transmission coefficient. 

(a) Calculate the real and imaginary parts of k‘ for all positive values 
of p, E ,  and a. 

(b) Calculate the reflection coefficient R and transmission coefficient 
T for small values of w / a .  

(c) In the same approximation, calculate the flux of energy into the 
medium. What happens to it? 

(d) Still in the limiting case of small w / a ,  verify that the discontinuity 
in H ,  from outside the conductor to well within the conductor 
(where the field is zero) is correctly given by 

-x 

c c 
0 

where K is the surface current and j the current density parallel 
to the plane boundary. 

3.7 Find the reflection and transmission coefficients corresponding to 
(3.6.23) and (3.6.24) for the case of polarization normal to the plane 
of incidence. 

3.8 (a) Show that the boundary condition Etangentlal continuous between 
two media guarantees the continuity of aB,,,,,,,/at, provided E 
and B satisfy Maxwell’s equations in both media. 

(b) Consider next the boundary condition for the inhomogeneous 
equations. For media of finite conductivity (i.e., finite j), show 
that the continuity of Htdngentlal guarantees that d / a t  ADnormal = 
4r i )a /d t  ( a  is surface charge density), provided Maxwell’s 
equations hold in both media. 

3.9 Consider cylindrical wave guides in the TEM mode. 

(a) Show that a cylindrical wave guide consisting of the space inside 
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a single perfectly conducting cylindrical shell cannot support a 
transverse electromagnetic wave, that is, a wave of the form 

E(r, t )  = Eo er(kz-w' )  

and 
r(kr  ~ wr) B(r, t )  = Boe 

where z is the direction of the cylindrical axis, and the vectors 
Eo and Bo are functions of x and y and lie in the x ,  y-plane. 

(b) Show that a wave guide consisting of the space between two 
perfectly conducting cylinders can support such a wave, the 
functions Eo and Bo are unique (up to a scale) for a given shape 
of the confining cylinders, and the wave propagates with light 
velocity. The wave is called a TEM (transverse electric and mag- 
netic) mode. 

(c) Give these functions E and B for the special case of two coaxial 
circular cylinders. 

(d) From your result in (c) above, calculate, in terms of your para- 
meterization, the energy per unit time flowing down the wave 
guide. 

*(e) In the high conductivity (u/ w * 1) and small skin depth limit 
(Im k + curvature of the cylinders, where k is the wave number 
inside the conducting medium), calculate the energy loss per unit 
time and length by Poynting flow into the conductors. Treat the 
conducting surface as planar and calculate the longitudinal elec- 
tric field by continuity: Htangentlal is continuous; so Htangentlal 
outside the conductor = Htangentlal inside the conductor; then 
calculate E,  inside the conductor from Maxwell's equations and 
E ,  just outside the conductor by continuity. From Htdngcnt,al and 
E, , calculate thePoynting flow into the conductors. 

3.10 Consider a cylindrical wave guide in the TE and TM modes. 
We consider here a medium of constant permeability p and 

dielectric constant E, bounded by a perfect conductor of un- 
specified cross-sectional shape. It is obviously consistent to 
separate the fields into longitudinal ( z  component) and transverse 
(x, y components). Thus, we write 

E =  I E , ( x , y )  + B , E , ( x , y ) ] f ( z , t )  

and 
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Similarly, we write V = (d/az) + V,. We take advantage of the 
absence of z or t dependence in Maxwell's equations to let f(z, t )  = 
s(z,  t )  = &-wz) , so that a d z  becomes ik and d l d t  becomes -iw. 

(a) Show that, by eliminating H, from one transverse equation and 
substituting in the other (and vice-versa for EL),  one can solve 
for E, and B, as functions of E,, B,, w ,  k ,  E ,  and p,  and that 
E,  and B,  each satisfy the equation 

(0: - k 2  + e p w 2 )  ("') = 0. 
Bz 

(b) Determine the boundary conditions on E,  and B,  at the 
perfectly conducting boundary. 

(c) Show that these boundary conditions allow solutions with E, = 
0 (called TE, or transverse electric) and with Hz = 0 (called 
TM, or transverse magnetic). 

*(d) Now derive the correct boundary conditions on E, and H ,  when 
both the inner and outer media have finite p and E ,  and show 
that the separability into TM and TE modes no  longer holds in 
general. 

*(e)  Show that a circular geometry still permits TM and TE modes 
for E ,  and H ,  independent of azimuthal angle (rn = 0 mode). 

"3.11 A monoaxial crystal with p = 1 and real, symmetric E, ,  has a plane 
boundary perpendicular to the optic axis. The characteristic values 
of E, ]  are and e 2 .  
(a) Show that the ordinary ray refracts according to Snell's law. 
(b) Find the generalization of Snell's law for the extraordinary ray. 

That is, express sin 8' as a function of el, e 2 ,  and sin 8. Remern- 
ber that the direction of propagation of 8' is given by V k w .  

3.12 Work out in detail the results (3.8.32), (3.8.33), and (3.8.34) 
starting from (3.8.25), (3.8.26), (3.8.30), and (3.8.31). 

"'3.13 Use Cauchy's theorem and more to prove the following statements 
about E ( w ) .  Given that E ( W )  is analytic in the upper half w plane, 
~ ( w )  1 as w - m ,  E*(w)  = E ( - O )  on the real axis, and 
Im E ( W )  > 0 for w on the real axis and positive, show: 

(a) Im ~ ( w )  < 0 for w on the real axis and negative. 
(b) E ( W )  has no zeros in the upper half w plane, so that is 

analytic in the upper half w plane. 
(c) Choose the square root of E so that it has a positive imaginary 

part for w > 0 on the real axis. Then show that 6 has a negative 
imaginary part for w < 0 on the real axis. 
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(d) Im &/Re fi > 0 for w > 0 on the real axis, so that & also 

3.14 Show that the E field defined in (3.5.30) and (3.5.31) propagates 
causally. 

3.15 A plasma is a neutral ionized gas. A simple model for a plasma is 
a dilute gas o f  electrons in a uniform positive background (that 
ensures overall neutrality). Call n the number of electrons per unit 
volume. It is convenient to define a characteristic plasma frequency 
w,, by the equation w: = 4rrne2/m, where e is the electron charge 
and m its mass. 

(a) With this model, neglecting interparticle and magnetic interac- 
tions and the space dependence of the wave field, find the 
reaction of the electron gas to a passing electromagnetic wave 
of circular frequency w by solving for the steady-state motion 
of an isolated electron in the electric field of the wave. 

(b) Now find the dielectric constant of the dilute gas by calculating 
the steady-state polarization per unit volume P in the wave field 
E and using the formula 

approaches 1 as w + 00. 

D = EE = E + 4rrP. 

(c) Find the conditions (in terms of e ,  m, n. w ,  and E )  for the 
approximations suggested in (a) above to be valid and compa- 
tible with each other. 

3.16 The systematic way to deal with a plasma (or for that matter any 
low-density gas) is to introduce the Boltzmann function f(v, x), 
where An(v,  x) = f (v ,  x )  A v h x  is the number of gas particles (elec- 
trons in a plasma, with the positive ions approximated as a positive 
background) in the six-dimensional volume element A v h x .  

(a) By considering the number of particles entering the volume 
element h v h x  through the surface AyAzAv at x and leaving 
through the surface at x + Ax, and similarly the number entering 
through the surface Au,,AuzAx at u ,  and leaving through the 
surface at u, + nu,, and continuing to thc other eight surfaces, 
derive the Boltzmann cquation: 

where a(x, v )  is the acceleration of a particle at x with velocity 
v and df/atl,,,, AxAv is the number of particles thrown into the 
volume element AxAv through “collisions.” The distinction 
bctween -0, . af and d f l d t ~ , , l l  is not absolute. We take a to 
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respond to the average field acting on the particles: aflat},,,, 
describes the rest, whatever there may be. 

In a rare, approximately collisionless plasma, a = 
e ( E  + vlc X B), and d f l ~ ~ ( , , ~ ~  is set equal to zero; this neglect 
must be justified a posteriori following the calculation of the 
collisionless motion. 

(b) Recover the result of Problem 3.15 by solving for the linear 
response of the Boltzmann function to a weak applied field 
E ( w ) .  Let f o  be the Boltzmann function in the absence of the 
applied field and fo + f ,  the Boltzmann function in the presence 
of the field. Then, if we keep only linear terms and neglect 
collisions, the Boltzmann equation becomes 

eE 
at m 

a f  I 
-- + v . Of, + - f V"f,) = 0. 

Consider now long wavelengths (i.e., uk @ w ) ,  so that the 
v * Ofl term can be dropped. In this approximation, solve Eq. 
(1) for f l  and from the solution calculate the induced current 
j = e .f dv v f l .  Remember that .f dvfo(v, x) = no(x) ,  the local 
density, and that j = dP/d t ,  where P is the polarization per unit 
volume. 

From this, calculate the dielectric constant and recover the 
result of the equivalent calculation carried out in Problem 3.15. 

(c) In order to include long-range electromagnetic interactions, one 
must include the plasma as the source of electromagnetic fields 
(the equations so arrived at are called the Boltzmann-Vlasov 
equations): 

4n-j I d E  V X B = - - - + - -  
c c a1 

and 

Find the normal modes of these equations, for a given wave 
number k,  with the same approximation as in part (b) above, 
that is, uklw, but not cklw, negligible and w of the same order 
of magnitude as w p .  

You should find propagating transverse modes with the 
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dispersion law 

w 2  = u; i- c2k2 

or, with 

just as in part (b) above. 
In addition, there is a discrete longitudinal mode, approxi- 

mately independent of uk: w = w,, . 
A careful treatment taking the small uk dependence into 

account shows that for a normal velocity distribution function 
fo, this mode actually damps, transferring its energy to  particle 
motion. 

3.17 (a) Formulate a set of Maxwell’s equations that would take into 
account the existence of a magnetic current and charge density 
j,, and p,,,, corresponding to the familiar electric quantities j, 
and p c .  Clearly, j, and p,,, would go on the right-hand side of 
the homogeneous equations: 

where LY and p are to be determined. The volume force law 
is 

F =  f, ,dr,  .i 
and 

j j,, f, = p,E + X B + p,B + 7 -  X E 
C C 

where y is to be determined. The positive sign of pnlB in the 
force equation is a definition. The coefficients are to be 
determined by the requirement of internal consistency and the 
existence of conservation laws for energy, momentum, and 
angular momentum. Thus, you must find for the change of 
field energy: 

and for the total force on matter inside the volume V :  
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(i i)  

V V V 

where 

and 
(iii) a field angular momentum 

L =  i dr rx:cxB) 

satisfying an equation analogous to (ii) above. 

netic pole p at r l  and electric charge q at r2: 
(b) Finally, calculate the angular momentum of a stationary mag- 

(i) Show first that L is independent of the origin of r. 
(ii) Now choose r2 as the origin and recognize both fields as 
gradiants. Thus, 

4iTc 

Integrate appropriately by parts (i.e., VC$~ or 04,) and then 
use the Legendre polynomial expansion to find the answer. 
Note on dimensional grounds that L must be proportional to 

(c)  From the formula for L and the quantization of angular momen- 
tum follows the quantization of electric charge, which must hold 
if a magnetic pole exists. This semiclassical result also holds in 
quantum theory. 

3.18 It is amusing that Maxwell's equations take a particularly simple 
form in terms of the vector Q = E + is. For the free field equation, 

i V  X Q. 
1 - Q =  - 
C 

Verify this and, following the work of 3.17, find the current that 
goes on the right-hand side in the presence of magnetic poles. 
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CHAPTER 4 

Radiation by Prescribed 
Sources 

I n  this chapter we study the emission of radiation by a given source 
(charge and current densities). The complete solution of a physics problem 
will, in principle, require the simultaneous calculation of the effect of the 
radiation on the source. In many cases, however, the radiation reaction 
is relatively weak so that it can be taken into account in a series of 
successive approximations. Those are the cases we will be dealing with in 
this chapter. Chapter 5 ,  on scattering, deals with the more general problem 
of interacting fields and sources. 

4.1. VECTOR AND SCALAR POTENTIALS 

The equations for E and B can be solved most easily by introducing a 
vector and scalar potential. Since V . B = 0, there exists a vector potential 
A, such that B = V x A. The homogeneous equation 

implies that 

(4.1.2) 

that is, that there exists a scalar potential 4 .  Thus, E and B are given by 
the equations 

B = V x A  (4.1.3) 

134 
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and 

(4.1.4) 

We have seen in the quasistatic case that E and B do not uniquely 
determine A and 6. That is still true here. The substitutions 

A' = A +  V x  (4.1.5) 

(4.1.6) 

evidently leave B and E unchanged and so correspond to the same physical 
fields as A and 4 .  This property is called gauge invariance. In classical 
field theory the potentials are introduced as a calculational convenience, 
and their gauge similarly chosen for convenience.' 

The inhomogeneous equations are now 

(4.1.7) 1 dA 
=P v . E  = - - v  .- - v24 = 4 

c at 

and 

1 dE V X B  - - - = V  X (V X =-. (4.1.8) 
c at 

There are two especially useful gauges to work in. The first is called 
the transverse, or Coulomb gauge. It is defined by 

V * A = O  (4. I. 9) 

and can clearly be reached by the proper choice of x in (4.1.5), starting 
from any Ao, by solving the equation V A. + V2x = 0 for x. Equation 
(4.1.7) then becomes 

024 = -4lTp, (4.1.10) 

the familiar Poisson equation, which produces a scalar potential 

(4.1.11) 

'In quantum theory the potentials play an essential role. 



136 Radiation by Prescribed Sources 

which is instantaneously connected to the charge density. This solution 
appears to violate causality - the finite propagation velocity of electromag- 
netic signals-but does not, since the potential 4 is not a physical field. 
The test of causality must come in the field strengths E and B, where the 
vector potential must make a contribution that will cancel the acausal 
contribution of V 4 .  This comes about from (4.1.8) for A: 

1 d2A 4lrj 1 a+ V X (V X A) + - - = - - - V - 
c2 a tz  c c a t  

(4.1.12) 

with 4 given by (4.1.11). 

sides is zero, since 
Note that (4.1.12) is purely transverse; that is, the divergence of both 

We see that ( 1 / 4 ~ r ) V ( a 4 / a f )  is the longitudinal part of j, so that even with 
j and p spatially confined, the longitudinal part of j falls off only like an 
inverse power of r as r + a. (See Problem 4.1 .) The contribution of this 
term to A and aA/a t  at large r will have to cancel the unwanted contribu- 
tion to E from -V+. (See Problem 4.2.) 

To show that this must happen, it is convenient to use the second 
gauge, called the Lorentz gauge. To introduce the Lorentz gauge, we 
rewrite (4.1.7) and (4.1.8) as 

and 

(4.1.14) 
1 aZA - V A + - - + V  

c2 at2 

The obvious choice of gauge now is 

(4.1.15) 

which decouples the different vectors from each other and allows the three 
components of A and the one component of + to be calculated as if they 
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were independent scalars. To see that this gauge can always be chosen, 
start with Ao, 4o and solve the equation 

or  

(v2 -$$)x=- (v .*o+; ,  a40> . (4.1.16) 

Equation (4.1.16) can be solved, in general, by iteration, given ,y and 
axlat at t = 0. Of course, the solution is not unique, since one can still 
add any solution of 

to a particular solution of (4.1.16). 
We have now to solve the decoupled equations 

and 

(4.1.17) 

(4.1.18) 

4.2. GREEN’S FUNCTIONS FOR THE RADIATION 
EQUATION 

We will want a solution of the equation 

Orcl = -47rf(r, t) (4.2.1) 

with f a given function of space and time. The Green’s function 
G(r ,  t ;  r‘ ,  t ’ )  that gives 

rC, = dr’ dt’G(r, t ;  r’, t’)f(r’, t’) (4.2.2) I 
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must satisfy the equation 

G(r, t ;  r', t ' )  = - 4 ~ 8 7 1 -  - r')s(t - t ' ) .  

(4.2.3) 

We look for a solution that is a function only of r - r' and t - t ' ,  which 
must satisfy the equation 

Equation (4.2.4) invites a Fourier transform: 

which, with 

gives 

or 

C L  

so that 

dw e-'"'' 
G(r ,  t )  = - ~ Akeik" - 

4 " i  ?T3 I w 2  - C 2 k 2  

(4.2.5) 

(4.2.6) 

(4.2.7) 

(4.2.8) 

We have seen denominators of this type before in connection with 
the causality of atomic polarizability; see (3.4.24)-(3.4.30). Recall that 
G(r, t )  will vanish for negative t if we take w in the denominator of (4.2.8) 
to approach the real axis from above. That definition corresponds to a 
retarded potential. That is, thc source of (4.2.8) is a S function pulse at 
t = 0 and r = 0. Requiring G to vanish for t < 0 is equivalent to requiring 
that the radiation from the sourcc pulse come after the pulse. Thus, we 
have the retarded Green's function 
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G K ( r ,  t )  = - lim . (4.2.9) 
( w  + i ~ ) ~  - C 2 k Z '  

the advanced Green's function (corresponding to a time-reversed world) 
is 

To calculate G R  for t > 0, we must close the w integral (4.2.9) in the 
lower half w plane, where there are poles at w = -k  ? ck. The result is 

and so 

always for t > 0. 
The integral over angles of k gives 

r 

7rr 
0 
r 

(4.2.11) 

(4.2.12) 

= -C I dk[cos k(r - ct )  - cos k(r + ct)]  
r r  

(4.2.13) C 
= - (6(r - ct) - 6(r + ct ) ) .  

r 

The second term is zero (both r and t are positive) so the final result is 

GH(r, t )  = - C S(r - c t ) .  
r 

(4.2.14) 

Having found the solution, we can verify directly that (4.2.14) satisfies 
(4.2.4). (See Problem 4.9.) 
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Returning to the original equation (4.2. l ) ,  we find the retarded solu- 
tion 

q(r, t )  = j dr'dt'  6 ( t  - t'  - ___ I r  - "')f(r' ,  t ' )  (4.2.15) 
r - r'l C 

or 

(4.2.16) 

where the retarded time tR = t - I(r - r')/cl is the time at which a signal 
must be emitted at r' to reach r at the time t .  

A useful way to picture the content of (4.2.16) is to imagine a 
spherical wave converging at time t on the point r.  The retarded time tR  
is the time the wave crosses the point r', picking up its contribution from 
the source f (r ' ,  t R )  as it does so. 

The fields A and C$ radiated by the current and charge density j and 
p as described in (4.1.17) and (4.1.18) are now given by (4.2.16): 

and 

(4.2.17) 

(4.2.18) 

In this gauge, the absence of the instantaneous electric field encoun- 
tered in (4.1.11) is obvious, since all the potentials and fields are retarded. 

4.3. RADIATION FROM A FIXED FREQUENCY 
SOURCE 

We suppose j and p are given by 

and 

with 

j(r, t )  = j0(r)e+' 

p(r, t )  = po(r)e-iW', 

(4.3.1) 

(4.3.2) 
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V a j, - iwp ,  = 0 .  (4.3.3) 

We calculate the potentials as 

A(r, t )  = dr’ jo(r)e-iW‘R 
c Ir - - ’ I  (4.3.4) 

(4.3.5) 

The signature of radiation is that, for sufficiently large r, E and B go 
like l l r  so that the energy radiated through a solid angle d o :  

dS .9 = cE X B . dS 
47r 

goes like a constant (independent of r) .  The region where the l l r  behavior 
dominates the fields is called the wave zone. The radiated power per unit 
solid angle is given by the coefficient of l l r 2  in the Poynting vector, so 
that the calculation of radiation requires only the leading term in l / r  in 
(4.3.4) and (4.3.5). Thus, 

and 

/ r  - r‘ )  
t R = t - -  

C 

(4.3.6) 
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The last term is negligible in eUicorR, provided the wavelength A is such 
that 

rc rA 
(4.3.7) 

Note that a macroscopic source could require kilometers to reach the 
wave zone as defined above. Clearly, the method we are discussing here 
does not apply to such a case. 

There remain, as r +  m, 

- r o ( r  - r lc)  

A =  
cr 

and 

(4.3.8) 

(4.3.9) 

We recognize that k = wP/c is the radiated wave number. In differenti- 
ation, ( d / d x i ) $  goes like l / r ,  so that k can be treated as a constant. Thus. 

and 

where 

and 

Equation (4.3.3) leads to 

k . j, = Up,. 

We find the fields from A and 4.  To leading order in l l r ,  

(4.3.10) 

(4.3.11) 

(4.3.12) 

(4.3.13) 

(4.3.14) 
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ikx; 
j k  __ 

a~ &kr-wt) 

3x3 cr r 

so that 

and 

cr 

(4.3.15) 

(4.3.16) 

(4.3.17) 

(4.3.18) 

Observe that both B and E as given in (4.3.17) and (4.3.18) are transverse, 
B obviously and E from (4.3.14). The second term in (4.3.17) serves 
merely to cancel the longitudinal part of jk, leaving only the transverse 
part , 

kk . j k  j,, = j, - - 
k' ' 

(4.3.19) 

which of course would have appeared more naturally in the transverse 
gauge. Thus, the E and B fields have the properties of propagating fields 
with polarization vector j,,, wave number k,  and satisfying the correct 
right-hand rule relating k, E, and B. 

We calculate the radiated energy [averaged over a cycle as described 
in (3.5.19)] as 

-- dW -m 
dt dR 

C 
= - E x B . i r 2  

4T 

(4.3.20) 

(4.3.21) 

(4.3.22) 
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and 

(4.3.23) 1 
k 

j&. j,, = j,* - j, - ,j,U. kj, k .  

These formulas are very general and are correct to order l lr .  In the 
next two sections, we will apply this general theory to specific cases. 

4.4. RADIATION BY A SLOWLY MOVING POINT 
PARTICLE 

We consider the radiation from a slowly moving point particle, with 
current density 

j ( r ,  t )  = qv(t)  a3(r - r ( t j )  (4.4.1) 

where r(r) and v(f) are the position and velocity of the particle at time t ,  
and q is the particle's electric charge. Slow means u/c  < 1 .  

To find the vector potential produced by j ,  we Fourier transform 

(4.4 2) 

[jw here denotes the object corresponding to j&) in Section 4.31. Equation 
(4.3.8) then gives A in the radiation zone: 

(4.4.3) drt jw(rf) -ik.r' I I rc 

- i w ( r - r l c )  

A(r, I )  = do 

where k = ( d c ) ? .  
The exponential e - i k ' r '  = e -iF'r'(a/c) is approximately constant for a 

slowly moving particle, since A(r'w/c) - v /c .  If we make the obvious 
choice of origin, (4.4.3) becomes 

I rc 
d o e  - i w ( f -  r / c )  A(r, t )  = - 

which with (4.4.1) gives 

(4.4.5) 
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Thus, A is given by the radiating particle's velocity at its retarded time. 
We immediately find 

where 

a T =  a - 3 3 .  a (4.4.7) 

is the transverse component of a,  the acceleration at the retarded time. 
Remember that r^ is the direction of observation. 

The magnetic field is 

B = V x A = , ( - V r ) x a = ? x E + O  4 
rc 

The instantaneous Poynting vector 8 is 

C 
9 = - E X B  

47r 

(4.4.8) 

(4.4.9) 

where a is evaluated at the retarded time t - r/c. 

we have for the average rate of radiation per unit area and time 
If we average over a time T (e.g., a cycle of simple harmonic motion), 

(4.4.10) 

in agreement with (4.3.22), recognizing that q 2 Z 2  = u2( jkI2/2 for simple 
harmonic motion and k = 0 .  Equation (4.4.10) tells us that the time- 
average power radiated per unit solid angle, dPldQ, is independent of r: 

q2 - 
d Q -  = d S . 8 = d R - - - ( Z 2 -  (4.4.11) 

dR 4TC3 
over  dS1 

Note that in this approximation (called electric dipole), plane polar- 
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ized light is produced by a linear particle trajectory, the plane of polariz- 
ation being the plane containing the particle motion r(t) and the direction 
of observation, ? = With any other than a linear trajectory, the nature of 
the polarization depends on the direction r^ of observation. Except for 
special directions, the polarization is, in general, elliptic. 

The dependence on the direction of observation of the intensity of 
radiation is given by (4.4.10). For a linear trajectory, it is sin2 8, where 8 
is the angle between the trajectory direction and the direction of 
observation. The total radiated energy per unit time (power) is given by 
the integral of 9 over a distant surface 

4.5. ELECTRIC AND MAGNETIC DIPOLE AND 
ELECTRIC QUADRUPOLE RADIATION 

The approximation made in (4.4.4), k . r' < 1 ,  can be applied to a more 
general current distribution than the one given in (4.4.1). It forms the basis 
of a multipole expansion analogous to the electrostatic and magnetostatic 
multipole expansions discussed earlier in Chapters 1 and 2. For small kr',  
that is, for dimensions of the radiating system much smaller than the 
radiated wavelength, the first few nonvanishing terms in the expansion 
provide a good approximation to the radiation amplitude jk of (4.3.12). 
For kr' not small, the multipole expansion can still be carried out, as we 
shall see in Chapter 5 ,  but is not equivalent to an expansion in kr' ,  and 
may converge slowly. For the moment, we confine ourselves to the first 
few terms, which we evaluate by expanding in kr ' .  

We consider, then, a given frequency w and wave number 
k = ? ( w / c )  and evaluate the radiated amplitude of (4.3.12) 

(4.3.12) 

where from (4.3.3) 

V - jo(r') = iwp(,(r'). (4.3.3) 

We proceed by expanding the exponential 
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(4.5.1) e - - r k . r ‘  = 1 - i k .  rf  + . . . . 

The first term gives 

j p  = drfjo(r’). (4.5.2) 

For a confined current, 

j y  = - dr‘ r f V ’  j&’) (4.5.3) 

or 

jp = - iw 1 dr’ p,,(r’)r’. (4.5.4) 

The question of origin of coordinates does not enter into (4.5.4), since 
p(r‘) dr‘ is conserved and, hence, has no component with w different 

from zero. The term “electric dipole” is now clear-the electric dipole 
moment of the charge distribution pE is given by 

(4.5.5) 

(4.5.6) 

independent of the direction of radiation. 
The complex electric field vector is given by (4.3.17) and (4.3.19) as 

( - iw)(pE - P^r.pE), (4.5.7) E(1) = - iw e i ( k r - w r )  

c2r 

and the magnetic field as ̂ r x E: 

The angular distribution of the radiation is given by (4.3.22) and 
(4.3.23) as 

(4.5.9) 
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We make contact with the formula (4.4.11) for the radiating point 
particle by recognizing that for motion described by 

r(t ) = Re( ro e - j W ‘ )  (4.5.10) 

the acceleration a will be given by 

a(t) = - ~ ~ R e ( r ~ e - ‘ ” ‘ )  

and the complex electric dipole moment corresponding to (4.5.5) by 

pE = qr,. (4.5.11) 

These connections lead back to (4.4.11). The apparent factor of two 
difference comes about because (i I = $ w4 1 ro 1’. 

Concluding, we see that for a system with small kr’,  radiation emission 
will be largely determined by the system’s electric dipole moment p E .  p E  
is a complex vector, independent of the details of the charge distribution; 
for example, as we have seen, it does not distinguish between a moving 
point charge and an oscillating continuum charge distribution p. 

We turn next to the second term in the expansion (4.5.1), giving for 
the next approximation to j,, 

ji2’ = - i  5 dr’k . r’jo(r’). (4.5.12) 

Normally, jk2) will be smaller than jk’) by kr‘ - d c ;  the exception is usually 
when the electric dipole moment vanishes for reasons of symmetry. In 
atomic and nuclear physics, for example, this happens for transitions with 
AJ > 1, or AJ = 1 and no change of parity. 

We manipulate (4.5.12) in a familiar way. We write 

so 

r‘ x j,(r‘) (ji”), = I - ik . r‘joc(r’) = i 

or 
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(je))  = i(ck X pM) - (4.5.13) 
c f 2  

In (4.5.13), pM is the recognizable magnetic dipole moment 

(4.5.14) 

the integral i J  d r ’  x : x ; p o ( r ‘ )  can be replaced by the traceless quadrupole 
tensor 

(4.5.15) 

since Sit inserted into (4.5.13) will produce a longitudinal contribution to 
j k 2 )  and, hence, will not contribute to radiation. 

We compare the form of magnetic dipole radiation with that of electric 
dipole radiation. 

The electric vectors ( j T )  are given for the two cases by 

The corresponding magnetic vectors are given by B = f X E or 

(4.5.18) 

BE) 0: - iw(pM - 3i! * pM) .  (4.5.19) 

Thus, the transformation from electric radiation to magnetic radiation 
is 

EE-+ B M ,  BE-+ -EM. (4.5.20) 

Equation (4.5.20) reflects a general symmetry: Maxwell’s equations for 
propagating electric and magnetic fields in the absence of sources are 
invariant under the transformation E + B, B .+ - E. Note the importance 
of the minus sign. Without it, the Poynting vector would go in the wrong 
direction ! 
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Finally, we consider the electric quadrupole radiation (magnetic quad- 
rupole will come in the next order of kr'):  

and 

The angular distribution of power radiated will be 

Note that there is no general rule against interference of different 
radiation multipoles, although in some quantum transitions it may be 
forbidden. For example, in a J = 1 to J = 0 transition, ED and MD will 
not interfere, since ED requires a parity change and MD requires no 
parity change in the system. However, in J = 2 + J  = 1 with no parity 
change, MD and EQ can and generally will interfere. In contrast, in 
scattering problems at large kr' there is usually interference between many 
multipoles. We shall return to this question whcn we discuss general 
multipole radiation in Chapter 5 .  

4.6. FIELDS OF A POINT CHARGE MOVING 
AT CONSTANT HIGH VELOCITY v: 

EQUIVALENT PHOTONS 

We write equations in the Lorentz gauge 

and 

( v2- la') 4 = - 4 r p  = -4rrq6'(r - vt ) .  
c2 at' 

(4.6.1) 

(4 .6 .2)  

We look for a solution A(r - vt) ,  qb(r - v t ) .  With v and A in the z -  
direction, these satisfy the equations 
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= -47rqs3(r - vt) 

Change variables to 

Then 

(4.6.4) 

wherep = Gxx + Gyy and r' = p + GZz', so that 

(4.6.5) 

The solutions of (4.6.4) are immediately given by the Coulomb poten- 
tial: 

(4.6.6) 

and 

4J= />; 1 - -  (4.6,7) 



152 Radiation by Prescribed Sources 

The electric field is 

1 dA 
c (It 

E = - - - - V 4  

1 

1--  1- -  1- -  
C 2  

or 

The magnetic field is 

(4.6.8) 

Remarkably, the electric field at r points from the present position of the 
charge (v t )  to the field point, as shown by (4.6.8). Note also the first hint 
we have seen that u > c would cause major problems.2 

The fields E and B look remarkably like a light wave if the particle 
velocity u is very close to c. First, the field packet moves with a velocity 
very close to c. Second, it is concentrated near z = ut ,  so that E,  is small 
compared with E, ; thus, E is almost transverse, B is exactly transverse, 
orthogonal to E, and almost equal to E in magnitude. This circumstance 
can be exploited to relate a process induced by fast charged particles to 
the same process induced by low-frequency photons. 

To do this, we calculate the radiant energy incident per unit area, 
time, and frequency by Fourier-transforming the electric and magnetic 
fields (4.6.8) and (4.6.9) as 

*The fields E and B can also be calculated by Lorentz-transforming the Coulomb field 
of a charged particle at rest. (See Problem 6.4.) 
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x 

E(r, w )  = I &eiwrE(r, t )  (4.6.10) 

and 

B(r, w )  = V - X E(r, 0). (4.6.11) 
C 

Since E is effectively transverse and u /c  = 1, the integrated Poynting vector 
will be, with E(r, w )  = eiw('lc)E(p, w )  and B(r, w )  = e'"'''''B(p, w ) ,  

(4.6.12) 

(4.6.13) 

and the number of photons per unit frequency per charged particle 
incident will be 

(4.6.14) 

The factor of two comes from adding negative to positive frequencies. 
How are we to interpret (4.6.14) in quantum theory? Since quantum 

theory predicts probabilities, the number of photons in the range 
w ,  < w < w2,  or Iw2 ( d N / d w )  dw,  must be interpreted, if small, as the 
probability p ( w 2 , w 1 ) ,  of finding a photon in that range with a single 
incident charge. That is, if N ,  is the (large) number of incident charged 
particles, the number of photons emitted in the calculated frequency 
interval will be 

w1 

thus giving the same effective answer as (4.6.14). 
If the calculated probability p ( w 2 ,  w l )  turns out to be large, doubt is 

cast on the calculation; the reaction of the target system on the charged 
particle must be taken into account. This will be the case, for example, if 
we consider very low frequencies, where the factor l/w in (4.6.14) 
becomes large. 

We should comment here on the validity of using classical field theory 
to calculate effects associated with the radiation of low-frequency quanta. 



154 Radiation by Prescribed Sources 

We learn in quantum electrodynamics that classical field theory is valid 
when the quantum state contains many photons per volume A 3  (with A 
the wavelength). This is certainly not the case for the problem we are 
dealing with here. Quite the contrary, we consider the radiation of one 
photon at a time. There is, however, another regime in which the classical 
equations are applicable. That is a regime where we can limit ourselves 
to a linear approximation in the field strengths. In that case, since the 
quantum equations of motion are the same as the classical ones, classical 
solutions hold as well for the quantum field operators. Thus, here and in 
Section 4.8, where we discuss low-frequency bremsstrahlung, the 
specifically quantum properties of electromagnetic fields may be ignored. 

Of course, we cannot expect this classical calculation to hold for all 
frequencies w and radii p .  The frequency must be small enough so that 
the energy quantum hw is negligible compared to the energy of the inci- 
dent particle; the radius p must be larger than the wavelength of the 
particle, h = h / p ,  since otherwise one cannot give classical meaning to the 
location p .  With those caveats, we go ahead and calculate 

The appropriate change of variables in (4.6.15) is 

leading, with u/c  = 1, to 

(4.6.16) 

and with z‘ = p u ,  

The factor exp{iw(p/c dl - u2/c2u} produces a classical cut-off for p 
in (4.6.14): For p ( w / c )  &- 1 - u2/c2  > 1, the oscillating exponential will de- ~. 

crease the u integral from its value at w = 0. This comes about because 
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at a transverse location p ,  the electromagnetic pulse has a characteristic 
time of passage 

J 1 - <  C- 
At - p > 

C 

so that the characteristic classical frequency wCI in the Fourier transform 
will be wcl - clp-. 

For w < wcI, the approximation w - 0 can be made. For w > wcl, or 
p > dw-, the Fourier transform will fall off, as shown explicitly 
in (4.6.18). We thus have, for 

(4.6.19) 

The equivalent photon spectrum is given by substituting (4.6.19) in 
(4.6.14): 

As discussed earlier, 

(4.6.20) 
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with p the incident particle momentum. The final result is 

(4.6.21) 

Note that since u is close to c and hw 4 cp (the particle energy), the 
argument of the logarithm is very large, and therefore the log will be 
insensitive to the precise value of these cut-offs. Thus, (4.6.21) makes 
quantitative, not just qualitative, sense, since in addition the factor q2/hc 
(equal to 1/137 for electrons) allows the probability 1” d w ( d N / d w )  to be 
small. 

Equation (4.6.21) gives directly the relation of a fast charged particle 
induced cross section da,, with energy loss h w ,  to the photon induced 
cross section duy at frequency w .  If the particle is an electron, it is for a 
range Aw of frequency 

W1 

This relation was discovered in the early days of quantum theory by C. 
F. Weizsacker and E. J.  Williams. 

4.7. A POINT CHARGE MOVING WITH 
ARBITRARY VELOCITY LESS THAN c: 

THE LIENARD-WIECHERT POTENTIALS 

We return to the general form (4.2.17) and (4.2.18). This gives 

and 

The current and charge density are those of a point particle: 
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and 

where r ( t ’ )  and v ( t ’ )  are the coordinate and velocity vectors of the particle 
at time t ’ .  We carry out the dr ’  integral first. There results 

C 
A(r ,  t )  = - 

and 

To carry out the dt‘ integration, we are first required, given a field 
point r and a time t ,  to find the retarded time t’ = fR, such that 

(4.7.7) 

Equation (4.7.7) has only one solution, provided the particle velocity is 
less than c. To see this, imagine again a spherical light wave aimed to 
converge on the point r at time t .  It will cross every charged particle at 
some time tR and only cross each particle once, since it is moving with 
velocity c > u.  Clearly, the time the spherical wave crosses the particle 
trajectory is the retarded time for that particle. In general, one cannot 
solve for tR  analytically, but the argument just given shows that a numerical 
calculation [given r ( t ) ,  of course] can succeed. In the special case of 
uniform motion, (4.7.7) leads to a quadratic equation for f R ,  which can 
be solved algebraically. In fact, the procedure we are about to follow here 
could be used as an alternative way of finding the fields of a particle 
moving with constant velocity. Both the retarded and advanced fields of 
a uniformly moving charge are equal to each other and to the convective 
fields described in the last section. 

Assuming we have found the solution of (4.7.7) for t R ,  we must do 
the integrals in (4.7.5) and (4.7.6). To do that, we change variables to the 
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argument of the 6 function, that is, 

Then 

r - r(t') . a) 
c (  r - r(t') 1 dt' 

or 

1 - dr' 
dr r * v  

1 -  __ 

-- 
A 

C 

(4.7.8) 

(4.7.9) 

where r̂ is the unit vector pointing from the retarded position3 of the 
particle r(tR) to the field point r,  and v is the velocity dr(t') ldt'  at 
t'  = f R .  

The integrals (4.7.5) and (4.7.6) can now be done using the r variable: 

or 

and 

(4.7.10) 

'A point to keep in mind for possihle future reference is that the equivalent denominator 
for the advanced solution is 

where ^rand v are now calculated at the advanced time: 
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4 = -  4 
S 

(4.7.1 1) 

where 

(4.7.12) 

4.8. LOW-FREQUENCY BREMSSTRAHLUNG4 

Before taking up the E and B fields, we consider the radiation of low- 
frequency photons in the course of a scattering event. As in our discussion 
of equivalent photons in Section 4.6, we must confine our calculations to 
low enough frequencies so that the quantum corrections will not be signi- 
ficant. That means that ho must as a matter of principle be small compared 
to characteristic energies of the radiationless scattering process; for 
example, we must have 

ti0 4 w (4.8.1) 

where W is the incident energy of the charged projectile. 
As a matter of practice, we will consider o also smaller than the 

characteristic classical frequencies of the motion, for example, the classical 
frequency w, - u / b ,  where u is the incident particle velocity and b the 
impact parameter (assuming that b is within the range of the force). This 
is because a calculation of the frequency dependence of the process must 
be specific to the system being considered; we are interested here in 
general results, including the case of nonclassical particle motion. 

What we will do therefore is to calculate the zero frequency limit of 
radiation by a system that we imagine to be correctly described-either 
by classical or by quantum equations, whichever is called for. 

We imagine a scattering event (see Figure 4.1) in which the 
observation of electromagnetic radiation is made at r.  between times t l  
and rZ,  where t l  and t2 are such that f l R  is before the particle has entered 
the force field of the scatterer and f Z K  is after the particle has left the force 
field of the scatterer. (This can always be done: Choose f l H ,  r1 and f2R,  

r2 first; then find t i  and t2 by clocking rays from r1 to r and from r2 to r.)  
Wc calculate the electric field as the transverse part of -1lc aAlat. 

JBremsstruhlung is German for braking radiation. 
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r 

Figure 4.1. 

Then 

c at 

and the Fourier transform of E is 

(4.8.2) 

(4.8.3) 

We do not have to integrate before r1 or after t2 since there will be no 
radiation field (i.e., no E - l / r )  at those times. 

Given E(r, u), we know how to calculate the energy radiated per unit 
area. It is 

(4.8.4) 

where B is the Poynting vector, 

P ( w )  = E*(r, w )  x B(r, u) (4.8.5) 
47T 

(4.8.6) 

and where r̂ is the unit vector pointing from the target. Remember that r 
is asymptotic-that is, the unit vector 
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is independent of tR during the scattering. 

we calculate the energy spectrum at w = 0. It is 
We consider only w near zero, as discussed earlier. More precisely, 

I_- dW - 2 9 ( 0 ) .  lc 
dS dw 

(4.8.7) 

where the factor 2 takes into account both signs of the frequency. We 
observe that E(r, w = 0) can be calculated from (4.8.3). It is 

(4.8.8) 
1 

E(r, w = 0)  = - - [AT@, f2) - t l ) ]  
G C  

and from (4.7.10) and (4.7.12), 

and 

(4.8.9) 

(4.8.10) 

where v1 and v2 are the velocities of the charged particle before and after 
the scattering. Thus, 

The total energy radiated per unit solid angle is 

x 

dW c 1 
~ = -- I d S .  P I  dw E*(r, w )  + E(r, w )  
dl2 2.nAR 

(4.8.12) 
A i l  0 
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and per unit solid angle and frequency is, for w near zero, 

The number of photons in a frequency range’ do is thus 

v2 - 
C 

v2 . E 1--  i C 

(4.8.13) 

The meaning of (4.8.13) is the following: Zfthe charged particle comes in 
with velocity v I  and is scattered with velocity v2, the number of photons 
it will radiate in the frequency range Aw and solid angle AR is 

(4.8.14) 

The probability of that charged particle event is the cross section for 
the event times the incident number of particles per unit area. Therefore, 
the cross section for producing a photon in the frequency range Aw and 
angular interval AR is given by (4.8.13) in terms of the radiationless cross 
section dcrldr, where dr  describes the final particle state; for example, in 
a scattering, d7 might be dR of the final particle. The relation is 

Equation (4.8.15) can be generalized to several incoming and outgoing 
charged particles. The squared bracket times q2 is simply replaced by 

’Remember, as discussed in Section 4.6, that the quantum mechanical translation of 
”numbcr of photons in a range” is the “probability of radiating a photon in a range.’’ 
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- 1 
u: 

V f . 3  
\f 1-  - 

C 

v l - v l . i . i  
A v1 . r 

1 -  - 
C 

1 v; . 3 
1-  - 

C 

2 

d a  
dr  
- i 

(4.8.16) 

where f denotes final, i initial. The transverse component squared of a 
vector j is, of course, 

(4.8.17) A A  2 (jT)’ = (j - j * r r) = j2 - (j 3 ) 2 .  

We see from (4.8.15) that the radiation of fast particles peaks strongly 
near the direction of vI  or v2. Thus, although 

vanishes at 0 = 0, it peaks strongly at cos 8 = ul/c, where it has the value 

1 

1 - (g. (4.8.19) 

The low-frequency radiation thus comes out mainly in two sprays near 
v1 and v2. Integrated over solid angle, each of these sprays gives 

1 

(4.8.20) 
1 

z 4~ log- 
u1 1 - -  
c c 

for u / c  close to 1. 
An important consequence of the finiteness of E(r, w = 0) is the diver- 

gence of the cross section for photon emission at low frequencies, since I dw lw  diverges at w = 0. The high w divergence in the integral is a 
consequence of our low-frequency approximation. It turns out in quantum 
theory that the meaning of the low-frequency divergence is that no charged 
particles can interact without radiating-perhaps no big surprise. That 
means that one cannot define an “elastic” amplitude which includes 
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charged particles in the initial or final state, since there is always ac- 
companying radiation. One can however define and measure a cross 
section for a charged particle to scatter with a finite energy resolution for 
the scattered particle. The cross section will be a function of the incident 
energy, the scattered angle, and the resolution AE.  Because of the zero 
rest mass of the photon, no matter how small AE, any number of low- 
energy photons could be produced in the process. The low-frequency 
divergence of the bremsstrahlung cross section is a signal that as AE + 0, 
the 'elastic' cross section goes to zero. The meaning of 'elastic' is charged 
particle energy loss less than A E .  

The mathematical working out of the problem6 makes use of the fact 
that the total cross section for a finite resolution, including all radiation, 
is finite. Thus, 

should be finite. But du,ldw, as we have seen, goes like l l w ,  so 1. (du, ldw)dw diverges at w = 0. Therefore, uClastic must have a canceling 
divergence: 

where CT. is the lowest-order calculation (in y2 /hc )  and uo f ( w )  -+ da, ldw 
as w -+ 0. This has the embarrassing problem of producing a negative 
elastic cross section. The remedy is found in quantum electrodynamics, 
where it is shown that an exact calculation would replace 

1 - f ( w )  dw by exp( - If(@) d w )  = 0 ,  I 
since the integral is positive and divergent. This is the way the elastic cross 
section is made to vanish. The measured cross section with a resolution AE 
will be, in lowest order, 

?his paragraph is impressionistic and must be read with that in mind. The formulas 
given are not mathematics. However, the final result is correct and important for experiments 
with charged particles. 
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hE 

or 

which depends logarithmically on A E ,  but is always finite. The exact 
formula for small A E  will be 

The appearance in (4.8.15) of q2/hc - 1/137 keeps the correction from 
being large except for very small AE’s .  

4.9. LIENARD-WIECHERT FIELDS 

We now use (4.7.10-4.7.12) for A and c$ to calculate the E and B fields 
of a charged particle moving with arbitrary velocity v (fvl  < l).’ To do 
so, we must be able to calculate space and time derivatives of tR. First, 
a t R / d t .  Since t R  = t - ( x  - Y ( f R )  1 ,  

d t R  = 1 + ? * v -  
at at 

’From now on we use x to designate the field point, y the particle coordinate, and r 
to designate x - y(t,); thus, irl = Ix - y ( k ) l ,  ̂ r = (x - y(f,))/r, etc. The velocity and acceler- 
ation of the radiating particle are always taken at the retarded time. In addition, we choose 
units in which c = I. This saves a lot of writing and prevents a lot of trivial errors. The final 
answer to any problem can always be expressed in conventional units by dimensional analysis. 
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so that 

where all symbols stand for the retarded values. Next, VtR = -f + 3 .  v V ~ R ,  

so 

and 

We can now proceed to E and B. From (4.7.10) and (4.7.11), 

where a is dv(tR)/df,<. Thus, 

dA E = -v4 - - 
at 

(4.9.2) 

(4.9.3) 

(4.9.4) 

(4.9.5) 

which. with 

(4.9.6) as h _ -  - - r . v + v ’ - r . a ,  
a t R  

gives 

(4.9.7) E 
4 

s3 - = (r - rv)( 1 - LJ’) + r x [(r - rv) x a].  

Notice that for large r the first contribution goes like l / r2;  the second goes 
like l /r  and is transverse. 

Turning to the magnetic field, we obtain 
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with 

and 

B A 

4 4 
_ _  
- v x - = v x (!y) I (4.9.8) 

(4.9.9) 

as 

a t R  

vs = F - v + - V t ,  

we find, after some algebra, 

B = ? X E .  (4.9.10) 

An aid to memory in (4.9.7) is to define a “virtual present radius,” 
ru = r - vr, that appears twice in (4.9.7). Thus, 

s 3E 
- = r u ( l  - u2) + r x (r, x a) 
4 

(4.9.11) 

and B is still ? X E. 
We call r,, the virtual present radius because it is the value r would 

have at time t if the radiating particle kept on the course it was following 
at time tR for the time t - tR = r .  This should be clear from Figure 4.2. 

The radiation fields are thus given by 

E, = - q r x [r, x a] (4.9.12) 
s3 

x p y  v ( t  - tR) = v r  

Figure 4.2. 
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Figure 4.3. 

and 

B , = ? x E , .  (4.9.13) 

Of course, E, and B, are transverse to i? and orthogonal to each other. 
For small velocities, (4.9.12) and (4.9.13) reduce to our previous 

results for electric dipole radiation, (4.4.6-4.4.8). 
For u - 1,  one sees that the factor 1/(1 - v . P)3 peaks the radiation 

sharply in the direction of v,  even though the amplitude vanishes quite 
close to I3 = 0. It follows from (4.9.12) that E, and B, vanish whenever a 
and r, are parallel. That this always happens for two values of i? can be 
seen geometrically, as shown in Figure 4.3. 

The two segments of the dotted line give two positions of i? such that 
r, is parallel to a and, hence, for which E and B vanish. There is no other 
direction in which E vanishes. Note that as u + 1, the intersections P I ,  P2 
and the vectors PI and move to the direction of v.  

The fact that E vanishes near I3 = 0 does not prevent the radiation 
from peaking forward (as we have already shown in our discussion of 
bremsstrahlung in Section 4.8.) We will discuss this for the simple case of 
a parallel to v ,  so that 

9 (4.9.14) E = - r  x (r x a), 
s3 

very much like the low u electric dipole radiation, but with the factor 
( I  - u cos 0)’ in the denominator. 

The intensity of radiation crossing the distant sphere is 
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-- 1 A 2 6 . Z  - r 2 8 . P = - a  - r  sin e d W  
dt d R  45r s6 

(4.9.15) 

which vanishes exactly for 0 = 0 and T, but whose angular dependence 
for small 0 and u - 1 is 

(4.9.16) 

producing a sharp maximum at O2 = 2(1 - u ) / 5 .  
The calculation of the total radiated energy is elementary, but com- 

plicated. The case of a parallel to v (4.9.15), however, is quite simple. 
We choose to calculate the rate of radiation by the particle, that is, 

dW/d tR  d o ,  rather than the rate of radiation through the distant sphere, 
d W l d t d R .  These two rates are different, since atR/& = r/s .  Of course, 
integrated over time, they are equal, since 

(4.9.17) 

However, the rate of energy loss by the particle in its trajectory is generally 
the more interesting question. We calculate, for a parallel to v, 

2 a2q2 - _  - 
3 (1 - u2)3 

(4.9.18) 

(4.9.19) 

It is easy to see from (4.9.12) that the parallel and perpendicular 
components of a do not interfere in the total energy radiation rate after 
integration over the azimuthal angle cp. The total radiation rate from the 
perpendicular component of a is not so simple an integral as (4.9.18). We 
give the result: 

(4.9.20) 

We shall see later (see Problem 6.3) that (4.9.19) and (4.9.20) are 
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simple consequences of the relativistic transformation properties of accel- 
eration. 

We consider qualitatively one more topic in this section: radiation by 
a fast particle in a circular orbit, as in a cyclotron. Strictly, the spectrum 
is a line spectrum at the fundamental cyclotron frequency wo plus over- 
tones nuo. Obviously, very high overtones will dominate, since the pulse 
of forward radiation sweeps rapidly by the observer. We reason as follows: 
As the radiation sweeps by the observer, it has an angular width [as we 
have seen in (4.9.16)] of order A 0  - \G, It sweeps by in time 

A e  
At - - 

d o ’  
dt 
- 

(4.9.21) 

However, it is not d N d t  but dO/dt, that is controlled at the accelerator. 
Since d$/d t ,  = w,,, 

he V l - u  A t = - = -  - 
a t ,  wo 

at 

(1 - ucos e) ,  
W) - 

and since 13 - 1, the observed frequency will be predominantly in the 
range 

(4.9.22) 

4.10. CERENKOV RADIATION 

A charged particle moving at constant velocity u in a medium in which 
cM, the phase velocity of light, is smaller than u radiates energy. 

That something peculiar happens under these circumstances can be 
seen from the LiCnard- Wiechart potentials, where the denominator 
1 - r^ * v/cn, is zero at  an angle cos 0, = cn,/u < 1, and the corresponding 
potentials become infinite. Of course, the singularity is not really there; 
it appears as a consequence of assuming a dielectric constant that is 
independent of frequency, so that there is no high-frequency cut-off. In 
practice, as w + so, the dielectric constant E + 1 and cM -+ c > u ,  leaving 
the total radiation finite. This makes it clear that we must consider fre- 
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quency-dependent dielectric constants ~ ( w ) .  We take p,  the magnetic 
permeability, equal to 1. 

We consider a given frequency w .  Maxwell’s equations for the wth 
components are’ 

j (4.10.1) V X B = - i w -  + 4 7 ~  -, D = EE 
D 
C C 

and 

iw V X E = - B  
C 

which for w # 0 impose the constraint equations 

and 

(4.10.2) 

(4.10.3) 

(4.10.4) 

We introduce the potentials as usual: 

B = Q x A  (4.10.5) 

and 

(4.10.6) iwA E = - - - V +  
C 

that, with (4.10.1) and (4.10.3), yield, for spatially constant E ,  

and 

V ’ ~ + - - E + =  w2 

C 2  

‘The Lorentz gauge here is evidently achieved by setting the terms in 
parentheses in (4.10.7) and (4.10.8) equal to  zero. 

8For obvious reasons, we reinstate c in our equations. 
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The charge and current densities are given by 

r 

p,,,(r) = q j dtei"'S(z - u r )  62(p) (4.10.9) 

- x  

and 

where p = Eyy + Gxx and q is the charge of the (point) particle. We have 
deliberately omitted the conventional factors 1/.\/2TTf from (4.10.9) and 
(4.10.10) to save writing. They are reinserted in (4.10.34). Please note 
that p (the charge density) and p (the radius in the x, y-plane) are totally 
disconnected entities. (We drop the o subscript from now on.) 

Thus, 

p = - exp - s2(p) 
U tZ) 

and 

The vector and scalar potentials satisfy the equations 

and 

with 

The solution of the equation 

(V2 + k 2 ) 4  = - 4 r p  

(4.10.11) 

(4.10.12) 

(4.10.13) 

(4.10.14) 

(4.10.15) 

(4.10.16) 



4.10. Cerenkov Radiation 173 

corresponding to  outgoing waves we have already seen by Fourier transfor- 
mation of the retarded Green‘s function. It is 

(4.10.17) 

Solving (4.10.13) and (4.10.14) via (4.10.17), we find 

i k ( r  - r’( 

(4.10.18) A = g $  I ~ 6’(p’) exp(*) dr’ 
c Ir - r’I U 

and 

iwz’ 
(4.10.19) 

We carry out the trivial p‘ integral and change variables to z‘ - z = 
pu. There results 

and 

where 

+ = l e x p ( y )  U E  I 

(4.10.20) 

(4.10.21) 

(1+u2) +- -u  

(1 + u’)‘/2 

U 
(4.10.22) 

--r 

Since we are looking for radiation, we go to large p and approximate 
I by the method of stationary phase. That is, we look for the value of u,  
uo, for which the phase of the exponential is stationary. If there is no such 
point, then the integral goes like l l p  for large p ,  whereas with the cylindri- 
cal geometry, fields must go like llp”’ to radiate. The stationary point is 
given by 

(4.10.23) 
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I’l uol 

Figure 4.4. 

or 

Thus, to have a stationary point, we must have u > CM and 

(4.10.24) 

(4.10.25) 

Evidently, u g  corresponds to the Cerenkov cone. Recall that 
z ( ,  - z = puO, where zh is the point from which radiation emerges to arrive 
at p ,  z as shown in Figure 4.4. 

Since 

1 
4) 

tan 8, = - -, 

as expected. 

integral 
We expand the phase about uo. Setting u = uo + s, we find for the 

(4.10.26) 

In the form (4.10.26), it is clear that only values of s of order of or less 
than l/G make significant contributions to I .  Hence, we can drop the 
extra terms in the denominator and the ps3 terms in the exponent; these 
give corrections of order 1 / 6 .  The final answer is then 
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Idsexp(i-- kps2 (u' - c;,)~" 
U 2 u 3  

(4.10.27) 
or 

which is accurate to order l / G .  
The final expressions for the potentials are 

(4.10.29) 
C V 

and 

with 

2 112 
(b =4exp ( i -  y )  exp ( ikp (v2-cMM) )lo (4.10.30) 

UE u 

1'" (k", ( u 2  - c k y  
U I" = (1 + i )  - 

The fields are given in the p + w limit by 

and 

w 

C 
E = i - A  - Vq5 

or 

(4.10.31) 

(4.10.32) 

ioq 
-- - e^,(u2 - c Z )  Zoei"', (4.10.33) c v  
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where 
2 112 w z  (u’-chf)  $ = - + k p  

U U 

The Poynting vector, integrated over time, is with our normalization 
of Fourier components’ 

dw B=- E * X B - - .  
4lT ‘:I 2 T  

(4.10.34) 

The energy flux per unit length through a cylinder at radius p is then 
independent of p and equal to 

a 

(4.10.35) 

where the integration over o is limited to values 0, w for which 
c a / u 2  < 1. The absolute value I w I comes about because the expression 
for IIoIz has a term l l k  that must be interpreted as I k I. 

Integrating over positive frequencies only, we may drop the factor 
of 112. The number of photons radiated per unit frequency and length is 
obtained by dividing by h I w I: 

= 0 ,  (4.10.36) 

CHAPTER 4 PROBLEMS 

4.1. (a) Show that a function + that satisfies V2$ = 0 in a region can 

(b) From this, show that a finite function that satisfies V2$ = 0 
have no maximum or minimum in the region. 

everywhere and approaches zero as r + co is zero everywhere. 

9We carry out the calculation inside a dielectric cylinder. Since the tangential compo- 
nents of E and B are continuous at the dielectric boundary, the E x B flux through any 
cylinder correctly calculates the radiated energy. Remember that p = 1. 
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(c) From this, show that a vector field whose divergence and curl 
both vanish, and which approaches zero at m, is zero. 

(d) From this, show that a vector field that vanishes sufficiently 
rapidly and smoothly as r +  00 can be written as the sum of a 
longitudinal field (with zero curl) and a transverse field with 
zero divergence: V = Vc + V,. 

(e)  For such a function, give a general integral formula for V 1  and 
V, as functions of V * V and V x V, and show the limiting be- 
havior of V 1  and V, as r-+ m. Give sufficient conditions on the 
large r behavior for your results to hold. 

4.2. Verify explicitly that the E and B fields calculated from A and cf~ in 
the transverse gauge are equal (for all r) to those obtained from A 
and 4 in the Lorentz gauge. 

4,3. Write an integral formula, analogous to (4.3.10-4.3.13) for the l l r 2  
correction to A and 4 at large r .  If the characteristic radius of the 
charge and current distribution is b,  estimate the order of magnitude 
of the correction compared to the l l r  term. 

4.4. A unit point charge oscillates in one dimension with amplitude b 
and frequency wo: 

x = b c o s w o t .  

The charge density is a periodic function of time: 

P(X, t )  = 6 ( x  - b cos ~ o t ) .  

Expand p ( x ,  t )  in a Fourier series: 

p ( x ,  t )  = 2 arr einqI1 

and find a general formula for a,. Check your algebra by calculating 
the monopole, dipole, and quadrapole amplitudes: 

n=-X 

h 

M = I dx 6(x - b cos wot)  = 1, 
- b  
b 

D = x 6 ( x  - h cos wet) = b cos wet, I 
-h  

h 

Q = J x2 6 ( x  - b cos wot)  = bZ cos2 wot. 
- h 

4.5. A point charge q oscillates along the z-axis: I = b cos ad, y = 0, 
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x = 0. Consider radiation in the direction 8,  cp (the usual spherical 
coordinates). Assuming woblc G 1, give the angular distribution of 
the radiated power: 

(a) At frequency wo. 

(b) At frequency 2w0.  

4.6. A small magnetic dipole rotates in the x-y plane following the 
formula 

M = ̂ ex cos w0t + f,, sin wot.  

Give the electric field radiated in the direction k, or at angle 8, cp. 

(a) Give the polarization state of the electric field for k,  = k, = 0, 

(b) Do the same for k ,  = 0, k, ,  k,  # 0. 
(c) Determine the angular distribution of power radiated. 

k ,  f 0.  

4.7. Calculate the retarded potentials of a point charge moving with 
uniform velocity v and show that the result is the same as obtained 
in (4.6.6) and (4.6.7). 

4.8. The rate of energy radiation by a slowly moving charged particle is 
given by 

This energy must show up as a loss of energy by the radiating 
particle. Show that a radiation reaction force 

f =--- 2 q2 d2v 
3 c3 dt2 

inserted in the equation of motion of a confined particle will account 
on the average for energy loss by the particle, as long as the velocity 
and acceleration of the particle are bounded. Show however that f r  
inserted into the free particle equation of motion has unacceptable 
solutions. These are discussed in Section 5.9. 

4.9. Show directly that 

and hence that 
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4.10. Consider the electromagnetic field in a vacuum inside of a perfectly 
conducting cavity or wave guide. With the vector potential in the 
transverse gauge, find the boundary conditions on the vector poten- 
tial at the conducting wall. From this, find the normal modes of a 
rectangular perfectly conducting cavity with sides a,  b,  and c. 

4.11. A charge distribution oscillates according to the formula 

p(r, t )  = - - - F(r )  cos w t ,  
(3: 9 

where F ( r )  -+ 0 rapidly as r +  m. Give the angular distribution of 
the emitted radiation to lowest nonvanishing order in wblc, where 
6 is the length scale of the charge distribution. 

4.12. A point electron of charge e moves in a given path r,(t) = 
&,a cos wt + 6,6 sin wt(6,,  ey are orthogonal unit vectors). 

(a) Write formulas for the charge and current densities p(r', t )  and 

(b) Write an exact integral formula for j,(r'), where 
j(r', t ) .  

x 

j(r', t )  = C j,(r') e - l n w t .  
, I = - "  

(c) Each current j ,  now radiates a frequency w, = n w ,  with a corres- 
ponding wave number k, = n(w/c)r^. The relevant amplitude jk,, 
will be 

Evaluate the r' integral to obtain jk,, expressed as a time integral 
over one period of the motion. 
(d) Do the final t integral for n = 0, 1, and 2, in each case to lowest 

nonvanishing order in ka and kb, where k = w l c .  
From the  n = 1 electric dipole vector potential, 

er(kr-  w r )  

A, = ___ j k ,  9 cr 

calculate: 
(e) The electric field (in terms of w ,  a ,  6, k,  etc.). 
(0 The same for the magnetic field. 
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(g) The Poynting vector averaged over a cycle. 
(h) The polarization of the radiated light is normnally elliptic. Are 

there one or more directions of observation k for which it is 
plane-polarized? If so, what are they? For which is it circularly 
polarized? If so, what are they? 

4.13. Two electrons, each with charge e ,  move oppositely along the x-axis 
with simple harmonic motion x I  = a cos w f ,  x2 = -a  cos w t .  Suppose 
o d c 4  1. Calculate to lowest order in walc the radiated electric 
and magnetic fields and the angular distribution of radiated power. 
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CHAPTER 5 

Scattering 

Almost all physics experiments can be described as scattering processes: 
We start with initial objects (fields or particles) approaching each other; 
we end with final objects separating. Among the processes we took up in 
Chapter 4 several can be thus described: For example, in bremsstrahlung, 
an initial charged particle approaches a target; a final charged particle 
emerges, accompanied by a radiated electromagnetic field. In Cerenkov 
radiation the target is the dielectric. In most of the other topics, the 
connection to scattering is less obvious, but it is still present. Therefore, 
scattering is important in physics, and it makes sense to treat it as a 
separate topic. This is true although no new principles are involved. 
Indeed, the reader may omit this entire chapter without experiencing any 
consequent difficulty in understanding the rest of the text. 

The author’s recommendation to the interested, but not devoted, 
reader is to compromise by omitting Sections 10-12. In the first six 
sections, we study the general theory of scattering, illustrated by the case 
of a scalar field (or in quantum theory a spin zero particle). Included is a 
discussion of partial wave amplitudes that decouple when the system 
being discussed has spherical symmetry. Sections 7-9 concern the general 
formulation of scattering of the electromagnetic field, with two simple 
applications to weak field scattering, by a harmonic oscillator and by a 
dielectric with E - 1 G 1. The remaining three sections, Sections 10-12, 
address the vector partial wave expansion and apply it to scattering by a 
dielectric sphere. This method is very important for numerical work in 
many cases where approximate methods are invalid. However, the discus- 
sion given here involves much more detailed algebra than the rest of the 
text and can be omitted easily in a first reading. 

5.1. SCALAR FIELD 

The electromagnetic field is most conveniently described by a vector PO- 
tential A and the accompanying scalar potential +. It is called a vector 
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field. We consider here first a theory that depends on a single scalar 
potential $(x, t ) ,  which we call a scalar field. Although there is no such 
field known in nature, the theory provides a simple model in which the 
mathematics and physics are more transparent than for the more realistic 
vector and tensor fields. Nevertheless, many of the essential physics ele- 
ments that characterize the vector and tensor fields are present. It is only a 
minor complication to deal with a massive scalar field (quantum language; 
classically, we would say a field with a finite Compton wavelength), so we 
will do so. 

The wave equation for the field away from sources and scatterers 
(which we will always assume to be spatially confined) is taken to be 

(5.1.1) 

where U p  is the Compton wavelength of the field. As before, c = 1. The 
form (5.1.1) is, of course, suggested by the corresponding equation for 
the components of the electromagnetic potentials in the Lorentz gauge. 
We include the term pz since that permits the particles associated with 
the quantum field to be massive, with mass p o  = hp/c .  We will also see 
in Chapter 7 that (5.1.1) is the simplest nontrivial Lorentz invariant 
equation that we can write. 

In the presence of sources and scatterers, the right-hand side of (5.1.1) 
will be different from zero. However, in a scattering event, both the initial 
and final field configurations are far away from the sources, so that (5.1.1) 
is sufficient for our general discussion. 

The elementary, fixed wave number and fixed frequency solutions of 
(5.1.1) are 

(5.1.2) 

where o = v; conventionally, we call the minus sign in e-'"' 
positive frequency. Of course, if the field $ is real, $ must consist in a 
superposition of at least two of the elementary solutions, & and 4;. 

A conserved energy functional of the scalar field $, and a correspond- 
ing locally conserved energy density and energy flux, are permitted by 
(5.1.1).' The energy density is given in arbitrary units by 

(5.1.3) 

'We shall learn general rules for constructing such conserved quantities in Chapter 7. 
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and the energy flux (the equivalent of the Poynting vector) by 

u and P satisfy the conservation equation 

au - + v . 9 = 0  
at 

leading to a conserved energy in a volume V 

W v = l d r u  
V 

(5.1.4) 

(5.1.5) 

(5.1.6) 

provided there are no sources of I(, inside the volume and the flux through 
the boundary surfaces is zero: 

P *  dS = 0. I S 
(5.1.7) 

A scattering problem must specify an incident wave packet heading 
toward the target T, as shown in Figure 5.1. The vertical lines are meant 
to represent maxima of the amplitude within the envelope; thus, the 
distance between the lines is roughly ho, where ho = 27r/ko is the mean 
wavelength of the incident field. The incident field I,!I~(X, t )  is taken to be 

Here, ko is the central wave number of the packet; we would refer to the 
scattering of this packet as the scattering at wave number ko, even though 
the packet involves a superposition of a continuum of wave numbers. For 
this terminology to make sense, the packet spread in wave numbers Ak 

Figure 5.1 
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must be small compared to the characteristic wave number of the source; 
that is, Ax - l/Ak must be much larger than the source size, or force 
range. Note that this creates special problems for Coulomb scattering. 

We choose a(k - ko) for simplicity to be a real, smooth function, 
symmetric in k - ko+ -(k - ko), with width Ak as stated above. Then at 
time t = to and with q = k - ko, 

(x - xg) + C.C. (5.1.9) ikg.(x-xo) h 

where 

h(x - xo) = dq a(q) eiq.(x - ' O )  (5.1.10) I 
where h is real and symmetric under the reflection of x - xo. The mean 
value of xi, defined by 

will be xoi . The mean value of k j  , defined by 

will be koi .  The root mean square spread in x i  will be 

The root mean square spread in k i  will be 
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112 

dk(ki  - koj)*la(k - ko)l2 
Ak,  = [I I ] . (Nosumoveri) .  

dk la (k  - ko)12 

Of course A x i  and Ak, have the uncertainty property 

To study the time dependence of (5.1.8), we expand w in powers of 

where the group velocity 

. .  (5.1.11) 

(5.1.12) 

(5.1.13) 

The last term in the exponent can be neglected if 

where L is the distance we may allow the packet to travel between observa- 
tions. We recall that Ax s l /Ak %- size of the target; hence, since 
Ak/ko 4 1, we can always choose L so that the initial (and final) distances 
to the target are much larger than the target size. Neglecting the last term 
in the exponent, we find for (5.1.12) 
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Thus, the packet envelope moves rigidly, without changing shape. 

the flux B over time: 
To find the energy incident per unit area, d W / d A ,  we must integrate 

(5.1.16) 

We note that since kn P llhx, the gradient in (5.1.16) acting on h is 
negligible; similarly, since wo = ko/ug * Ak/ug = (l/Ax)ug - ( l /h)ah/dt ,  
the time derivative in (5.1.16) acting on h is negligible. Finally, since the 
envelope function h varies negligibly in a period l/wo, the integral in 
(5.1.16) averages the trigonometric function over time. There remains 

5 

dW 
d A  

(5.1.17) -- - 2 w k 0  I dt[h(x - xo - v,(t - to))I2 
47T 

--x 

If we take the target to be located at x = 0, xo and vg must be parallel; 
otherwise, the packet will miss the target. Call that direction z. Then 

h(x - xn - vg(t - t o ) )  = h ( p ,  z - z o  - u,(t - t o ) )  

and 

dW - - *I d t [h (p ,  z - z o  - u,(t - to))I2 
d A  27r 

(5.1.18) 

where 

p = GXX +^eyy .  

With p located at the target transverse coordinate, that is, p = 0, we have 

(5.1.19) 

energy incident on the target. 
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A shorthand for obtaining the result (5.1.19) is to consider only the 
positive frequency part of t,b0, $o+, and then calculate the integrated flux 
as 

m 

-- dW - - 2 R e l  I 
dA 4T 

-_ 

(5.1.20) 

We shall use that procedure from now on. Thus, we consider in the 
following only the positive frequency part of $: 

After the scattering is over, there will be an outgoing spherical wave 
cc/sc and the forward-going residue of the incoming field q0+. Figure 5.2 
illustrates the configuration. 

The wave field far from the source after the collision is given by 
the retarded Green's function, AR(x - x', t - t ' ) ,  acting on the source, 

t 

Figure 5.2 
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whatever that source may be. A R  is the retarded solution of the inhomo- 
geneous equation 

which is shown in the next section to be 

where 

erkr 

A , ( r )  = - 
r 

(5.1.22) 

(5.1.23) 

with k2 = w 2  - p 2 ,  and klw > 0 for IwI > p ,  k = i.m for I w (  < p. 

5.2. GREEN'S FUNCTION FOR MASSIVE SCALAR 
FIELD 

The equation to be satisfied is (5.1.21): 

As in Section 4.2, we proceed by carrying out a four-dimensional 
Fourier transform: 

and 

(5.2.2) 



5.2. Green's Function for Massive Scalar Field 189 

There results 

47r 
(w' - p2 - k2) 

iR(k,  W )  = - (2.2.3) 

and 
e i ( k ~ r - o r )  

AR(r, t )  = lim = -47r ~ (5.2.4) 
€ 4 0  + 1 :i; (w  + i E ) *  - pz - k2 

where the E + O +  limit ensures a retarded solution. 
Unfortunately, the integral in (5.2.4) leads to a more complicated 

function than the zero mass case. However, the w Fourier transform is 
very simple. Thus, instead of integrating over w ,  we integrate over k: 

k d k sin kr 
( w  + ie)* - p' - k2 

-r 0 
z a 

(5.2.5) 
1 k d k eikr 

= lim - 1 doe-'"' 
C A o  2 7r2 ri k' - [ ( w  + i~)' - p'] 

We proceed by carrying out the k integration. The integrand has poles at 

k = v ( w  + i E ) 2  - p2 + iE 'w 

and at k = -(- + i E ' W ) ,  where the infinitesimal E '  has the same 
sign as E .  Since we intend to close the contour above, only oles in the 
upper half-plane will contribute. These are, for w > p ,  k = h; for 
w < - p ,  k = --; and for - p  < w < p ,  k = i w .  The end 
result is 

(5.2.6) 

where k = (w' - p2)"' for w > p ,  k = - ( w 2  - p2)1'2 for w < -p ,  and 
k = i( pz - w2)' I2  for - p  < w < p .  The function k so defined is analytic 
in the entire plane except for branch points at w = *+E.L. The cut is taken 
between the branch points; the definition of k informs us that the w 
integral goes abooe the cut. 

We list a few properties of (5.2.6). First note that for p = 0, AR = 
(Ur)  8(t - r ) ,  as it must. 
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Second, for r > t ,  including all t < 0, the integral vanishes. This is 

Finally, we note that for t > r ,  AR is nonzero and not particularly 

We are now in a position to discuss the scattering as a radiation of a 

shown by closing the o contour in the upper half-plane. 

simple. 

scalar field by a source S(x, t ) .  Equation (S.l.1) becomes 

(5.2.7) 

where S may be a given source, in which case we could study the radiation 
from the source; or if we are considering scattering of the field by a 
potential, the source S would be a linear function of the field itself, and 
(5.2.7) would become a Schrodinger-like equation for the wave function 
(field amplitude). 

The retarded propagation problem posed by (5.2.7) is solved by inte- 
gration: 

$(x, t )  = $o(x, t )  + dt' dx'  AR(x - x, t - t ' )  S(x', t ' ) ,  (5.2.8) I 
where Go satisfies the free equation (5.1.1). In a scattering problem, $o 
would describe the incident wave. 

Suppose now that S(x', t ' )  contains only one frequency, so that 

S(x ' ,  t ' )  = e - i w r ' S ( x ' ) .  

Assigning the same frequency w to $ and $0, we have the result 

$(x, t )  = $(XI e - l w r ,  +0 = $o(x) e-'"', (5.2.9) 

and 
do' e - l W ' ( '  ~ t ' )  + I k ' ( X - X ' l  

$(x) = &(x) + eiw' dt' dx' - ~ ( x l )  e-rw" I 271. I x  - XI1 

or 

(5.2.10) 

At this point, we have made contact with the work on electromagnetic 
radiation in Chapter 4; in that case, there was no incoming field $", and 
the source S ( x , t )  consisted of given charge and current densities. The 
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field at distant x was given by replacing 

e i k l x  - x ' /  e i k r  
-ik%x' by ~ e ,  

Ix - X' I  r 

accurate to order llr. Evidently, the same expansion works for radiation 
of the + field by a given source. In a scattering process, the source is 
affected by the incoming field. 

5.3. FORMULATION OF THE SCATTERING PROBLEM 

In a scattering problem, 40 would specify the incoming field-position, 
velocity, wave number and shape of the packet, as described in Section 
5.1. In a linear system, the source S would have its frequency determined 
by the frequency of q ! ~ ~ .  A Schrodinger-like model, for example, would 
have the wave equation 

(5.3.1) 

where p is the particle mass. For U G p and the frequency E = p + W ,  
W e  p ,  (5.3.1) becomes 

which is the Schrodinger equation. The source S(x) from (5.3.1) is 

(5.3.2) 

(5 .3 .3)  

and (5.2.10) becomes an integral equation for 4. 
The exponential dependence eikr is called an outgoing wave (remem- 

ber that the time-dependent factor 8"' is appended to the wave function 
and that k has the same sign as o; hence, an outgoing wave). 

The standard procedure is to solve the integral equation (5.2.10) for 
an incident plane wave, & = e'k.x. In principle, one would then construct 
a wave packet superposition of the plane waves, as described in Section 
5.1. In practice, as we shall see, the calculated cross section is substantially 
independent of the structure of the wave packet. 
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We proceed as follows: The asymptotic ( r  + m) solution of (5.2.10) is 

(5.3.4) 

The function f(F, k )  is called the elastic scattering amplitude at wave 
number k and angle 3. 

The wave packet superposition is given, as in (5.1.8), by 

We have seen in (5.1.15) that, for times of interest, the wave packet 
moves rigidly without changing shape: 

and that the total energy incident per unit area at the target (p = 0) is 

provided S -+ 0 
here and in the 

1 dr*V+,,= Ih(O,z)lZdz,  (5.1.19) 
41r at  

rapidly enough as r-+ co. We assume that to be the case, 
following. 

The scattered wave packet will be given by the superposition of outgo- 
ing waves: 

We carry out the same expansion about k = ko for Gs, as we did for $o. 
The difference appears in the expansion of k vs. that of k: 

k = V'G = W k -  = V k i  + 2k,. (k - kO) + (k - kJ2 (5.3.7) 

(5.3.8) 

(5.3.9) 
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We neglect the quadratic term in (5.3.9), as we did earlier in (5.1.12). 
Note that the neglected term here is [(Ak)’/ko] r ;  in (5.1.13) it was the 
equivalent expression [(Ak)’/wo](t - to). We also assume that f(?, k) varies 
negligibly over the width of the wave packet. This is consistent with our 
earlier assumption that the coordinate spread in the wave packet be much 
larger than the size of the target. The result for $rSc is 

Note the role of the wave packet function h.  Since ko, xo, and v, = 
{ko/oo  are all in the same z direction, the function h is evaluated at p = 
0, just as in the incident packet. The outgoing integrated energy flux per 
unit area is 

(5.3.11) 
--m 

The cross section d a  for scattering into a solid angle d R  is defined as the 
ratio of the energy scattered into d R  divided by the energy incident per 
unit area on the target. The differential cross-section d d d R  is defined by 
the equation d a  = ( d a / d f l )  dR (note that daldf l  is not a deriva- 
tive!), so that 

Thus, the scattering problem can be stated in two ways: 

1. Solve the integral equation 

(5.3.13) 
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with s a linear function of 4 as in (5.3.3), with s replacing S and 
4 replacing JI; from 4(x) determine s and from s calculate the 
scattering amplitude 

f(?, k )  = e-ikr^'x $(XI) dx' . (5.3.14) 

Or, equivalently, 
2. Solve the differential equation 

( 0 2  - p* + w ' )  +(x) = -4?rS(x) (5.3.15) 

subject to the boundary condition 

from the solution determine the function f, which is the scattering 
amplitude. 

5.4. THE OPTICAL THEOREM 

An important theorem, applied to elastic scattering, relates the imaginary 
part of the forward (0  = 0) scattering amplitude to the total elastic scat- 
tering cross section 

(5.4.1) 

In fact, the theorem is more general. On the right of (5.4.1) in the 
case where there is absorption of energy, there should be the total instead 
of the elastic cross section. That is, the general theorem says 

k 
47r 

Imf(0 = O ) = - L T ~  (5.4.2) 

where f ( O  = 0) is the forward elastic scattering amplitude and cr the total 
cross section. 

In the case of vector (or higher) fields, forward signifies not only zero 
deflection angle 8, but identical polarization to that of the incoming field. 
We will see this explicitly when we discuss scattering of electric and 
magnetic fields. 
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The theorem follows directly from the energy conservation equation 
(5.1.5) 

au V * P + - = O  
at 

or 

I dt 
S V 

If we consider a given frequency 

+ = #+ -I- #- 
with 

*+ = e-'"'+ and #- = e'"'+* 

then the time average over a cycle of (5.4.3) tells us that 

since u is periodic in t with period do. On the other hand, 

io 
47r 9 = - (*+ - @-)V(#+ + *-) 

and the time average 9 is 

iw + 
47r 

- 
gD=- v+* + C.C., 

(5.1.5) 

(5.4.3) 

(5.4.4) 

(54.5) 

(5.4.6) 

so that energy conservation takes the form 

4 " 1 @ . d S =  - i  +*V+.dS+c.c. = O .  (54.7) 
w I 

Equation (5.4.7) is equivalent to the optical theorem. To proceed, we 
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note that in the surface integral above, terms of the form 

1 1 e-Ikrw dw g ( r ,  w), 
--I 

following an integration by parts acquire an extra power of l l r .  Here, w = 
cos 0, and g is assumed to be free of singularities in the physical region, 
-1 5 w 5 1. It follows that, as r --f m, we may write 

(5.4.8) 

and ignore the llr' term. Inserting (5.4.8) into ( 5 . 4 . 7 )  gives, as r + a ,  
accurate to order 1,  

With dS = r2?df l  (we are, of course, integrating over a sphere), (5.4.9) 
becomes, accurate to order l l r 2 ,  

(5 .4 .10)  

The first integral is zero. In the second integral, we integrate by parts: 

2n 1 1 dS1 e- ik 'x f=  1 dcp dw e- Ik r" ' f (w ,  cp )  (5.4.11) 

where w = cos 8 .  
L~~ e - - l k r ~ ~  dw = d v ;  14 = f .  Thus, integrating by parts, we obtain 

and to leading order in l l r  
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1 

e- ik r  &kr 

= - [-f(l, 4 )  - -,f(-1, 4)]. (5.4.12) 
ikr ikr 

Since at I3 = 0 or n- ( w  = 1 or - l), cp dependence must disappear, we have 
for (5.4.11) 

27r I rkr 
dR e-ik'xf= - - (eWik'f(/3 = 0 )  - eikr'f(6 = 7r)) + 6 

Similarly, 

Inserting (5.4.13) and (5.4.14) into (5.4.10), we have 

+ gf*(e = 0 )  27rf(e = 0)  2 ~ e ~ ' ~ ' f ( 1 3  = + - 
i r2  i r2  ir 

27T 
ir 

+ ,f*(6 = 7r) e-2ikr  + Ifl 'dQ + C.C. = 0. (5.4.15) 

The contribution from I3 = 7r is imaginary. This leaves, after we add the 
complex conjugate, 

k 
47r 

Imf(I3 = 0) = - (T, 

as expected, with (T, the elastic cross section, 

(5.4.16) 

(5.4.17) 
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5.5. DIGRESSION ON RADIAL WAVE FUNCTIONS 

We are about to take up the description of scattering in a system possessing 
spherical symmetry. For such a system, the angular dependence of the 
wave functions and scattering amplitudes can be expanded in a series of 
spherical harmonics. The coefficients of the spherical harmonics are called 
partial wave amplitudes. For a wave outside of the region of interaction, 
these partial wave amplitudes involve a specific set of radial functions 
called spherical Bessel functions. Since these functions appear in a large 
class of 

We 
applications, we treat them in a separate section. 
first study the Green’s function 

(5.5.1) 

for r > r’. As r -+ M, we know the leading term is 

eikr 

with k = k?. (5.5.2) -ik.r’ A R ( r - r ’ ) + - e  
r 

We note that for arbitrary r, r ’ ,  but r # r ’ ,  AR satisfies the homogeneous 
wave equation 

(V2 + k2) A R  = 0 (5.5.3) 

as well as 

(V’2 + k2)  AR = 0. 

We expand AR(rr r ‘ ,  w = cos 0) in Legendre polynomials: 

P 

where now from (5.5.3) 

(5.5.4) 

(5.5.5) 

(5 .5 .6 )  



5.5. Digression on Radial Wave Functions 199 

and from (5 .5 .4)  

but where 

as r .+ 03, and 

1 

(5.5.7) 

(5.5.8) 

(5.5.9) 

- 1  

The solution of (5.5.6) subject to the boundary condition that it 
approach ( l / i  ‘+‘)(eikr/kr) for large kr is called he(kr) (spherical Bessel 
function of the third kind). Hence, 

The dw integral, for large r ‘ ,  can be estimated by integrating by parts: 
dw = do, Pe(W)  = U, SO 

e - i r ’ k w  

dw P,(w) e-ir’kw = 

- - w e s i n ( k r ’  - $) + (5).  
kr’ 

The solution of (5.5.7) that approaches {sin[kr‘ - ( t ? d 2 ) ] / k r ’ }  as kr’ + 03 

is called j t ( k r ’ )  (spherical Bessel function of the first kind). Thus, 

g, = i(2e + 1) kh&(kr) j , ( k r ’ )  (5.5.11) 

and, for r > r ’ ,  

eiklr -r ‘ [  

-- - ik (24 + 1 )  P ~ ( W )  he(kr)j ,(kr’)  (5.5.12) 
Ir - r‘l Y 

(5.5.13) = 4x ik  C Yc.m(R) Y;,m(R’) h&(kr ) j e (kr ’ ) .  
f‘,m 
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Also, by taking the limit r - + m  on both sides of (5.5.12), we find 

The functions he and j p  are interesting and quite easy to study using 
methods similar to the standard quantum mechanical treatment of the 
harmonic oscillator and angular momentum. Recall the definitions: 

(5.5.15) d 2  2 d + 4(e + 1) ~- 1 dr2 r d r  r 2  

and, as kr  + m ,  

(5.5.16) 

The more convenient functions are 

Note that this notation (ut and wI') is not standard. 
u ( ( x )  and wc(x )  satisfy the equation 

(5.5.18) 

the boundary condition ~ ~ ( 0 )  = 0 ,  wc(x -+ a) - e r r ,  and the normalization 
determined by 

as x -+ 00. Here, x = kr.  
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We solve (5.5.18) recursively by factoring. Call the operator 
-(d2/dx2) + “(4  + l)/x’] = He,  

(5.5.19) 
d t  d t ?  A : = - -  + -  and A ; = - + - .  
dx x d r x  

Then 

(5.5.20) 

(5.5.21) 

so that, if Hc$t. = $(, thus satisfying (5.5.18), we have 

AtAT$c= 41 
and 

APA:A;$p=A;$c 

and hence 

Ht- I (A 7 $t) = ( A  C $ 6 )  (5.5.22) 

so that AT is a lowering operator, that is, it takes $[ into I+!I~-~. 

Similarly, AF+lAl+l = H t ,  so that 

and 

or 

so that AT+l is a raising operator, that is, it takes J/? into 

for uc and w f ,  we see that 
As x += w, A +  + -d/dx, A -  -+ d/dx; acting on the asymptotic forms 

elx d elx 

dx i c+ ’  
A + w c - ,  - -- = __ p + 2 ’  
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and 

so that the raising and lowering operators maintain the correct asymptotic 
limits and therefore the correct normalizations for the functions wp and 
Ue. 

We now simply construct the functions starting from the solutions for 
e = 0: 

and 

uo(x) = sin x .  

Thus, 

(5.5.23) 

(5.5.24) 

sin x 
UI(X) = A: u ~ ( x )  = (-2 + 5 )  sinx = -cosx + --. 

X 

We note general properties of wE: w1 = dX/i  '*' (1 t ascending powers 
of U i x ,  the last being l/xe). uc. = sin x and cos x times ascending powers 
of l lx ,  down to U x ' ,  with up odd or even in x according to 4 even or odd, 
and going like x'+' as x + 0. This last result can be proved by induction, 
using AT+, to raise e ;  however, it is also evident from (5.5.9) using the 
orthogonality properties of the Legendre polynomials. 

The coefficient of x E t '  for small x in ut can be calculated by induction: 

so that if +c + Cpx"+' as x + 0 ,  + Cc(2t + 1)x' as x +  0 so 
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CL-1/(2e + 1) = C, that, together with C, = 1, yields 

1 c, = 
( 2 t  + l)!! 

and 
..,+ 1 

(5 .5.25)  

Here, ( 2 t  + l)!! = 1 ~ 3 . 5 .  . . (2t  + 1). 

the raising operator A:+1 on we. We find, with W e  

We can also calculate the coefficient of l / xe  for small x in W e  by using 
Be e""/xC as x + 0, 

or 

Thus, 

and 

B,+, = (2e + 1) B ~ .  

(24 - l)!! . . . ,  B e =  1 3 
B1= Bo = ; , B2 = ; , 

i 
7 

1 1 

(2e  - I)!! ek 

X P  
as x + O .  - 

W e  
1 

Of course, ( 2 t  - l)!! = 1 for t = 0. 

(5.5.26) 

5.6. PARTIAL WAVES AND PHASE SHIFTS 

Given a source S in the form U$, the resultant Schrodinger type equation 
is generally hard to solve for the scattering amplitude. There are two 
exceptions. The first is valid when the interaction is weak, in which case 
one can apply perturbative methods to the problem. We shall see some 
examples of this in Section 5.8. 

The second requires that the interaction possess spherical symmetry. 
In that case, one can use spherical harmonic expansions to reduce the 
three-dimensional problem to a set of one-dimensional problems-one for 
each t value. We turn to that case now. 
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We have 

S(X, t )  = u* (5.6.1) 

where U is a real,* spherically symmetric linear operator, which becomes 
small rapidly away from the s o ~ r c e . ~  Since U is spherically symmetric, it 
is useful to expand the wave function JI and scattering amplitude f in 
spherical harmonics. That gives, for large r ,  

eikr 3 + erk .x  + -f(?, k) + 0 
r 

or 

(5.6.2) 

(5.6.3) 

where 

f ( ? , k ) = x f T ( 2 t +  l ) P t ( F * i )  (5.6.4) 
l 

defines ft and where the Legendre polynomial expansion of elk'' makes 
use of (5.5.14). 

On the other hand, with 

as r + a, u I  is real and must approach 

(5.6.5) 

(5.6.6) 

thereby defining the phase shift 13~. The en12 is inserted to make 6, = 0 
in the absence of interaction. Each partial wave function can have an 
arbitrary constant coefficient A t  since the wave equation is homogeneous. 

'See Problem 5.2 for a discussion of scattering by it complex potential. 
'For example, U$ = 1 U ( x ,  y)$(y) d y ,  with U a real function of 1x1, IyI and x .  y. 
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That coefficient is determined by the incoming wave and retarded scat- 
tered wave boundary conditions implicit in (5.6.3). We find 

(5.6.7) 

and 

1 
k e  

f(?, k )  = --z ( 2 t  + 1) Pe(cos 0) ei6tsin S e .  (5.6.8) 

The scattering amplitude f satisfies the optical theorem. That is, using 
the result 

41T I P e ( W )  P p , ( W )  dR = - 6 C C ,  
2e + 1 

we have 

477 47r If(?, k)12 dfl  = ( 2 t  + 1) sin2 8, = -Imf(B = 0, k ) .  I k k 

(5.6.9) 

(5.6.10) 

Referring back to (5.6.3), we see that once fC is known, the wave 
function in an interaction free region can be extrapolated back to the 
point where the interaction becomes significant simply by replacing 
elkrlkr by h,(kr) ie+' and [sin(kr - em) /kr ]w  by jc(kr) .  

We may calculate the behavior of S e  for small k ,  assuming a source 
that is strongly confined to the neighborhood of r = 0. The scattering 
amplitude f will in scalar scattering normally depend on cos 8 through the 
dot product k, . k,. Therefore, for small k we can expand f i n  powers of 
k, . kf = k2 cos 0 .  This will lead to a series of the form 

+ alk2 cos 8 + a2k4 C O S ~  e + . I 

= aoPo + alk2P1 + a2k4 - + -Po + . . a .  

(2? ; 1 
Clearly, the coefficient of P ,  is a power series in k ,  starting with k Z f .  Since 

ei'esin Sc 
k 

f f  = 

goes like k2' for small k ,  S f  must go like kZPt'. 
A more general way of looking at the low wave number behavior of 
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the phase shift is to introduce the logarithmic derivative 6 of the wave 
function at a point ro, outside of, but close to, the interaction region. The 
parameter 6 is then matched to the logarithmic derivative of the wave 
function uu that, when kr B e ,  goes over into 

that is, 

uu = uu(kr) cos St + ye(kr) sin Sc (5.6.11) 

for r outside of the interaction region. Here, we have introduced the 
function 

w ; . - w c  
41. = 

2i 
(5.6.12) 

which goes for small x like 

(2e - I)!! 
X t  

cos x 

The logarithmic derivative 6 is obtained by integrating uc out from 
the origin; with a short-range, energy-independent potential, 6 will have 
a finite limit as k + 0, obtained by integrating the equation 

[ - $ + u +  ul. = k2uc (5.6.13) 

to the point ro where the match is to be made. 
The matching equation is [with u ;  = due(kr)/dr,  q> = dq,(kr)/dr] 

u;cosS,+q>sinSL 
u( cos + qr  sin 

5 =  

or 

(5.6.14) 

(5.6.15) 

The small k limit of St  can be calculated from (5.6.15). For 5 approach- 
ing a finite limit as k -+ 0 (which as we shall see is not the case in scattering 
by a dielectric), we find, using the small x expansions of u( and 9(  (5.5.25- 
5.5.26), 
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Equation (5.6.16) is particularly simple for t? = 0 (which is present for 
a scalar field, but not for the electromagnetic field). It becomes, for 
e = 0, 

So + -k(ro - i) (5.6.17) 

(5.6.18) 

It is useful, following a method of Fermi, to parametrize uo(r) for 
k = 0 in the neighborhood of ro: 

uo = b(r + a)  

v b  = b 

and 

1 - Do 

5 vb 
- - - = ro + a 

so that 

s, 
k 
- + U  

(5.6.19) 

(5.6.20) 

(5.6.21) 

a is called the scattering length. The differential cross section at k = 0 is 
Note that -a is the value of r at which the zero energy wave function, 

extrapolated from its value and slope at u = uo, vanishes. 
We can illustrate with three cases, all for 4 = 0. The equation for uo 

is, at k = 0, 

d2uo 
dr2 

-- + uuo = 0 

If U is negative (attractive in quantum mechanics) and small, uo will look 
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( h )  
Figure 5.3. 

like Figure 5.3(0), will vanish at negative values, and a will be positive. 
If U is not weak, as in Figure 5.3(b) ,  it can turn the curve over. This 
corresponds in quantum theory to the existence of a bound state and in 
classical wave theory to the existence of a localized solution of the wave 
equation with w < p .  In this case, the scattering length will be negative. 
The third possibility is U positive (in quantum mechanics a repulsion), as 
in Figure 5.3(c). In that case, the scattering length is again negative. 

- ~~ ~ 

5.7. ELECTROMAGNETIC FIELD SCATTERING 

As with the scalar field, we construct the vector field as a superposition 
of a positive frequency field and its complex conjugate. That is, for the 
incoming field we have 

E" = E: + ET = E: + E:* (5.7.1) 

where 

9 go*. go = 1, k = w (5.7.2) EO, = $0 ei (k .x-wf)  

and 

with 

B" = B: + I%:*, (5.7.3) 

iwB: = ik X E:. (5.7.4) 

The outgoing scattered wave for the E field will be 

etkr  

E,, = -f + o($) 
r 

(5.7.5) 
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and 

hB,, = ik?X E,, + 6' (5.7.6) 

Of course, Eo and f will be transverse. That is, 

k . E" = ;. f = 0 .  

The incoming time-averaged Poynting flux will be 

or 

The time-averaged scattered flux per unit area will be 

1 1 
r 

- gs== - f *  x (GX f ) l  

27T 

1 ;  
277 r2 

- f * . f ,  - _ -  

giving a scattered flux per unit solid angle 

and a differential scattering cross section4 

da - = f * . f  
dR 

(5.7.7) 

(5.7.8) 

(5.7.9) 

(5.7.10) 

(5.7.1 1) 

?he wave packet discussion given earlier for scalar scattering evidently goes through 
equally well for the vector field we are considering now, with the final result being the 
justification of (5 .7 .11) .  
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The polarization of ih,e, scattered wave is described by the vector 
scattering amplitude f (k, r, e ), and is a linear function of Go. The function 
f can be resolved into any complete pair of polarization vectors ^eA , where 
we would normally choose$"* - $"' = 6 A A t .  Thus, 

7 

(5.7.12) 

and SA* * f gives the scattering that would be measured by a detector 
detecting only the polarization state A .  

5.8. THE OPTICAL THEOREM FOR LIGHT 

As in our discussion of the scalar field, we make use of the surface integral 
of the Poynting vector, which satisfies the equation 

(5.8.1) 
S V 

so that for a monochromatic wave, the time average 

E ? x B + . d S = O ,  (5.8.2) 
2P 

S S 

where we will integrate over a distant sphere. For r + m, we know 

(5.8.3) 

and 

Equations (5.8.2), (5.8.3), and (5.8.4) then tell us that 

(5.8.5) 

We proceed as in Section 5.4, noting that 
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1 

1 dwe-jkrWF(w) = - 7 ( e C i k r F ( 1 )  - e""F(-1)) + 0 I ikr 
- 1  

We have, with w = ? -  i ,  

- 2T -@. z0* x fi x f ) l w = l  - ̂r. Zo* x 6 x f)I,=-, eZikr] 

ik 

+ ff a f * . f} = 0 .  (5.8.7) 

Combining terms and noting that ̂ r . ̂k = ? 1 at w = ? 1, we obtain 

or finally, 

(5.8.8) 

(5.8.9) 

where, as before, a,[ is the total elastic cross section, and Go* f is the 
forward, polarization-preserving scattering amplitude. 

5.9. PERTURBATION THEORY OF SCATTERING 

We consider a situation where the source-field coupling is sufficiently weak 
so that we may calculate the charge and current distribution of the source 
induced by the field without taking into account the reaction of the source 
on itself. We illustrate with two examples: scattering by a damped oscil- 
lator and scattering by a dielectric with a dielectric constant near 1. 
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5.9.1. Scattering by a Damped Oscillator and Radiation 
Reaction 

We write the equation of the charged oscillator in a weak electromagnetic 
field: 

mx + Rx + kx = q(E(x, t )  + x x B(x, t ) ) .  (5.9.1) 

Here, R is a damping constant that we will adjust to give overall energy 
conservation via the optical theorem. m and k are, respectively, the mass 
and force constant of the oscillator. 

The displacement x and velocity x in steady-state motion will be 
linear in the field strength; therefore, since the field is weak, we may 
neglect the x and x dependence on the right-hand side of (S.9.1). In this 
linear approximation, the scattering is independent of the strength of the 
field, which we normalize to unity. The incoming field Eo is then 

Eo = ̂eo e-1"' (5.9.2) 

and the magnetic field is 

The incoming average energy flux per unit area is, with Go* . ^eo  = 1, 

(5.9.3) 

The steady-state motion of the oscillator is given (in our linear ap- 
proximation) by 

with 

(5.9.5) 

m 

and w i  = klm 
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The field radiated by the oscillator is then 

and the scattering amplitude f is given by 

(5.9.6) 

(5.9.7) 

The total elastic cross section is 

I -  m l  

(5.9.8) 
- 87r q4w4 1 _--. 

m2 I m 

Before discussing the result (5.9.8), we use the optical theorem to 
determine R(o). From (5.9.7), 

q2w2 UR I m ^ e " . f ( e = ~ ) = -  
m2 I 2 

wg - w 2  - 1 - 
. Rw / *  

I m l  

Since the optical theorem requires 

w 
Im ̂ e o .  f ( e  = 0) = - u,!, 

4lT 

we find 

or 

(5.9.9) 

R = - q  2 2 2  w (5.9.10) 
3 
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so that the damping term in (5.9.1) could be written as R . X  = 
-is”, which is a more usual form for the so-called radiation reaction 
force, f ,  = ~q x. We see (as in Problem 4.8) that inserting the force f ,  
into the equation of motion gives a correct overall energy balance for this 
situation. In general, for confined motion this will be the case. It is clear 
however that in the absence of a confining potential, the force f ,  gives 
nonsensical results. Thus, with the force constant k and the incident field 
Eo set to zero, (5.9.1) would be 

2 z... 

which has the general solution 

(5.9.11) 

(5.9.12) 

with xo, vo, and a. arbitrary and 

-1 

3 m  

Thus, unless a. = 0, the motion explodes exponentially, and the formula 
makes no sense. Note that this problem is not resolved by a harmonic 
binding force. 

We return to (5.9.8) for the cross section. We see that the energy 
denominator 1 / (wz  - w’) has been damped by the imaginary term 
-$ i (w3/m)q2.  Note that the scattering amplitude f at the resonant w = 
wo takes on the imaginary value 

3 GAT 
f w - w , =  - - 

2 w  

independent of q and rn. This is a characteristic of resonant behavior: The 
resonant scattering amplitude is given by the wavelength multiplied by a 
kinematically determined constant (here, :). 

The damping constant determines the width of the resonant curve. 
The cross section as a function of w is 
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with C a constant. For small R ,  the maximum is at w = wo: 

(5.9.13) 

The cross section takes on half this value at 

thus, the full width at half maximum is r = R/m. 

lator are given by the roots of the equation 
On the other hand, the possible decay constants of the isolated oscil- 

or 

giving a time dependence to the oscillation amplitude 

and an energy decay given by ePrf = e -(R’m)r . Thus, the decay constant 
is, in fact, equal to the width of the resonance. 

There is unfortunately a third unwanted root of (5.9.14) produced at  
high w by taking the w 2  dependence of R into account; this root is closely 
related to the unphysical runaway solutions of the free particle equation 
found earlier. Note that this root is in the upper half w plane and, hence, 
produces acausal behavior in the scattering. We evade all these problems 
(without justification) by taking R ( w )  to be a constant R = R ( w ) .  Further- 
more, the energy balance now only works near the resonance. A justifi- 
cation of this procedure cannot be given within the framework of classical 
field theory. The contradiction between energy conservation and causality 
is a genuine difficulty of classical electromagnetic theory describing the 
interaction of electromagnetic fields with point particles. This problem (the 
unwanted root) does not appear in relativistic quantum electrodynamics; 
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however, other new problems do. For further discussion of this problem, 
see Section 7.5. 

We finally note the low-frequency limit of (5.9.7) for the scattering 
amplitude by a free particle, 

and of (5.9.8) for the elastic cross section, 

(5.9.15) 

(5.9.16) 

The expression (5.9.16) is called the Thompson cross section. This result 
was first used by Thompson to measuie the number of electrons in carbon 
by X-ray scattering. 

Note also that the scattering amplitude of a bound electron goes to 
zero for small w like w 2 ,  accounting for the dominance of short wave- 
lengths in the scattering of visible light by air molecules and therefore the 
blue color of the sky. 

Scattering by a Dielectric with a Dielectric Constant Near 1 
Our second example is scattering by a dielectric with permeability p =1 
and a dielectric constant E near 1: 6 - 1 = 47rx 6 1. 

As always, we return to Maxwell for guidance: 

iw 

giving a single equation for E: 

We expand about E = Eo, the incident field, and E =  1: 

(5.9.17) 

V X (V X (Eo + El)) = w2(1 + ( E  - l))(EO + El) 
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where V . Eo = 0 and -V2Eo = u2Eo, so that Eo = GA e'(k'x-w') . There 
foliows 

V X (V X El) = w2[E1 + [ ( E  - 1) Eo]] (5.9.18) 

from which we deduce 

V * El = - V  [ ( E  - 1) Eo] (5.9.19) 

and 

-V2El + V(V . El) = u2[E1 + ( E  - 1) Eo]. (5.9.20) 

Substituting (5.9.19) into (5.9.20) yields 

(-V2-w2) El = u2(6 - 1) Eo + V(V . ( E  - 1) Eo). (5.9.21) 

We solve (5.9.21) with the usual retarded Green's function. As r -+ m. 

(5.9.22) 

or 

yielding a scattering amplitude 

where ~ ( x ' )  is the dielectric susceptibility at the point X I ,  x = ( E  - 1)/4rr. 

5.10. VECTOR MULTIPOLES 

We come next to the partial wave expansion for a vector field. As re- 
marked earlier, the method is essential for a large class of problems. We 
therefore take it up, even though the required algebra is quite complicated 
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(but elementary). The prerequisite groundwork was done in Appendix B 
and in Section 5.5. 

The mathematics is based on a nontrivial operator dyadic identity in 
three dimensions: 

* 1 1 V X L  1 L X V  
1 = v - V + L - I . # + - - -  

V2 L2 i V ~ L ~  i 

* 
where 1 is the unit dyadic and L the quantum mechanical angular momen- 
tum operator: 

Q 
i 

L = r x - .  

A vector field can be expanded as 

V X L  
V = V + , + L @ 2 + - + 3  (5.10.1) 

1 

To see that this is correct, we note that we can always expand 

v = vql + V x Q (5.10.2) 

for some and Q .  Equation (5.10.1) prescribes 

Q = irq2 - iL& - V+4 (5.10.3) 

where (L4 does not affect V. We now show that any vector function Q can 
be expanded in the form (5.10.3). We introdzce spherical coordinates r, 
8, and cp and orthogonal unit vectors 3 ,  8, 4 such that r̂ x 8 = 4, 
8 x 4 = 3, and 4 x 3 = 6.  The gradient operator is 

$ a  (5.10.4) v=^r-+  - - +  ___- 
dr r d o  rsin 8 dcp 

a 8 a  

and 

(5.10.5) 

The expansion in question is then, with Q = ?Qr + 6Q, + GQ, and the Qi 
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arbitrary single-valued functions, 

Qr = i r h  - - a *4 
ar 

(5.10.6) 

and 

(5.10.7) 

(5.10.8) 

Clearly, one must choose J13 and I,!J~ to satisfy (5.10.7) and (5.10.8). 
I,!J~ is then chosen to satisfy (5.10.6). So, our problem is to show that +b3 
and G4 can be found. 

We multiply (5.10.7) and (5.10.8) by sin 8. There results 

- 
a * 4  a*3 

ae acp 
sin 8- - - = -Po (5.10.9) 

(5.10.10) 

where 

- *4 
* 4 = -  

r 

and where the Pi = sin 6 Qi are still arbitrary and single-valued. Since the 
operators sin e(ala8) and a / a q  commute with each other, (5.10.9) and 
(5.10.10) can be solved algebraically: 

- 1 (sin 8% + 5) (5.10.11) 
954 = a .  a a' a0 acp 

sin 8-sin 19- + - 
ae ae a$ 

and 

apol a .  a a2  ( ae acp 
a sin e-Pp, - __ . (5.10.12) 1 

sin 8-sin 8- + - ae ae acp2 

*3 = - 
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We factor out sin’ 8: 

1 1 = -  1 

sin 8-sin 8- + - 
- 

a 
sin 8- + - - a a a2 

ao  ae ap’ sin eae ao sin’ eap2 

so that 

and 

* 3 = 1  -- P,--- 
sln’e acp L Y 1  s i n e a e  a 

(5.10.13) 

(5.10.14) 

where we recognize the form 

as the operator 

L - r  - V 2 + - + - -  2 -  ’( 
ar’ r ar 7. 

Of course, one here obtains I)3 and I)4 as a sum of spherical harmonics. 
Note that the operator 1/L2 = l/e(e + 1) does not become singular since 
the two functions in parentheses in (5.10.13) and (5.10.14) have no t? = 0 
projection, and Po and P, vanish at 8 = 0 and n-. 

We return now to the electric field. We consider first radiation by a 
prescribed current. The radiation equations for E may be obtained directly 
from Maxwell’s equations: 

V x E = i w B ,  V x B = - i w E + 4 ~ j ,  and V.E=4 .rrp  

so 

v x (y) = - i w ~  + 477-j 

and 

V2E + w’E = -47r[iwj - V p ] ,  (5.10.15) 

together with the continuity equation, V . j = imp. 
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We solve directly for the retarded field: 

e i k l x - x ' ]  

E =  dX'- [iwj(x') - V'p(x')], (5.10.16) I Ix - x q  

with the large r form 

[iwj(x') - V'p(x')] + 6 I ikr  
E - dxl e - i k . x '  

r 

We now apply the expansion (5.10.1) to (5.10.16): 

V L  
E = V(1,L + LI//M + 7 x - +E (5.10.18) 

1 w  

where L stands for longitudinal, M for magnetic, and E for electric. The 
normalization factor w is inserted for convenience. 

We solve for the (1,'s by three orthogonal projections. First, 

V2+L = V E. (5.10.19) 

Since V E = 47rp, we can solve (5.10.19) for I,!J~: 

(5.10.20) 

which has inverse power law behavior at  large r and is instantaneously 
related to the charge density p .  Of course, the electric field itself does not 
have such acausal behavior since the factor e ikr  in (5.10.17) guarantees 
proper retardation. This power behavior reflects the use of the potentials 
(1, and must disappear (by cancellation) in a calculation of the field itself. 

We solve for I,!J~ by projecting with L. We note that 

and since V x L = - L  x V - (2V/i) ,  

L . v x L = -L x v = -L x L * v = -iL * v = 0, 
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and 

Thus, 

Lz+kh, = L * E. (5.10.21) 

(5.10.22) 1 
+ M = L Z L - E  

provides an expansion in spherical harmonics for ( L M .  Note again that the 
factor L in L . E precludes any problem with t! = 0. 

so that 
L X V  

Finally, +E is projected with - 
iw 

E. (5.10.23) E or y+kE=-. q J E = - .  V2L2 L X V  L X V . V X L  
w2 iw w LW 

The magnetic field is given by a formula very similar to (5.10.18): 

GM + (' L, +E (5.10.24) 
V x E  V x L  V x L  B = - -  -- 

iw iw iw - w z  

- V X L  V2 
*M + ,L*E -- 

io W 
(5.10.25) 

Outside the charge distribution, 

Note the generalization of the relation (4.5.20) between electric and 
magnetic dipole radiation. We interchange electric and magnetic radiation 
by the transformation +k = I),,,, and +b = - which produces E' = B 
and B' = -E. 

We next calculate the potentials from (5.10.19), (5.10.22), and 
(5.10.23). We already know from (5.10.20) that 

P ( X ' )  
* L , =  - dx'-. I / x - x ' /  

For + k M .  we have from (5.10.22) 

(5.10.20) 

1 
* M = L Z L . E  (5.10.22) 
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(5.10.27) 
eiklr-r’l =-j&‘- w r’ x V’  . j(rf)  

L2 Ir - r’I 
ik /r -r’ 1 

=-[dr’- w (-Vf) . [r’ x j(r’)]. (5.10.28) 
L2 ) r  - r’I 

We recognize the source of magnetic radiation as -V - M, where M 
is the magnetic moment per unit volume. If we call -V‘  [rf X j(rf)]/2 = 
pM(rf), we have 

(5.10.29) 

so that a Yt,m expansion will give us I),,, for all r outside the source, once 
we know the asymptotic form. We use (5.5.13), which gives 

(CIIM = 8rriw2 2 he(kr) dr’ Y:,m(Ln’)jC(krf) pM(r’) (5.10.30) 
t m  

for r outside the source. 
For +hE, we have from (5.10.23) 

(5.10.23) 

eiklr-r‘l 1 0  
V2 iL2 ( r  - r’( 

- - - - Idr’ -  L’ x V‘ . (iwj(r’) - V’p). (5.10.31) 

Here again, we find a long-range instantaneous interaction arising 
from the Coulomb operator 1/V2 in (5.10.31). Since (5.10.16) shows that 
such terms are absent in the electric and magnetic fields outside the 
source, we may set 1/V2 = -1/w2 in (5.10.31), confident that the residual 
Coulomb-like term will cancel against the field generated from GCIL 
(5.10.20). The cancellation clearly depends on the identity that justifies 
our calculation of I ) L ,  + M ,  and I)E. That is that the dyadic 

1 1 1 * 
V - V + L - L - V  x L ~ L X  v =  1 

V2 L2 L V  
(5.10.32) 

* 
where 1 is the unit dyadic. This identity is not at all obvious and difficult 
to prove directly, but must be true in view of the completeness and 
uniqueness of the representation (5.10,1), subject to the usual boundary 
conditions. 
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We continue to work on (5.10.31). Since 

1 w’ + v2 +--- -- - 1 
v‘ w2 w2v2 
_ -  

and 
ikr 

(w’ + v’) ___ = -47r6(r) 
r 

(5.10.33) 

(5.10.34) 

(5.10.31) becomes 

+E = +k, + +E* (5.10.35) 

where 

and 

L’ x V’ . j(r’) (5.10.36) 
Ir - r‘I 

(5 .  10.37) 

Our result is contained in (5.10.36), the retarded field. The electric field 
generated by $tz must cancel that of I)[. outside the source. That is, we 
must have 

(5.10.38) 

for r outside of the source, with qL and +E2 given by (5.10.20) and 
(5.10.37), respectively. 

We recall, for a localized function f, 

so that 

and for r > r‘ 

lr’ - r (  
47r 

(5.10.39) 

(5.10.40) 
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+E2 = dr' r" Y?m(Cl') L' x V' j(r'). (5.10.41) 
t , m  r f t 1  e(e  + 1) 

We expand 

1 1 
i i 

L' x V' . j' = - (r' x v') x V' . j(r) = - [-Vt2r' + 2V' + r' * V'V'] * j(r') 

(5.10.42) 

We substitute V' . j(r') = iwp(r ' ) ,  integrate (5.10.41) by parts, and remem- 
ber that Vr2r" Y X n ( S / ' )  = 0. There results 

(5.10.43) 

Note here that the coefficient of 1 /C vanishes at e = 0, so there is no 
singularity at e = 0. Since the electric and magnetic fields are generated 
from t,bE2 by acting with (V X L)/io and V2L, respectively, the e = 0 com- 
ponent of t+k2 makes no contribution to either. Note also that the magnetic 
field outside of the source generated by @E:2 vanishes, since Vz+E2 = 0 
there. We turn finaIIy to (5.10.38): 

where we have again made use of the equation V21,!IE, = 0 for r outside of 
the source. We find thus that the fields generated by GL and $E2 cancel 
outside of the source; only and I,!IM contribute. This is not the case in 
the source, as w e  shall see in Section 5.12. 

Our final result for is then 

L' x V' . j(r'); (5.10.36) 

expanded in spherical harmonics, (5.10.36) becomes 

+El = 4rik hco Yt.m(fl) dr'j[(kr') Y;,m(O')  L' x V' . j(r'). 
t , m  ((4 + 1) I 

(5.10.45) 
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It is again the case that the asymptotic eikrlr  coefficient of each Yp,, 
produces a known r dependence, hc(kr) ,  as long as we stay outside of the 
source. 

We can see why I,!JE is called electric by considering the small kr' 
behavior of the integrand in (5.10.45). The algebra is almost identical to 
that leading to (5.10.43). The source function is 

Finally, 

V'2rl . j 
L' x V '  . j(r') = w[(r' * 8' + 2)pl  - 7 . (5.10.46) 

1 

Now integrate (5.10.45) by parts, keeping only the (kr)' term in j f ( k r ) ,  
Since V'2r''Y,.,(s/') = 0, the last term in (5.10.46) makes no contribution. 
The first term gives 

so that the e ,  m amplitude is given in this approximation by 

appropriate to an electric multipole. Of course, the labels electric and 
magnetic are only labels. The importance of the scalar functions I ,!JE and 
I,!J,,,, is that they permit a spherical harmonic expansion of the vector field 
radiation to be made. We shall see, just as in the scalar case, that the e ,  
m th multipole has simple angular momentum properties, 
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5.11. ENERGY AND ANGULAR MOMENTUM 

We define the rnultipole amplitudes as 

The average flux of energy is the Poynting vector, 

- E* x B 9 = Re-. 
2T 

With 

(5.11.1) 

(5.11.2) 
io 

the radiated power is then 

Since we only need the constant (as r 3 m) term in (5,11.3), we may set 
V = ik?,sothat 

The purely magnetic term is 

(5.11.5) 
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so 

Similarly, 

The cross-terms between $ E  and J IM,  when integrated over s1, give zero. 
We turn next to the radiation of angular momentum. Recall from 

(3.8.21) that the outgoing flux of angular momentum through a surface is 

where T,, is the Maxwell stress tensor 

The terms with &( are orthogonal to the spherical surface, so there 
remains, in vector notation, 

d n ( r .  E*E x r + r . B*B x r).  (5.11.10) 
27r 

Note that @ appears to grow linearly with r ,  since the E and B fields go 
inversely with r .  Hence, there must be a cancellation of one power of r .  

With 
n 

and 

v 
iw 

B = -- x L+M - L + E ~  

(since J lE2  and JILd cancel away from the source) 

(5.11.11) 

L2 
r . E = - J I E ,  

w 
(5.1 1.12) 
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and 

L2 
r - B = - $ M  (5.1 1.13) 

w 

and the cancellation has occurred. 
There remain E X r and B x r: 

V X L  E x r = -  ( r x L $ ~ + r x ( r ) $ ~ , )  (5.11.14) 

and 

B X r = - [r X (-) V X L  I+!JM - r X L$E,]. (5.11.15) 
io 

Again, the gradients must act on eikr to give ik?, so 

E x r = -(r x LI+!J,,,, + r  x (?x  L)$E,) (5.11.16) 

and 

B X r =  -(r x (3x L ) $ M  - r x LI,!J~J. (5.11.17) 

Combining, we find for purely electric radiation an angular momentum 

and for purely magnetic radiation 

where L,., is the quantum mechanical matrix element of the operator 
L between the states m' and m: 

(5.1 1.20) 

Note that different t values do not interfere. Since (L,),,. = mSnlmj, the 
z-component of angular momentum is particularly simple. For a single 
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e ,  m multipole, it is 

(5.11.21) 

and the ratio of the z-component of angular momentum radiated to energy 
radiated is 

(5.1 1.22) 

dt 

which suggests that the wave described by would in quantum theory 
carry a t-component of angular momentum hm. The suggestion is correct. 

The mixed EM fluxes are not so simple. They involve integrals of the 
form 

1 L2 
F E M  = I qLr x L@E - - $3 x LqM dR (5.11.23) 

w 6J 

which connect a7 . s  and U ? ? ~ ’ S .  

~~ ~ ~ _ _ _ _ _ _  

5.12. MULTIPOLE SCATTERING BY A DIELECTRIC 

The expansion of a field amplitude in electric and magnetic multipoles of 
given e makes it possible to reduce three-dimensional scattering problems 
to one radial dimension for each e ,  provided the system is isotropic-that 
is, rotationally invariant. 

We illustrate this by deriving the general equations for scattering by 
an isotropic medium and carry out the calculation for the simple case of 
a uniform spherical dielectric. 

As usual, we start with Maxwell’s equations: 

V x E = i w B ,  V x B = - i w e E ,  and V . EE = 0, 

which give the equation for E 
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or, from (5.10.18), 

V X L  
iw 

E =  VI,!I,~- + L$M + __ * E  

so 

and 

(5.12.2) 

We project the magnetic amplitude by operating on (5.12.1) with L 
dot. Since the commutator [L, E ( Y ) ]  = 0, we find 

or 

provided we leave out the undetermined C = 0 component that does not 
contribute to the fields. 

Equation (5.12.4) shows that the magnetic amplitude is decoupled 
from the longitudinal and electric amplitudes, and can be found 
independently of the other two. Since (5.12.4) is a scalar equation, the 
function I,!I~ can be expanded in amplitudes of definite t', just as in the 
scalar case studied earlier. There is one important difference: The incom- 
ing field has a polarization direction that produces a significant azimuthal 
dependence in the scattering and requires the introduction of Y F , m ' ~  for 
m # 0 in the expansion. We will see this shortly when we take up scat- 
tering by a sphere. 

We project the electric amplitude in (5.12.1) by the operator L X V,  
which gives 

iw 

V2L2 
v 2 - * E = w 2 * L  x V.E v*"+L*M+- 

1W 

or, with E '  = deldr,  

1W 

2 2  2 (v ) 
* E =  w 2 L  x F .  E '  VqhL + L*2w +- 

iw 
(5.12.5) 
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or 

or 

i e ' w 2  
I)E - V2L2iwE+E = - V"L2 - 

iw r w 

2 2  V41(IE + w E V  I )E = 
r w 

or 

(5.12.6) 

The equation for I ) L  is given by (5.12.2): 

(5.12.7) 
r w 

Thus, and I ) E  are coupled via (5.12.6) and (5.12.7); however, 
since both equations are spherically symmetric, different t values are not 
coupled. The coupling of I ) Ia  and I,!J~ results from the fact that the parity 
of each Yl,m is the same in and I ) E ,  but opposite in I),,,,. Thus, the 
rotational and inversion invariance of the system that requires decoupling 
of the different t' values permits coupling of I)L and I ) E ;  since any interac- 
tion that is not forbidden is, in general, allowed, this coupling appears. 
Note that in especially simple cases, such as our example of a spherical 
dielectric, with E '  = 0 except at the surface of the sphere, this coupling 
may disappear. We find again the presence of an apparent pole at V2 = 0 
(leading to l /r at infinity), which now must cancel between the actual 
fields produced by I),. and i , ! ~ ~ .  

Clearly, the general problem of scattering by a dielectric is a hard 
one, and we do not address it  here. We turn instead to the special case 
of scattering by a uniform dielectric sphere. 

The equations satisfied by the potentials follow from (5.12.1) and 
(5.12.2) by setting E equal to a constant: E = 1 outside the sphere and E = 

E inside the sphere. Thus, from (5.12.7), V2i,bL = 0, inside and outside, 
and we are free to set +!J~ = 0 and qj f i . ,  = 0 (provided we can satisfy the 
appropriate boundary conditions at the surface without them). From 
(5.12.4) and (5.12.6), we find 

(V2 + E W * ) I ) ~ ,  = 0 and ( V 2  + E W ~ ) $ ~  = 0 .  (5.12.8) 
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The boundary condition at r = R (the radius) are, as usual, ET and 

From 
BT continuous, Dnormal and Bllormal continuous. 

V X L  
iw 

E = L + M + -  + E  (5.12.9) 

we look for continuity in ET. Since ET continuous at r = R implies L . E 
continuous, L2+.M must be continuous; therefore, I+!JM is continuous at 
the spherical boundary. The tangential component of the second term 
is r̂ x (V x L), so we must have 

r x ( V  x L)$E continuous, (5.12.10) 

or 

L(1+  r V)ICIE 

and hence, 

I+!JE continuous. (5.12.11) 

From 

(5.12.12) 

or 

(5.12.13) 
V X L  

iw 
B = -  +M - EWE 

we learn that 

and 

c + €  = continuous (5.12.14) 

(1 + r t )  +M = continuous (512.15) 

It is easy to verify (as we already know from Problem 3.9) that the 
boundary conditions we have just found from the tangential continuity of 
E and B also guarantee the normal continuity of B and D = eE. Therefore, 
GM and l ( lE  are completely determined: They satisfy the wave equation 
(5.12.8) and the boundary conditions (5.12.10), (5.12.11), (5.12.14), and 
(5.12.15). 
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IclM and JIE have Yp, ,  expansions 

and 

L .m r 

(5.12.16) 

(5.12.17) 

where the functions u y  and u: are independent of m. 

wave boundary condition at large r .  
The coefficients C;"f,, and C?,,,, must be determined by the incoming 

We easiIy solve for u I  (electric or magnetic). For r < R ,  

where k ,  = &w = n w .  For r > R,  

where A c  and B f  are determined by the boundary conditions, and ut and 
q l  are defined in (5.5.17) and (5.6.12). 

Note that qc may be chosen to be real, since the equations and 
boundary conditions are real; then A (  and Be are real, and define a phase 
shift via 

Bc 
- = tan 6 ( .  

Matching the boundary conditions for u:', we have 

(1 + r i) $ continuous and u;' continuous. 

Thus, 

A c u c ( n k R )  = cos 6 , u l ( k R )  + sin G 4 q , ( k R )  (5.12.20) 

and 

A , u , ( n k R )  = cos G,u>(kR)  + sin G , q ; ( k R ) .  (5.12.21) 

The prime in (5.12.21) and (5.12.22) stands for differentiation with respect 
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to R,  not kR. The parameter 67 to go into Eq. (5.6.15) is 

(5.12.22) 

which for small k goes like (t + l)/R. Thus, from (5.6.16) the normal 
term in 8;" of order k2"' vanishes; the first nonvanishing term is of order 

, clearly a consequence of the w 2  dependence of the interaction 
strength. This does not happen for the electric amplitude, as we now 
show. 

k2t+3 

The boundary conditions for I,!I~ are 

E qE continuous 

and 

(I + r 5) + E  continuous. 

With 

these become 

and 

uc 
r 

(CIE = - >  

E D :  continuous 

all: 

ar 
continuous. - 

In this case, the parameter 5 becomes for small k 

and, from (5.6.16), 

( ! 2 p L )  

(Y.4) 

R2Cf2 R a t +  -k21i1 
(28 + 1)!!(2t - l)!! 

(5.12.23) 

(5.12.24) 

(5.12.25) 

(5.12.26) 

(5.12 -27) 

(5.12.28) 

(5.12.29) 
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which for t = 1 is 

2 E - 1  
~ 5 ~ + - - ( k R ) ~ - .  

3 E + 2  
(5.12.30) 

To relate this calculation to scattering, we must determine the incom- 
ing fields 4% and 4% in terms of 

We use the expansion (5.5.14) to expand eik'r in spherical harmonics: 

and 

.-. 0 

(5.12.33) 
A 

E ~ )  = 5 C, (2e + 1) pf <i, . u< i'. 
kr 

We solve for 4k and 4;; as usual 

(5.12.34) 
L 4% = - Z ( 2 4 - t  l)ui^e".-Pp((^k.^r)i' 

kr f L2 

and 

(5.12.3s) 

1 
= 2 (21 + l)i'j,(kr)--^e".k x LP,(k .;). (5.12.36) 

L2 

We have to deal with two spherical harmonics of order e :  

$1 . L 

L2 
y y =  ~ P , ( k  4) (5.12.37) 

and 

(5.12.38) 
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Note that both 2' = al  and Go x k̂ = a2 are transverse vectors to the wave 
vector k.  For either of them. 

(5.12.39) 

Now choose "k_in the z-direction. Since r̂ = ices B + ?sin 0 cos cp + 7 
sin 8 sin cp, r̂ X k is 

P x ^k = -:sin 8 cos cp + isin 0 sin cp (5.12.40) 

and 

1 
Y', = T sin cp - aju cos cp) sin BP;(cos B ) ,  (5.12.41) 

1 

which is a spherical harmonic of order e ,  linear in etiq, and hence a 
combination of Y[ , , (B,  cp) and Yc,- l (B,  9). In expanding the scattering 
amplitude f (  8, cp), we must accordingly introduce the spherical functions 
Y y  and YF defined in (5.12.37) and (5.12.38). 

As in the scalar case studied earlier, we require that the qt amplitudes 
consist of the known incoming wave &, plus an outgoing wave with an 
unknown coefficient. That coefficient is then fixed by the requirement that 
the resulting wave function for each ( t , m )  be a multiple of the known 
radial solution uf. 

The incoming magnetic field q9L is 

and the incoming electric field 4; is 

(5.12.42) 

(5.12.43) 
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The scattered field is, in each case, 

where ft. is determined by the requirement that as r + a, 

for some C t .  Equation (5.12.45), in turn, requires 

for the magnetic or electric amplitude. 
The scattered electric field is now 

(5.12.46) 

(5.12.47) 

or, asymptotically, 

and the scattering cross section is the square of the vector coefficient of 
t?"lr in (EsC (for 2"* + 2' = l) ,  as defined in (5.7.5); for each partial wave, 
that coefficient is 

ft = (2e + i)(LY;"'fY + i. x L Y : ~ ? ) .  (5.12.48) 

We calculate separately the noninterfering total magnetic and electric 
cross section for each e :  
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But 

and 

so that 

(5.12.50) 

(5.12.51) 

cr? is a little harder: 

a: = (26 + 1)' lf:l2I dn@ x LYf)*(? x LY?) (5.12.52) 

so again, 

2k2 

Substituting the result for 8f for e = 1, we find for small k ,  

3 E + 2  

(5.12.54) 

(5.12.55) 

We recover, for small E - 1 ,  the result given by (5.9.24), which as k -+ 0 
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gives 

and 

2 
3 

2 
E - 1  

cr7.= w 4 ( ~ )  R" 4 7 ~  - -. 

(5 .12 .56)  

(5.12.57) 

The result (5.12.55) shows that the electrostatic polarizability (Y = 
( E  - 1 ) / ( ~  + 2 )  R 3  of a dielectric sphere dominates the low-frequency scat- 
tering cross section. 

CHAPTER 5 PROBLEMS 

5.1. From the reality of the interaction applied to the scattcring of a 
scalar wave, we found the scattering amplitude to go from wave 
number k ,  to k2 (with lk,j = lk21 = k ) , f ( k z ,  k , ) ,  was given by 

f(k2, k , )  = c (2e + 1) Pl * k)fi ( k )  (1) 

where 

- 1 c ' ' ~  sin 6, e2r6 

- 3 ( 2 )  f l ( k )  = _I_ - k 2ik 

and 6 real. j C  therefore satisfies a partial wave optical theorem: 

Imfc = k l f , IZ .  

From (1) and ( 2 ) ,  prove the generalized optical theorem for lk21 = 
lk,l = k :  

5.2. For a scalar field scattered by a complex potential, the wave function 
cannot be chosen real, and the asymptotic form for a given e will 
not approach q( 3 sin[kr - ( C v / 2 )  + S,] as r-+ cc with 6, real. The 
asymptotic wave function q( will approach q ,  --+ CY sin [ k r  - ( e d 2 ) ]  
+ p cos [ k r  - ( e v / 2 ) ] ,  where a and p are complex functions of k .  

(a) Show that one can always uniquely (to within + n ~ )  find a S( 
such that 9( -+ A sin [ k r  - (tv/2) + a,] with complex SC and that 
the scattering amplitude for that case is f ;  = (e2"( - 1) /2 ik .  
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(b) Suppose energy is absorbed by the system. Apply the energy 
calculation used to derive the optical theorem to a single partial 
wave to decide what the sign of I m &  must be if the target 
absorbs energy. 

(c) Give an example of a (nonlocal) potential that will scatter only 
an l wave. 

"5.3. Consider the scattering of light by a perfectly conducting sphere of 
radius R.  The complex electric field outside the sphere satisfies the 
wave equation 

(V2 + w2)E = 0 (3) 
and the divergence condition 

(a) From ( 3 )  and (4) and the multipole expansion 

( 5 )  
V X L  

E = V $ L + - - -  *E + L*M, 
iw 

verify that outside the sphere, for t # 0, 

V2i,bI, = 0, (V' + w2)i,bhf = 0, and V2(V2 + o ' ) + ~  = 0 .  (6) 
(b) With 

$E = $El + @Ez > (7) 

and 

(8) 2 (w' + v2)+E, = 0,  v = 0 ,  

verify from (3-8) that we must have 

V X L  
V*L + - *E2 = 0 

LW 

and that this equation can be satisfied outside the conductor for 
both $3 f 0. 

(c) Write the boundary condition that must be satisfied by (LEI and 
$,,,, at the surface of the sphere. From these, calculate the electric 
and magnetic phase shifts 8;" and 8: and the low-frequency 
limits of the partial wave cross sections d and u?. 

and a;"+ k'"-l for small k .  How 
can this be? We found in Section 5.12 that, for any E ,  

Sy  -+ k2't3 as k -+ 0; but we can include conductivity in E by 
letting E -+ E + ( i a / w ) ,  and a perfect conductor by taking the 
limit u + m, or E + 30. What went wrong? 

(d) In part (c), you found that 
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(e) From (5.6.15) and (5.12.22), calculate the first nonvanishing 
power of k and its coefficient in the magnetic phase shift 
f y ( k ) .  Repeat the calculation starting from the perturbative 
result (5.9.24) and show that the results agree for small E - 1. 

(0 Calculate the 4 = 1 electric phase shift from (5.9.24) and show 
that it agrees with (5.12.30) for small E - 1 and k + O .  

"5.4. Calculate the 4 = 0 scattering length for a scalar field scattered by 
a square well potential 

U ( r )  = Uo, r <  R 
u=  0, r > R  

The equation for qt is the Schrodinger equation (for 4 = 0): 

-__ d 2 q + U ( r ) q = k Z q .  
dr2 

The boundary conditions are q(r = 0) = 0, and q and dqldr continu- 
ous at r = R. Consider separately the three cases (a) Uo > 0, (b) 
U, < 0 and m R  Q 1, and, (c) Uo < 0 and a R  close to 7712. 

X5.5. The Schrodinger equation (5.3.2) has the integral form (with a slight 
redefinition of U )  

r ' l  

477 Ir - r'I 
+(r) = e4kg.r - - I ___ U(r') dr' 4(r') .  

It is sometimes useful to Fourier-transform the integral equation. 
To do this, show first that 

(4 

(b) Then show that the integral equation for X(k) = 
1 dr' e-'k'r 4 ( r )  is 

X(k) = ( 2 ~ ) ~  S3(k - ko) - 4rr 
k2 - k ;  - ic 

I dk'U(k, k')X(k') 

where U(k, k') = l / ( 2 7 ~ ) ~  1 e-ik"U(r) eik"rdr. 

(c) Show that the scattering amplitude f is 

dk'U(kf, k')X(k'), 
477 

where kf = koi, with ̂ r the direction of observation, and therefore 
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1 
47r 

f =  - ( k 2  - k&(k) - ( 2 7 ~ ) ~  a3(k - ko)). 

(d) Check that for small U (to be defined) and ko+ 0, the results 
of (c) above agree with what you found in Problem 5.4. 

(e) Repeat (a-c) above for U ,  a nonlocal potential, defined by 

Ll4(r) = U(r, r’) 4(r’) dr’ . 
Show that the only change is that U(k, k’) becomes 

5.6. A nonlocal potential for which the scattering equation can be solved 
exactly (i.e., in terms of integrals) is a product potential: 

U(r, r‘) = g(r) g*(r’). 

Find the scattering amplitude in terms of the Fourier transform of 
g :  

5.7. Apply the factorization techniques of Section 5.5 to the Schrodinger 
equation for the one-dimensional harmonic oscillator: 

The factors are a, = - (d /dx )  + x and a- = ( d / d x )  + x .  

(a) Show that a+a_ = 2 H  - 1 and a-a, = 2H + 1. 
(b) Show that if Htt, = Ett,, then Ha++ = ( E  + 1) a,+ so that a, is 

a raising operator, and that Ha-$ = ( E  - 1) tt, so that a- is a 
lowering operator. 

(c) The positivity of H shows that there must be an eigenfunction 
of H ,  I/J~, that cannot be lowered. Use this to find the lowest 
eigenvalue ( E  = i) and corresponding normalized eigenfunction 
(I//() = e --xz’2/ 7T 

(d) The nth eigenfunction, with energy En = n f $, is given by 

tt,,, = A(a+)“ J/o. 
Calculate the value of A required to normalize J/,. 

*5.8. Apply the factorization techniques of Section 5.5 to the Schrodinger 
equation for the isotropic three-dimensional harmonic oscillator, 



244 Scattering 

with angular momentum quantum number e :  

= E t u L ,  O s r < w  and u , - (O)=O.  

The factors are A :  = - (d /dr )  + ( e / r )  + r and A ;  = ( d d r )  
+ ( t / r )  + r .  

(a) Show that A: raises e and E(  by one unit each, and that A ,  
lowers C and Er by one unit each. 

(b) Finding the spectrum here is more subtle. The lowest value of 
C is zero, for which H c  becomes H of the preceding problem, 
with the difference that in this case the wave function must 
vanish at r = 0. Thus, only odd harmonic oscillator eigen- 
functions are allowed. 

Using all this, give the eigenvalues E{(n,) as explicit 
functions o f t  and n, (the harmonic oscillator quantum number). 
Give the allowed values o f t  and n,. 

(c) Show how the t = 0 wave functions fail to be lowered by A ; .  
(d) Using the separability of the Schrddinger equation, 

find the eigenvalues E as sums and the eigenfunction I/J,,,,,,,.~, 
as products of the eigenvalues and eigenfunctions of the three 
one dimensional oscillators. 

Write explicitly all the eigenfunctions for which nr + ny +n, 
5 2  and show how these appear when characterized by t! and 

5.9. Show that the next term in the expansion of h f ( k r )  at large kr is 

n,. 

given by 

h, (kr )  = ----(I elh" + i?(t + 1) i +- . ) .  
kr i f + '  2kr 
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CHAPTER 6 

Invariance and Special 
Relativity 

6.1. INVARIANCE 

W h e n  we say the laws of nature are invariant under a transformation, 
we mean that it is impossible to determine whether that transformation 
has taken place. To illustrate, consider invariance under time translation. 
The physical meaning of this invariance is that were we to go to sleep and 
wake up some time later, no experiments we perform before and after 
our nap (not counting looking at a clock) could tell us how long we had 
been asleep. That is, the laws of Nature do not change with time; they 
are the same now as they were then. 

The mathematical expression of this invariance is that the equations 
governing the system we are describing are invariant under the transforma- 
tion t' = t + A.  For example, Newton's law of gravitation, 

can be expressed in terms oft': 

Since the two laws are the same, the phenomena they describe 
(gravitational motions) cannot tell us whether we are using t or t '  as a 
clock. (See Appendix A.2 for further elementary discussion.) 

Similarly, translational invariance makes it impossible to tell whether 
our laboratory has been picked up and moved to a new location. 

245 
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Rotational invariance makes it impossible to tell whether our labora- 
tory has been turned around. 

Thus, translation and rotation invariance together tell us that space is 
homogeneous and isotropic. 

Invariance with respect to a constant velocity transformation makes 
it impossible to tell if our laboratory has been gently accelerated to a new 
velocity. All these invariance principles are believed to hold exactly. 

There is one other class of invariances believed to be exactly true: 
these are gauge invariances analogous to the gauge invariance of electrody- 
namics. 

There are two more space-time connected invariance principles that 
are approximately true: inversion invariance (called P ) ,  which forbids 
knowing whether you are looking in a mirror or at the real world; P is 
broken by the weak p decay interactions. An invariance that holds much 
more accurately, called CP,  forbids knowing whether you are looking at 
the refection of a particle in a mirror, or at an antiparticle in the real 
world. CP is known to be violated, but uery weakly. 

The second approximate space-time invariance, which is also weakly 
broken, is time reversal invariance, called T.  This invariance tells us that 
every motion has a reversed motion that is equally possible, with the 
same coordinates and accelerations, but opposite velocities, occurring in 
backward order in time. The classical laws of mechanics and electromag- 
netism are invariant under P and T .  

In relativistic quantum field theory, it is shown that CPT must hold 
exactly. That is, T must bc violated just enough to compensate in CPT 
for the violation of CP.  CPT says: You cannot tell whether you are 
looking at a certain motion of particles in the real world, or looking in a 
mirror at antiparticles undergoing the time-reversed motion. 

We may express the space-time invariances in terms of infinitesimal 
transformation of coordinates. Thus, for translation in space or time: 

t ’ = t + A t ,  x ’ = x + A x ,  y ’ = y + A y ,  z ’ = z + A z .  
(6.1 . l )  

We have three rotations: 

’Of course, real space in our universe is filled with masses that generate gravitational 
fields. It  is our common experience on Earth that space above our planet is neither isotropic 
nor homogeneous. What does appear to be true is that for phenomena occurring on a 
distance and time scale that is small compared to the length and timescale of the gravitational 
field, there exists a class of observers for whom thcse space-time invariances hold. This 
follows from the equivalence principle, which tells us that an observcr in free fall in a 
gravitational field will have no local way of determining that there is a gravitational ticld in 
the neighborhood. Of course, the felling clevatnr must lint be so large that the cunvergence 
of  the field lines toward their source can he detected. 
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and two more infinitesimal rotations about x and y. 
One can express finite translations and rotations by iterating in- 

finitesimal ones. For translation, this is trivial. For rotations, note that 
(6.1.2) is equivalent to 

(6.1.3) 

0 - i  
where g y  = ( ). Repeated N times, with NA8 = 8, the finite rotation 

is 

or, as N + m, with 8 remaining finite, 

xcos 6 + y sin 8 
- x  sin tJ + y cos 8 

(6.1.4) 

(6.1.5) 

An inversion cannot be generated by a succession of rotations, since 
the determinant of the rotation matrix a;, in xl  = aijxj.(summation conven- 
tion) is 1, whereas an inversion x ;  = - x i  has determinant -1. 

Finally, we come to the transformation between observers moving 
with constant but different velocities. Newtonian mechanics has an invari- 
ance of this kind, called Galilean invariance, with the transformation given 
by 

X ;  = x i  - v i t ,  i = 1 ,2 ,3 .  (6.1.6) 

The Newtonian equations 

(6.1.7) 

are clearly invariant under the transformation (6.1.6) for a force law F; 
that is independent of velocity. Thus, the Newtonian world would have 
velocity invariance (called Galilean relativity) were distance measurements 
to transform according to (6.1.7)-that is, were the distance between 
simultaneous events the same for all observers. 
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Another consequence of (6.1.6) is the addition rule for velocities: 

(6.1.8) 

Thus, if observer 0 observes a velocity u p ,  an observer 0’ will observe 
the velocity 

up‘ = u o  - u , .  (6.1.9) 

Evidently, Maxwell’s equations cannot be invariant to the transforma- 
tion (6.1.6), since they predict a unique light velocity c ,  independent of 
the velocity of the observer or the source. 

Thus, if there is a principle of relativity (invariance under constant 
velocity transformation), then either the transformation (6.1.6) is wrong, 
and Newton’s laws must be modified; or Maxwell’s equations are wrong, 
and the modified equations must somehow contain the possibility of the 
velocity addition law without containing the observer’s velocity as a para- 
meter. 

No such modification has been found, although it  must have been 
diligently sought. Einstein took the first view: There is an invariance 
principle, Maxwell’s equations are correct, and they are invariant to the 
correct, transformation law (to be found) replacing (6.1.6). 

6.2. THE LORENTZ TRANSFORMATION 

We are thus led to study (first in one dimension) the kinds of transforma- 
tion that could hold between space-time measurements made by different 
observers moving with constant velocity with respect to each other. It will 
turn out that we are almost uniquely led to a Lorentz transformation, with 
a velocity parameter c.  Galilean relativity results from c + a. Einstein’s 
relativity results from c = velocity of light. 

The most general transformation that leaves space homogeneous must 
be linear: 

x‘  = y(u)(x - ut ) .  (6.2.1) 

Thus, the trajectory x = ut corresponds to x ’  = 0. That is, the origin of 
the 0‘ coordinate system moves with velocity u to the right in the 0 
system. 

Let us assume that the 0 system moves (to the left) with velocity 
- u  with respect to the 0’ system. Then, of course, assuming t ’  = t ,  we 
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must have 

x = y(-u)(x’ + ut )  (6.2.2) 

which together with (6.2.1) implies y = 1; back to Galileo. 
It was the remarkable insight of Einstein here that relations between 

space-time measurements made by different observers cannot be derived 
by logic, but are empirical. There is therefore no reason to insist that time 
intervals between events be invariant. Einstein wrote, instead, 

x’ = y(u)(x - u t )  and t ’  = S ( u ) ( t  - p ( u )  x). (6.2.3) 

The transformation from -x  to -x ’  should have a velocity - u .  Then 
-x ’  = y(u)( -x  - u t )  should be equivalent to x ’  = y(-u)(x i u t ) ,  or 
y ( u )  = y ( -0 ) .  Similarly, 

1’ = S ( u ) ( t  -t P ( u )  x) 

should be equivalent to 

t ’  = S ( - u ) ( t  - P ( - u ) x )  

so that S(u )  = S ( - u )  and p ( - u )  = -p(u). 
Now solve for x, t as functions of x‘,  t’. From (6.2.3), 

t‘ 

S 
t = - + + P x  

so that 

or 

xy(1 - P U )  = x‘ + u - t ’  Y 
6 

and 

6 - = I  
Y 

(6.2.4) 

(6.2.5) 

(6.2.6) 

Since we have here 

x = y(x ’  + or ’ )  
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it follows that 

y y 1  - p u )  = 1, 

Define 

(6.2.7) 

(6.2 3) 

where c(u)  has the dimension of velocity. 
We now show that c(u )  must be a constant by requiring that two 

successive transformations of the form (6.2.1) and (6.2.3) must again be 
of the same form. That is, we set 

XI’ = y(u ’ ) (x ’  - U ’ f ’ )  (6-2.9) 

and 

(6.2.10) 

or 

and 

(6.2.12) 

so that c’  must equal c; thus, c is a constant. The rule for adding velocities 
is 

u + u’ u=- 
uu’ 

I + -  
C 2  

and 

(6.2.13) 

(6.2.14) 
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We note that the addition law for u and c is 

u + c  u = - -  - c  
uc 
C 

1 + ,  
(6.2.1.5) 

so that the speed c is a limit, seen to be the same for all observers. Thus, 
the identification of c with the velocity of light will guarantee the constancy 
of that velocity for all observers, consistent with the straightforward inter- 
pretation of Maxwell’s equations. 

Clearly, the simplest three-dimensional expression of this transforma- 
tion is 

x ’  = y (x  - or), t’ = y t - ~x , y ’  = y ,  Z ’  = Z .  (6.2.16) ( , u )  
A few remarks on (6.2.16) are in order. First, these equations must 

relate space-time interuals. Evidently, the origins of the 0 and 0’ space- 
time coordinate system could be different, in which case we would have 

x ’  = y(x - u r )  + xg, t ’  = y t - ( ”) + to 
C 2  

with x(, and to the same for all events instead of (6.2.16). Equation (6.2.16) 
holds when the origins of the two coordinate systems pass each other at 
a time that both observers call zero. If there is any confusion about this 
point, rewrite (6.2.16) as 

AX‘ = y(AX - uAt) ,  (6.2.17) 

where Ax and At are the space and time intervals between two events; 
Ax’ and Art are those intervals as measured by the primed observer. 

Second, let us consider the behavior of clocks. Suppose we have a 
clock at rest in 0, and the time between ticks (say, birth and death of a 
p meson) is T .  Then the time between these events seen by 0’ is, since 
they occur at the same position in the 0 frame, 

T ‘  = y T  (i.e., a longer time). (6.2.18) 

Third, moving rods appear shorter. Suppose a rod is at rest in 0‘ 
with length L ,  that is, xi - x; = L.  Then, a measurement of the distance 
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x ,  - x2 at the same 0 time would give 

L = y (x ,  - x2)  or (xI - x 2 )  = 
Y 

the Lorentz-Fitzgerald contraction. 

is by the invariance of the quantity 
The simplest way to characterize the Lorentz transformation (6.2.17) 

(W2 
C' 

(AT)' = (At)' - - 

or, in three dimensions, 

(Ax)' (AT)' = (At)' - -. 
C2 

(6.2.20) 

(6.2.21) 

Thus, the transformation between space-time measurements is (remember 
the summation convention) 

where p = 0, 1 ,2 ,3 ,  xo = ct ,  and the invariant interval' between two 
events is 

In our one-dimensional example, with x = xl, etc., 

The transformations (6.2.22) form the Poincare group. The subgroup 
with u p  = 0 is the Lorentz group. The Lorentz group has six parameters: 
three velocity transformations (boosts) and three rotations. The Poincark 
group has four more: the four space-time translations. 

'The reader is warned that there is no general agreement on the sign of 9. Our choice 
makes (AT)*  > 0 for a timelike interval. that is, one with IArl > lAx//c. 
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From (6.2.23) we learn that 

RY,+ = A,,A (a matrix) and Awu = A,,  = A:,, (6.2.27) 

Eq. (6.2.26) requires that 

A ~ ~ A  = (6.2.28) 

as a matrix identity defining the most general Lorentz transformation. 
Just as in the case of rotations, we find from (6.2.28), 

det 7 = det(ATTA) = (det A)’ det 77 

so detA = k l .  
Transformations with determinant + 1 can be reached by a succession 

of infinitesimal Lorentz  transformation^.^ Thus, analogous to (6.1.2), we 
can consider 

XI = x - Avt, t’ = t - AVX 

(where from now on we use units in which c = 1). With 6 = N A v ,  

0 1  
N 

( : 1 ‘ )  = (1 - 9) (:), where uX = ( ,) 
As N + W .  

so that 

x cosh 6 - t sinh 6 
- x  sinh 6 + t cosh 6 

(6.2.29) 

3This does not include x ’ ~  = - x .  fi 
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The transformation velocity is clearly 

u = tanh 5. (6.2.30) 

The most general infinitesimal Lorentz transformation is specified 
by a 4 X 4 antisymmetric matrix that we call E,,, , .  Thus, we set 
Ap“, = tip, + E ~ , ,  and with E,,, = q , , , , ~ “ ~ ,  (6.2.26) shows that 

+ = 0.  (6.2.3 1) 

Returning to the invariant ( d ~ ) ’ ,  we remark that the notation is 
deceptive, since ( d ~ ) ’  can be negative or positive. For two simultaneous 
events, (At)’ = 0, (AT)’ = -(ax)’; the interval is called spacelike. For two 
events at the same spatial location, (ax)’ = 0 and (At)’ =   AT)^; the 
interval is called timelike. In general, if the interval is spacelike, there is 
a coordinate system within which the events are simultaneous. In 
one dimension, At’ = (At  - u A x ) / m ,  so setting u = AtlAx,  with 
lAt lAx(  < 1 for a spacelike interval, we find at’ = 0. Clearly, slightly 
smaller or greater velocities than u can make At‘ either positive or 
negative; time order for a spacelike interval is not invariant. 

Similarly, for a timelike interval, there is always an observer for whom 
the two events happen at the same place. Also, for a timelike interval, 
the sign of the time difference is clearly invariant. 

We finally consider the consequence of an object moving with a super- 
luminal velocity, that is, a velocity greater than 1. Suppose the object goes 
from x l r  tl  to x2, tZ ,  where x2 - x1 = u(t2 - t l ) ,  with u > 1 .  Then the (1,2) 
interval is spacelike, and the time order f l  and f2 will be different for 
different observers. That is, it will be impossible to say whether the object 
went from 1 to 2 or from 2 to 1. Thus, no causal relationship between 
events 1 and 2 can be established. 

How can we write equations that are covariant with respect to the 
Lorentz transformation- that is, equations which are the same for all 
Lorentz observers, but which do not contain explicitly the velocity of the 
observer with respect to a given coordinate system? 

We have a clue in our treatment of rotational invariance. There, we 
required that all equations be tensor equations- the tensors being defined 
by a specific set of transformations: rotations. Thus, the basic tensor 
in classical mechanics is a vector x,, or better, dx , ,  the (infinitesimal) 
displacement between two points. Since dt is a rotational invariant, dx,ldt, 
d2x,ldt2, etc. are all vectors, so linear equations joining d’x,ldt2 to other 
vectors, for example, (x, - y , ) / l  x - y 1 3 ,  will be vector equations and hence 
invariant under rotations, 

We can do the same for Lorentz transformations. We define a contra- 
variant vector under Lorentz transformations as an object V p  such that 
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An immediate example of such a vector is the coordinate differential, 

dx” = (dx”, dx’ ,  dx2, dx3), 

since dx’” = A”, dx” precisely describes the way coordinate differentials 
(space-time intervals between events) transform. 

A more compact and convenient way of characterizing the transfor- 
mation properties of dxp is 

or, for a general contravariant vector, 

How do we construct a finite Lorentz (or four-) vector? We clearly 
need an analogue to the use of dt described above for rotational invari- 
ance. We recall the invariant 

( d r ) 2  = (dt)2 - (dx)2 = dx” 71”” dx”.  

If the two events are separated by a timelike interval (and for two 
locations of a article moving with u < 1, they will be), (d7)2 is positive, 
and d7 = dt 2- 1 - u2 will be invariant; thus, 

(6.2.34) dx )” 1 V 

d r  !mlm) ___ 

will be a four-vector, sometimes called the four-velocity. 
We can now write a covariant equation for momentum conservation. 

Let us call the four-vector p” (where mu” = p ” )  the four-momentum of 
the particle with mass m. Then a covariant conservation law for a two- 
body interaction, with a and b incoming, possibly different c and d outgo- 
ing, would be 

p ’ ” = p : + p : : = p : + p : .  (6.2.35) 

The covariance of the momentum conservation law requires a fourth 
conservation law: energy. The energy, of course, includes rest energy: 
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The four-vector 

PP = ( P O 7  P) (6.2.36) 

has 
mu 

P = -  m 
and 

(6.2.37) 

(6.2.38) 

For u G 1 ,  p - mv and p" - m + mu2/2, the nonrelativistic forms, but 
with the rest energy (mc') added. 

The individual momenta are timelike with positive time components, 
so their sum P'' is timelike. Therefore, there is a coordinate system in 
which the space component Pi is zero; it is called the rest system and is 
usually the most convenient place to carry out calculations. We consider 
the two-body example. First, we express the energy in terms of the mo- 
mentum of each particle: 

m v  P 
P = -  V F - 7  Or ' = d m  

and 

(6.2.39) 

(6.2.40) 

Therefore, in the rest system of a and b, pa = - P b  = p and 

PO = pfl + p:  = + -. (6.2.41) 

Since momentum is conserved, pc = - p(! = p' and energy is conserved, 

P o  = pt' + ps: = + G $ - T p .  (6.2.42) 

The system will be exothermic or endothermic according to whether 
ma + mb is greater than or less than m, + md. 
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6.3. LORENTZ TENSORS 

Since, for any contravariant vector, V F ~ P , V ”  is invariant, so is 

and hence so is U@qP,,V”. Thus, given a contravariant vector U p ,  there 
exists an object 

(6.3.1) up = 7),uu’ 

such that U,V+ is invariant for any vectors U p  and V,. 

have4 
U p  is called a covariant vector. From (6.3.1), with U’” = (U’, U’), we 

Tensors under rotation have the property that their covariant and contra- 
variant representations are the same. However, we note that if we had 
used a nonorthogonal basis system, say, eA, as the basis vectors in three- 
dimensional space, then any vector V could be expanded as 

v = 2 eAVh (6.3.3) 
h 

and would be invariant under rotation. In particular, for the vector 

d x = I ] e A d x A ,  
A 

(6.3.4) 

the dx”’s would transform contravariantly, and since d x  is invariant, the 
eh’s transform covariantly . 

The transformation law for covariant Lorentz vectors is 

since with 

(6.3.5) 

4We usually represent four-vectors and tensors with Greek indices, p ,  v ,  . . . , and 
three-dimensional space vectors with latin indices, i, j .  k ,  . . . . 
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we have 

(6.3.6) 

where 8: is the usual Kronecker delta. 

vector, then U,  is a covariant vector, since 
Conversely, if UwVp is invariant and V p  is an arbitrary contravariant 

from which 

Lorentz tensors are constructed in the same way as rotational tensors, 
except that they can be covariant, contravariant, or mixed. Thus, we have 
a second-rank contravariant tensor 

a second-rank covariant tensor 

and a second-rank mixed tensor 

(6.3.7) 

(6.3.8) 

(6.3.9) 

Symmetry properties are invariant: For example, let T,, = -+- TFU.  Then 

interchanging the dummy indices u and A gives 
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There are several universal tensors. 6: is a second-rank mixed tensor: 

(6.3.10) 

qPu is a second-rank covariant tensor: With x p  and y ”  as contravariant 
vectors, we see, by the definition of the Lorentz transformation, that 

is invariant, where vjLy is the same function of its indices as q,,. Since 

we have 

so that 

(6.3.11) 

Of course, (6.3.11) is equivalent to the original equations that determined 
the Lorentz transformation matrix. The result could also have been de- 
duced from the fact that ~ r v V ”  transforms as a covariant vector for any 
V”,  since if T,,,V” transforms like a covariant vector for any contravariant 
V”,  then Tpy is a tensor. The proof is identical to the one given above for 
a covariant vector. Clearly, these rules apply to tensors of arbitrary rank: 
Any covariant index can, with summation, cancel a contravariant index. 
Thus, with A and B tensors, ApYh,,Bfln = T:,, is a mixed tensor, as 
indicated. Single indices can be lowered with qPu.  However, note that 
q A p q p y  = S;l and is therefore a mixed tensor; it  follows that qA, = vhp is 
a second-rank contravariant tensor as well as a second-rank covariant 
tensor. Thus, q,” = v p Y  can also be used to raise indices and to lower 
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the rank of a tensor by tracing: 

TrT,,  = T ~ ~ T ~ , . ,  

or with 

T w v  = $'LrrTvr.r TrT,,, = Tw", . (6.3.12) 

One more universal tensor; E ~ , , , , , , ,  is defined to be totally antisymmetric 
in p v h q ;  hence, all four indices must be different, so E~~~~ = %tE0123, the 
plus sign for p v h ~ ,  an even permutation of 0123, the minus sign for an 
odd permutation. We define ~ 0 1 2 3  = 1. (Beware of applying the three- 
dimensional rule that cyclic permutations are even. They are not. In four 
dimensions they are odd.) 

1s E a tensor? We calculate 

Since E '  has the total antisymmetry of E ,  we need only calculate 

= dct(ilx"). a x t w  (6.3.13) 

So, E ~ ~ ~ ~ ,  transforms like a tensor for proper Lorentz transformations, but 
like a pseudotensor for inversions. 

6.4. TENSOR FIELDS: COVARIANT 
ELECTRODYNAMICS 

Tensor fields are functions of x and t that transform according to tensor 
laws. Thus, a tensor of rank zero is a scalar, and a scalar field is an 
invariant, say, J/(x). '  

The invariance of the field means that two Lorentz observers observ- 
ing the field will measure the same value of rl/ at the same space-time 
point, so +'(x'(x)) = J / ( x ) .  That is, 

'From now on,  we will frequently use symbols like x and y to stand for a four-vector, 
x *  and y'. Thus, a scalar field $ ( x )  = $ ( x " ,  x). 
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where x '  and x represent the same space-time point. 
The prototype covariant vector field is the gradient of a scalar field: 

since 

Derivatives of tensor fields generate higher tensors, €or example, 

Derivatives can also be used to lower rank by tracing: 

a -v'" = v, 
ax @ 

(6.4.2) 

(6.4.3) 

(6.4.4) 

(6.4.5) 

a scalar. 

ciated with a point particle, moving along a given trajectory 
The first example of a physical scalar field is the scalar density asso- 

xf = X i ( t )  

or more covariantly, 

X g  X p " ( T )  

(6.4-6) 

(6.4,7) 

where d~ is the proper time along the trajectory: 

d r  = d x " V ' F ? .  (6.4.8) 

We obtain (6.4.6) from (6.4.7) by solving xo = x " ( T )  for T as a function 
of x" and substituting it into xi(.).  

We wish to construct a scalar density6 that, for a point particle, must 

'We here give the word "density" its physics meaning. The expressions scalar (and 
vector and tensor) density are sometimes used to designate certain transformation properties 
under general coordinate transformations [as in (7.6.15)J. That is not the case here. 
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be proportional to a three-dimensional delta function 

d ( x " ,  X )  = A a 3 ( x  - x,(x')) (6.4.9) 

where A may depend on the velocity of the particle. 
To show that an A exists, we note that the four-dimensional volume 

element d4x = dxod3x is invariant, since the Jacobian from x to x '  is just 
the absolute value of the determinant 

which is equal to 1. Therefore, the four-dimensional delta function 

S4(X - Xp(T) )  = S(X"  - X Z ( T ) )  63(X - X p ( T ) )  (6.4.10) 

is invariant, as is its integral over the invariant T [which is held to a unique 
value T(x()) by the first delta function in (6.4.10)]. There results 

d7 
dxo 

= - S3(x - X P ( T ) )  

at x 3 7 )  = xo ,  so 

d ( x )  = v i - 7  63(x  - X,(X")) 

where 

dx,, (XU) V =  
dx" 

(6.4.11) 

Similarly, a four-vector density for a point particle can be defined by 

that is, 
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(6.4.12) 

or 

J o  = s3(x - x p ( x o ) )  and J = vS3(x  - xp(xo)) .  (6.4.13) 

We recognize in (6.4.13) the electromagnetic charge and current density 
of a point-particle-carrying unit charge. For a particle of charge q,  we 
would have 

j ”  = q J ” .  (6.4.14) 

Finally, we construct a second-rank tensor density for a point particle: 

dxgdxPy d7 
d7 d7 dxo 

s ( x  - X P ( X 0 ) ) .  TC”” = -___ (6.4.15) 

Covariant densities can be constructed by using the tensor T~~ to lower 
contravariant indices. Remember that this operation is actually very 
simple: Leave the 0th component alone and change the sign of the three 
space components. 

A useful clue to help construct a relativistic electrodynamics is fur- 
nished by (6.4.13), which tells us that the charge and current densities of 
a point particle form a contravariant four-vector; so therefore does a sum 
of these objects over different particles. Therefore, a general charge and 
current density form a contravanant vector field j P ( x ) .  The local charge 
conservation law is a scalar equation 

(6.4.16) 

which we know is satisfied by (6.4.13). (See Problem 2.1.) 

Lorentz gauge: 
Recall now the equation for the vector and scalar potentials in the 

Since 
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is a scalar operator, it is natural to treat A and b, as a contravariant 
four-vector. In general, of course, there can be no required relativistic 
transformation properties for A and 4, since A and b, are only determined 
to within a gauge transformation, and gauge transformations have no 
special covariance properties. Note however that the Lorentz gauge allows 
A and 4 to be given vector transformation properties, since the Lorentz 
condition 

expressed covariantly becomes 

a 
ax , - - - -A,=()  

A gauge transformation takes 

ax A, into A ,  +- 
ax , 

(6.4.18) 

(6.4.19) 

None of these considerations chooses a sign for the contravariant 
vector A , .  It is actually most convenient to deal with the covariant vector 
A, ,  which we take to be given in terms of the vector and scalar potentials 
A and (I, by 

A,  = (- 4, A). (6.4.20) 

A second clue tells us how to obtain the fields. Remember B = V x A, 
or in tensor language’ B,, = a,A, - d jAi ,  so that B12 = B 3 ,  etc. The ob- 
vious covariant generalization is to define a field tensor’: 

F,, = d,A, - d,,A,. (6.4.21) 

The antisymmetric tensor F,,, is gauge invariant (under 
A ,  + A p  + ax/ax@) and has the right number of components to generate 
the electromagnetic field: F I 2 ,  F23,  F3, (which we have defined to generate 
B,,) and Flo, FZo, F,,, (which must generate E , ) .  Let us check: 

’We introduce here anothcr convention: (7, = a/ax@ and 8” = d/dx,. 
‘Here again, the reader is warned that there is no general consensus on the sign of 

Fw,,. Our choice makes F,, = E, .  
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Fij = (diA,  - a,A,) = B i .  (6.4.22) 

and 

Finally, we must be able to write Maxwell’s equations in covariant 
form. First, the inhomogeneous equations involve derivatives of F on the 
left and current components on the right. The covariant expression of this 
must be d,F,”” on the left and j ”  on the right. Thus, 

d,F’*” = K j V  (6.4.24) 

with K to be determined. We write out (6.4.24): 

Let v = 0: d , F ”  = ~ j ” ,  or using (6.4.23), we obtain 

V - E =  - ~ j ’  (6.4.26) 

so K = -477. Now let v = U: We find 

Since the form of (6.4.27) guarantees rotational invariance, it is sufficient 
to consider one value of U, say, U = 1. Then (6.4.27) becomes 

or 

or 

or 

(6.4.28) 

with K = -4n, (6.4.28) gives 

-(v x B) + a o ~  = -477j 

which is correct. Therefore, the four inhomogeneous equations are put 
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together into one four-vector equation: 

d,Fp” = -47rj”. (6.4.29) 

The homogeneous equations are also four in number, suggesting a 
four-vector equation. However, we know that the homogeneous equations 
involve axial quantities: aBlat, V x E,_and V . B. The unique axial vector 
consisting of first derivatives of F is d P F P ” ,  where F p ”  is the dual of F: 

E ~ ” ‘ ~  is, of course, - E , ~ , , ~ ,  since one t iFe and three space indices are 
raised to go from to E ~ ” ” ~ .  The dual F P ”  of F,,  simply interchanges 
E and B.  That is, 

and 

Thus, we conjecture that the homogeneous equations are equivalent to 

d,ePuhrrFhhrr = 0. (6.4.31) 

Written out, (6.4.31) is for p = 0: 

or 

dB - +  V X E = 0 .  
at 

A more familiar form for (6.4.31) is 

(6.4.32) 



6.4. Tensor Fields: Covariant Electrodynamics 267 

To see the equivalence, note that (6.4.32) is antisymmetric in any inter- 
change. For example, interchanging p and v gives 

which is the negative of the original expression. Therefore, we rewrite 
(6.4.3 1) : 

for each p. The sum over v h o  simply multiplies the result by 6 (the 
number of permutations of three objects). Therefore, the quantity in 
parenthesis is 0. 

We close this section by studying the transformation laws for the E 
and B fields. We have, since F,,, is a tensor, 

ax" axA 
d X ' +  ax'" 

Fuh 
F' =-- 

CLY 
(6.4.33) 

Let the primed observer be moving with velocity u in the x direction. 
Then 

(6.4.34) 

y = y'  and z = z ' ,  from which we can calculate ax"lax'". 
We first calculate the longitudinal fields Bx = FyL and E, = F,o: 

and B, is invariant. 

(6.4.35) 

(6.4.36) 

and E, is also invariant. 
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Consider next the transverse components 

or 

since 

(6.4.37) 

Finally, 

or 

Suppose there is a magnetic field but no electric field in the 0 system. 
Then an object at rest in the 0' system would have velocity v in the 0 
system, but would only experience the electric force in the 0' system, 
which is, for small v, ev  X BT = EV X B,  as it should be. 

We observe that we can construct two invariants from the FcLy field. 
The first is 
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E2 - B2. (6.4.39) 
1 I - - - F  FP"= 
2 I L L v  

I -  

The second is, in fact, a pseudoscalar: 

1 -  
I - - F  F P " = E * B .  (6.4.40) 
2 - 4  

One verifies easily that I ,  and I2  are left invariant by the above 

Another invariant is the phase of E or B; thus, for a monochromatic 

(6.4.41) 

transformation rules for E and B. 

wave, 

kCLxp = k .  x = k' . x '  = k' CL x ' p  

defines kCL to transform like x C L .  For a wave vector in the u direction, 

and since w = k ,  (6.4.42) 

This is the relativistic Doppler shift. For other angles, the formula is more 
complicated but straightforward, although some care must be taken to 
define the observation when 6 is near 90". (See Problem 6.9.) 

6.5. EQUATIONS OF MOTION FOR A POINT CHARGE 
IN AN ELECTROMAGNETIC FIELD 

We can guess various covariant equations of motion for a charged point 
particle. We narrow the list of suspects by requiring that they (the 
equations) be linear in the F p y  field and contain no derivatives.' 

We start from the four-velocity u p  = dxP/dr .  A four-vector acceler- 
ation is 

'The presence of first derivatives would, for example, result from an internal structure 
of the particle, such as a magnetic moment. 
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a covariant equation would have a four-vector on the right-hand side, 
linear in Fwv. The only possibility is Fpvuy. We conjecture” 

where q is the charge and the constant K will be adjusted to agree with 
the nonrelativistic limit. Consider first = i: 

d 
d r  

-rn - u‘ = K ~ ( F ; , u ’  + F,,u”) 

or 

=- K4 

v F - 3  ( E ;  + (v X B) , )  

so that K = -1. The particle equation is 

d 
dt 
- p = q ( E + v X R )  

where p is the particle momentum: 

mv 
p = m .  

The fourth component of (6.5.1) not independent, since 

u c L c L = K y I  du P 

d r  m 
u F,,,u” = 0, 

or 

d 
dr  
- (ul*u,) = 0. 

This is as it should be: 

(6.5.2) 

(6.5.3) 

“Observe that covariance requires four equations f o r  four variables, the i t u .  The 
equations, however, cannot be independent, since u,,o’ = 1.  The existence of such con- 
straints occurs often in relativistic theories. 
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1 - v2 = u’o - u* = ~ - 
1 - vz 

- 1. 

The fourth equation is 

d d 1  
d r  dt 

m -uo  = -qFoiu’ or m-- = qE * V. (6.5.4) 

Equation (6.5.4) looks like an energy equation; the right-hand side re- 
minds us of work done on the charge, the left-hand side the increase in 
energy m / m  It is, in fact, an energy conservation law, when E is a 
static field derivable from a potential E = -V+. It is easily seen that 
(6.5.4) under these circumstances implies 

(6.5.5) 

~~ ~ ~~ 

6.6. RELATIVISTIC CONSERVATION LAWS 
~ 

We prove a theorem. Let QcL be a conserved vector field, that is, let 

d p Q r  = 0. 

Then 

V S 

and there is a globally conserved quantity 

Q =  d r Q O  I V 

provided there is no outgoing flux: 

(6.6.1) 

(6.6.2) 

Q * dS = 0. I s 
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The theorem is that Q is an invariant. 
the charge of a particle. 

Proof: Consider 

We already know an example: 

Q(r  = 0) = d 4 x j @ ( x )  d,O(n . x )  (6.6.3) I 
with 

(6.6.4) 

n . x = n,,xh, and n, a unit vector in the time direction, so that n x = xo. 
Then 

a 
d 4 x  j O ( x )  - O(x") 

axo 

= j d 4 X j 0 ( X )  S(X0) (6.6.5) 

and 

Q = d 3 x j o ( x ,  0). i 
Consider a different observer 0'. He calculates Q': 

= 1 d 4 X j P ' ( X )  a , q n  . x ' ) .  

But 

and 

"We consider a vector Q' for simplicity. The theorem also holds for a conserved 
tensor Q.", with dpQr"  = 0. Then Q" = 1 dr Q"" will be glohally conserved and a four- 

vector. 
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Since dJ* = 0, d, can be placed to the left of j ”  in the integral: 

Q - Q‘ = I d4x a,[ j ” ( x ) (  8(n . x )  - 8(n’ . x ) ) ] .  (6.6.6) 

Integrating each derivative, we see that the surface terms all vanish, since 
for large x, j ”  vanishes and for large xo, both n x and n’ . x are positive 
or negative, so that the 8 functions cancel. 

Are there other conserved integrals of functions of the field? Evi- 
dently, yes-we already know about energy, momentum, and angular 
momentum. Consider first energy and momentum. We have seen that in 
particle mechanics they together form a conserved four-vector; we also 
know that in electromagnetic field theory, they both can be expressed as 
integrals of quadratic functions of the fields. It is natural to suppose, 
therefore, that we can write 

P: = j d ’ x  T Y  (6.6.7) 

where P: is the energy, Pk the momentum of the field, and TL” a 
conserved tensor, that is, 

duTv” = 0 (6.6.8) 

in the absence of sources. 
This is, in fact, the case; T;” is called the electromagnetic stress- 

energy (sometimes energy-momentum) tensor. From now on,  we shall 
call it the stress tensor, meaning the four-dimensional stress-energy-mo- 
mentum tensor, unless otherwise stated. 

From the electromagnetic conservation laws that we have already 
proved, we can identify all the components of TL”. From the energy 
equation, P:- = d’x T;!, we see that T F  is the energy density and 
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thus, TF is the Poynting vector: 

We also know the momentum density 

But, from (6.6.7), 
p > =  TO‘ F ?  

so 

TF = T$‘. 

(6.6.9) 

(6.6.10) 

From the momentum conservation equation, we find 

and - T$ is the Maxwell stress tensor: 

) (6.6.11) E,E, - -E26, ,  + B,B, - -B26,,  . 1 - 
47r 2 2 

In all, we have a symmetric two-index object TLp, that generates a vector 
on integrating T Y  over dx. It is, in fact, a Lorentz tensor. Its manifestly 
covariant expression is 

Next, we calculate a,,Ti?: 

where 

(6.6.12) 

(6.6.13) 

(6.6.14) 
1 
2 47rQ” = FAuq”aawFm,, + - qWvFnp d”F nB 7 
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and TF” is conserved in the absence of sources. We know, however, that 
global energy momentum conservation holds in the presence of sources, 
if we add together the energies and momenta of the sources (particles) 
and fields. We now write the most obvious candidate for a particle stress 
tensor. Tg”, that we will add to Tg”: 

T;” = mu”u”d (6.6.17) 

where d is the scalar density defined in (6.4.11): 

d = v i - 7  s3(x - x p ( x o ) ) .  (6.6.18) 

If more than one particle is present, or there are other interacting 
fields in play, then the single term in (6.6.17) must be replaced by a sum. 
We here confine ourselves to this simple system of electromagnetic field 
plus charged point particles. We shall see in Section 7.4 that for the 
relativistically invariant theories that we are discussing, one can always 
find an appropriate conserved stress tensor. However, the electrodynamic 
plus point particles case is particularly simple, in that there 

is, in fact, the correct conserved stress tensor. 
We calculate a,T$”, remembering that 

dp(u”d) = d J ”  = 0. 

Therefore, since u” depends explicitly only on time, not x, 

(6.6.20) 

(6.6.2 1) 
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But, from (6.5.1), with K = -1, 

where j y  is the current density four-vector. Adding T“” = TF” + TF”, 
from (6.6.16) and (6.6.22), we get 

Thus, we have a symmetric, locally conserved tensor T””, from which we 
can construct a globally conserved energy-momentum four-vector: 

p” = d3x T””, (6.6.23) I 
In more general field theories, it is easy (see Section 7.3) to construct 

a stress tensor 0”” that is conserved, 

but is not necessarily symmetrical. It is, however, possible (but not 
necessarily easy) to find a conserved symmetrical T””. These techniques 
will be discussed in Sections 7.4 and 7.8. 

The importance of the symmetry is that it makes possible the construc- 
tion of six more global constants by defining a third-rank tensor 

MpUA is conserved with respect to the I.L index: 

provided TP“ = T “*. 
Therefore, we have six global constants constructed as usual as 
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The space-space components Li i  define an angular momentum 

L =  d 3 x r x p ,  (6.6.26) I 
where p f  = To' is the momentum density. The components Lo' are 

where Po is the total energy: 

P o =  d3xTOD, I 
x:  is the center of energy, 

1 d3x Toox' 
x:. = 

d3x Too ' 

(6.6.28) 

(6.6.29) 

and P' and x" are, as usual, total momentum and time. We thus learn 
that for a relativistic system, dLoildx" = 0, or 

dx; P i  
dxo Po' 
_-  _ -  (6.6.30) 

This is as close to a center of mass theorem as one can come in a 
relativistic theory: The center of energy moves with constant velocity, 
v, = P/W. None of the other center-of-mass theorems of nonrelativistic 
mechanics hold. 

CHAPTER 6 PROBLEMS 

6.1 A point particle at rest undergoes an acceleration a = Ca, + ju,, so that 
1 its motion is described by the equations x = 2 u,t2, y = $ ay t2 .  
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How does an observer 0‘ moving to the left along the x-axis 
with velocity u describe the motion near x = y = t = O? That is, how 
does acceleration transform under a Lorentz transformation? 

6.2 Using the result of Problem 6.1, that is, a: = a,(l - u ~ ) ~ ’ ~ ,  show that 
a particle starting from rest at t = 0, and undergoing an acceleration 
4 7 )  in its own rqst system as a function of its proper time 7, travels 
a distance x = jo sinh 4 7 )  d7 in proper time T. Here, 4 7 )  is the 
“proper velocity”: 

4 7 )  = a ( 7 ) d 7 .  joT 
6.3 Show that the electromagnetic energy radiated per unit time by a 

point particle is an invariant under a Lorentz transformation; from 
that, calculate the rate of energy radiation by a point particle moving 
with velocity v and acceleration a. Then calculate the instantaneous 
rate of radiation of momentum for a particle moving with velocity v 
and acceleration a. (Hint: First show that the momentum radiated 
in the rest system is zero.) 

6.4 From the known electrostatic field (or potential), find by Lorentz 
transformation the electric and magnetic fields of a point charge 
moving with constant velocity v with ( v I  < c. These fields must, of 
course, be expressed in terms of the space and time coordinates used 
by the observer with respect to whom the charge has the velocity v.  

6.5 The production of a n+ meson from a proton by a photon is de- 
scribed as the process 

y + p - + r r ’ + n .  

At what photon energy E ,  on a proton at rest will the threshold for 
the process be reached? Call the respective masses mT, mp, m,, and 
m, = O .  

6.6 Consider a Lorentz transformation in an arbitrary direction v .  Write 
a three-vector equation for the transformation r ’  = f(r,  v, t) and a 
three-scalar equation t’ = g(r, v ,  t ) ,  where f is a vector function of r, 
v ,  and t ,  and g a scalar function of r, v,  and t .  

6.7 An observer 0’ has a very small velocity u, relative to 0; a second 
observer 0 has a very small velocity u,. relative to 0’. 

Now consider observers 6 ‘ and 0‘’ who have interchanged the 
order, that is, 6’ has u y ,  0“ has u, .  To lowest order in u,uy, what 
is the transformation that brings the observers 6‘‘ and 0’ into coinci- 
dence? 

6.8 A charged condenser moves with constant velocity v. Call the charge 
density p(r). 
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(a) In terms of p, write expressions for the electric and magnetic 
fields generated by p.  

(b) Write an expression for the force per unit volume on the moving 
charge density. 

(c) Integrate the expression you found in (b) to find the self-force 
on the condenser. It should be zero. 

(d) From your results in (b), write an expression for the torque per 
unit volume on the moving charge density and integrate it to 
find the self-torque. The answer should involve the tensor 

Let the condenser consist of two oppositely charged very small 
spheres, separated by a vector d.  In terms of the total charge Q 
on each sphere and the vector d, write an expression for the self- 
torque. Note that it is not zero, and so should have (according 
to prerelativistic theory) furnished a way of detecting absolute 
motion. Experiments, of course, failed to do so. Can you say 
why? After all, the field calculations are correct, as is the Lorentz 
force. 

6.9 Study the relativistic Doppler shifts by noting that the phase of an 
electromagnetic wave is invariant. Thus, 

e i k , ~ A  = e ik ix 'A 

and k* must transform like x " .  Thus, for a Lorentz transformation 
in the x direction 

with k the wave vector and w the frequency in the rest system of the 
radiator. Show that the frequency measured by an observer who sees 
the radiator moving with velocity u is 

a' = w v F - 3  
1 + u COS e 

where 0 is the angle the radiation makes with the motion of the 
radiator (as seen by the observer). 

6.10 (a) Calculate the ratio r of L,  the rate of energy loss through radi- 
ation, to G, the rate of gain of energy from the accelerating field 
in an electron linear accelerator. Express u = L/G in terms of the 
accelerating field E and natural constants. Assume the electron is 
relativistic so that u = c. 
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(b) Calculate the ratio r of the energy loss per cycle of a relativistic 
electron in a circular accelerator to its energy. The electron has 
energy E ,  the average magnetic field is B ,  and the machine 
radius is R. Assume u - c so that the frequency w - c /R .  Elimin- 
ate R and so express the ratio in terms of E ,  B ,  and natural 
constants. Finally, express the ratio r in terms of R in kilometers, 
R in tesla, and E in electron rest energy units. Explain from 
these results the advantage of linear accelerators over circular 
acceleration for ultrarelativistic particles. 

6.11 The functioning of an accelerator requires that the chosen orbit be 
stable with respect to small deviations. Consider a particle beam in 
the z direction and a stabilizing electrostatic potential # = kx2/2  in 
the x direction. Unfortunately, since V2# = 0, the y potential must 
be destabilizing. The overall potential must be a quadrupole: # = 
k [ ( x 2 / 2 )  - ( y 2 / 2 ) ] .  The alternating gradiant principle takes advan- 
tage of the fact that a stabilizing passage followed by a destabilizing 
one can be stabilizing with a proper choice of parameters. Since the 
potential is harmonic, one can calculate the matrix U2,  that takes 
the vector ( x l , i l / u )  to (x2, i 2 / w )  and combine the U matrices for 
different lengths of potential, a and 6: 

, y c r + h  = 
31 U 4 2 ~ ( ; I ,  etc. 

Let U2L describe a converging sector, with w(t2 - t l )  = cp, and UT2 
a diverging sector with wff? - f 2 )  = 8. Here, w2 = k h ( l  - u : ) ~ ’ ~ ,  
provided 1 and y are much smaller than u,, the beam velocity. 

(a) Calculate U 2 , ( 9 )  = U4?(cp) and U,,(O). 
(b) Combine the sector U’s as described above to give U = 

( c )  Show that det U = 1 and its eigenvalues are efIFL. where cos p = 
cosh Ocos 2 p  and lcosh Ocos 241 < 1. For lcosh Ocos 241 > 1, 
the eigenvalues are e?’, where cosh A = lcosh Bcos 2#/  and 
cos 24, > 0 or -eeA when cos 2 4  < 0. 

(d) Note that U is neither unitary nor Hermitian, so the apparent 
stable behavior coming from the eigenvalues can mask actual 
growth. To illustrate this phenomenon, find the two components 
of the vector U ( b )  and show that one of them can actually be 
arbitrarily large, even for Jcosh Hcos 241 < 1. Then show how- 
ever that for small 2p = 8 ,  the sector is stabilizing. 

(e) Show that magnetic stabilizing via a quadrupole magnetic field 
leads to the same equations for x and y .  

U44Cp) U32(H) U2,(Cp). 



CLASSICAL FIELD THEORY 
ELECTROMAGNETISM AND GRAVITATION 

Francis E. Low 
0 2004 WILEY-VCH Verlag GmbH & Co. 

CH 

Lagrangian Field Theory 

I n  classical field theory, we introduce Lagrange equations and Hamilton’s 
principle for several reasons. These include the special simplicity of using 
generalized coordinates and eliminating constraints, but most important, 
the ease of building invariance principles and the corresponding conser- 
vation laws into our equations. In quantum theory, the canonical formal- 
ism plays such a crucial role that the use of Lagrangians is often indispens- 
able. 

7.1. REVIEW OF LAGRANGIANS IN MECHANICS 

The Lagrangian is a function of generalized coordinates and velocities, qa 
and qn: 

where qu is the derivative with respect to t .  Here, t can be a variable, 
usually the time, that is used to parametrize the trajectories of the system. 

The second-order equations of motion follow from Hamilton’s prin- 
ciple, that is, from the requirement that the action 

be stationary for infinitesimal variations of qn( t )  -+ qa(t)  + 6qu, or 

provided T, ( f l )  = Tu(t2) = 0. Here, E is an infinitesimal and T o ( [ )  an 

28 1 
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arbitrary function of t .  Sometimes, we will use the common shorthand 
c v a ( f )  = Sq,; however, in case of confusion, it is often best to go back 
to (7.1.3). For example, (7.1.3) makes it obvious that (d ldt)  Sq, = 
G(dq,/dt). The notation S(q,)  indicates that S is a functional of qn(t);  that 
is, it is a number that depends on the functions q[,(t) .  

We carry out the variation 

(7.1.4) 

Since the integrated term vanishes at the t boundaries, (7.1.4) shows that 
the condition SS = 0 for any Sq, requires 

(7.1.5) 

For obvious reasons, the left-hand side of (7.1.5) is called the 
variational derivative of S,  written as S S / S q , :  

(7.1.6) 
aS - dL d dL d2 aL _ . . .  - 

d q ,  aq, dtaq, dt2 aq, 

and so on, if the Lagrangian contains higher derivatives.’ 
The relation between the symmetries of the Lagrangian and conser- 

vation laws is given in first instance by Noether’s theorem, which follows. 
Suppose that when qa + q,l + Sq, ,  6L = dSAIdt, where dSAldt is a 

time derivative of a function of the q’s and 4’s. Then, independent of the 
equation of motion, 

or, using the equations of motion, we get 

(7.1.7) 

‘If the Lagrangian doea have higher derivatives, the action principle most economically 
formulated states that 6S depends only on the variation of q ,  q ,  etc. on the boundary. 
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and we have a conserved quantity 

(7.1.8) 

(7.1.9) 

which is independent of t .  
We list the major examples from classical mechanics: 

1. Sx, = 6, a fixed displacement, identical for every particle, with L 
invariant. This would hold for motion in a potential depending 
only on the relative position of particles. In that case, we would 
have 

and we have total momentum conserved by virtue of translational 
invariance. The symbol Vi,, stands for the operator 

2. Sx, = 60 x x,, a fixed rotation about the origin, identical for every 
particle, with L invariant. SQ is given by 

SQ = Vie, L 1 80 x X, (7.1.12) 

or 

SQ = se .2  X, x v i n ~  (7.1.13) 

so that 

L = x X', x vx,, L ,  (7.1.14) 
a 

is conserved. We identify (7.1.14) with the angular momentum. 
(Do not confuse L, the angular momentum, with L ,  the Lagrang- 
ian.) 

3. Suppose L is translation-invariant in t-that is, it depends on t only 
through its dependence on (I and q .  Then with Sq,, = q,6t [SO that 



and 

(7.1.15) 

is conserved. We recognize in (7.1.15) the conservation of energy. 
4. Our last example is a Galilean transformation to a moving ob- 

server: a x j  = 6 u j t ,  with 6u ,  the same for all particles. Then, sum- 
ming over particles a, we obtain 

dL dL 
6L = c ~ sv,t + c 7 6v, = 

ax,, a axoj 

for a Lagrangian with translation invariance, whose only velocity 
dependence is in its kinetic energy. So, our conservation law here 
is 

(; g) t - mr,xai = constant 

or 

(7.1.16) 

Equation (7.1.16) tells us that the center of mass moves with 
constant velocity. 

7.2. RELATIVISTIC LAGRANGIAN FOR 
PARTICLES IN A FIELD 

Relativistic invariance may be achieved by choosing an action that is itself 
invariant. The obvious choice for a relativistic free particle action is the 
integrated proper time interval for the particle: 
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T2 "2  I 

dx, dx'" 

dcr du 
= - M  dud- - - -  (7.2.1) 

where M is a constant with the dimensions of mass and u any increasing 
function of T .  It is important to distinguish between dynamical variables 
(the xIL here) and Lagrangian integration variables (the u here). Notice 
that xo, the physical time, is here regarded as a dynamical variable. Since 
the final result is required to give us x as a function of xo,  our equations 
must make this possible. We shall see that this is always the case. The 
invariance (with respect to the choice of w) is called reparametrization 
invariance. 

In order to include an electromagnetic interaction, the simplest choice 
is to add to S the invariant 

(7.2.2) 

where E is a constant with the dimensions of charge. 
Note that (7.2.2) is gauge-invariant: A gauge change, 

changes S by 

a A  dx" 
6 S = E  -- d A  = A(2) - A(1) I a x @  d u  dw = I 

so that a variation of S keeping the end points x p ( u l )  and x p ( u 2 )  fixed 
is unchanged by the change of gauge. 

The Lagrange equations, with c as the independent variable, are 

where 

d x @ d x @  dxe" 
du d u  d a  
--+ E - - A , ,  

(7.2.3) 

(7.2.4) 
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so that 

(7.2.5) 

since A,(x) is evaluated at  x = x ( a ) ;  dA,ldxA is the space-time derivative 
of the field evaluated at x = x ( a ) .  Carrying out the u differentiation of 
A,, we have 

dx A 

d a  
= -E-FA,. (7.2.6) 

There are two simple choices for d u :  either du2 = dxp dx, = dT2, or d u  = 
dx". Either yields the equation 

(7.2.7) 

so that (7.2.6) agrees with (6.5.1), provided we set M = m, the particle 
mass, and E = q ,  the particle charge. 

There is an alternative action, also Lorentz-invariant, that gives the 
same final equations for a particle in a given electromagnetic field: 

corresponding to a Lagrangian 

(7.2.8) 

The Lagrange equations are 
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or 

(7.2.9) 

(7.2.10) 

The action S is not reparametrization-invariant; therefore, d a  is not 
a free variable, but is determined by (7.2.10). Multiply (7.2.10) by d x w / d a  
to obtain an integral of the motion: 

(7.2.1 1) 

so that d u  must be a constant multiple of d ~ .  A change in the constant 
multiple can be compensated for by redefining the coefficient m. Evi- 
dently, u = T gives us the correct equation, as written in (7.2.10). 

Note that the “energy” constant that we would obtain from the new 
action is 

just the integral we found above in (7.2.11). 
There is still, however, Noether’s theorem that may be applied to 

time displacement to obtain a physical energy integral. If the Lagrangian 
L is invariant under xo-+xo + 8 (8 a constant), then there will be an 
integral of the motion. For L to have this invariance, A ,  must be indepen- 
dent of xo. The constant of the motion is then 

6 W = -  a L  6.  (5) 
L depends on dx’tdu as 

(7.2.13) 

(7.2.14) dxo dxo 
2 d u  d u  d u  

L = - + q-A. + non - terms 
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so 

and with da = dr 

in agreement with our earlier formula (6.5.5),  as it must be, since the 
equations of motion are the same. A technical point: (7.2.15) is a constant 
of the motion, but it is the negative of the usual energy T + V .  For a 
particle in an external field, the sign is irrelevant. For a system of inter- 
acting fields and particles, the energy must be obtained from the full 
Lagrangian (or better, full action) for the particles and fields. We will 
discuss this problem in Section 7.4. 

Although the Lagrangians (7.2.4) and (7.2.8) for a particle in an 
electromagnetic field lead to the same equations of motion, this is a special 
circumstance and does not necessarily hold for other interactions. In parti- 
cular, adding a linear gravitational interaction to (7.2.8) leads to a 
simple-and experimentally correct-linear theory, and, as we shall see, 
to Einstein's equations for the gravitational field; following a similar proce- 
dure with (7.2.4) does not. From here on, we will work only with exten- 
sions of (7.2.8). 

We wish here to complete the list of Noether currents for the case of 
a Lorentz-invariant particle Lagrangian. Thus, consider an action 

(7.2.16) 

which is invariant under the Lorentz transformation 

and 

(7.2.18) 

with da an invariant, L itself will be invariant. Thus, the Noether theorcm 
will give us the conservation (with respect to a) of 
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(7.2.19) 

where Sx, is the change x"* - x W  for an infinitesimal Lorentz transforma- 
tion. We take as an example the "new" Lagrangian 

m d x p  dx ,  
2 d a  d a  

- _ _ _ _ _  (7.2.20) 

Thus, SQ is 

dx " 

dcr 
SQ = - m q P L y  ~ a x p .  (7.2.2 1) 

The combination v P v  a x p  is particularly simple. Since Sx,  = 
( A W p  - Sf",)x*, we learn from (6.2.31) that 

v P Y S x p  = v,,(AcLo( - SpOr)xu (7.2.22) 

= €,,XU. (7.2.23) 

Returning to (7.2.21), we obtain 

dx " 
du 

SQ = - m ~ E , , ~ X ~ ,  

so we have six tensor constants of the motion: 

(7.2.24) 

(7.2.25) 

where following (7.2.11), d a  must be taken to be proportional to d7, the 
proper time. 

In this trivial free particle case, we recognize in L'' the three com- 
ponents of angular momentum, and in L") = constant the three equations 
of motion, x' - (dx' /dxO)xo = constant. The interest of the expression 
(7.2.25) is that in the case of interacting fields and particles, (7.2.25) will 
again emerge as the particle contribution to a general conservation law. 
For an example of this, see Problem 3.3. 
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7.3. LAGRANGIAN FOR FIELDS 

Fields are systems with an infinite number of degrees of freedom: the 
fields and field time derivatives at every point in space at a given time. 
The Lagrangian is then itself a functional-an integral over space of some 
function 2’ of the fields and their derivatives. The function 2 is some- 
times called the Lagrangian, although it is more appropriately called the 
Lagrangian density. Thus, we have 

(7.3.1) 

where the qa’s  are all the fields we are considering and the d,+ka7s their 
derivatives. The index (Y can refer to a species of field, or to a vector or 
tensor component. The action S is now 

(7.3.2) 

Since the four-dimensional volume element d4x is Lorentz-invariant, the 
action (and hence the equations of motion) will be invariant if 2’ itself is 
an invariant function of the fields and their derivatives. 

Again, here we must distinguish between dynamical variables (the 
fields at every point of space) and the Lagrangian integration variable x’l 
(the time and space point at which one asks for the value of the field). In 
order to avoid confusion, we will from now on call the dynamical space- 
time coordinates of the particles y,”, or sometimes y ” .  We will keep the 
variables x”  for the arguments of the fields. 

By analogy with ordinary Lagrangians, we know that quadratic 
functions of the fields in 2 will lead to linear equations; higher derivatives 
than the first will lead to higher than second-order differential equations. 
We confine ourselves here to first derivatives and second-order equations. 
Higher derivatives are suggested in Problem 7.6. The rule for using the 
action is the same as for the point Lagrangian: The action must be station- 
ary for arbitrary variations &, that vanish on the integration boundary. 
so 1 

Integrating by parts and dropping the boundary term, we have 
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or, since S$a is arbitrary in the interior, 

the Lagrange equations for the fields. The definition of functional deriva- 
tives has been extended in (7.3.5) to apply to fields. 

The Lagrange equations (7.3.5) permit the construction of a con- 
served stress-energy tensor, called canonical: 

for which 

Using (7.3.5) yields 

= - [a’]T 

(7.3.6) 

(7.3.7) 

where the notation [ d ” ] 2  means that the derivative is only on explicit 
space time dependence of 2. If [ d ” ] 2 =  0, dpoP” = 0, and we have a 
conserved tensor, 

We note here that the conservation of (7.3.6) is a special case of 
the Noether theorem applied to field Lagrangians. Thus, assume that an 
infinitesimal transformation 
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leads to a change in %of 

S2’= d,(6AC”) 

for some SAP. It follows that 

since 

(7.3.9) 

(7.3.10) 

(7.3.11) 

Combining (7.3.11) and (7.3.9) yields the conservation law (7.3.10). The 
vector in (7.3.10) that satisfies the conservation law is called the Noether 
current. 

= ~ , , IC I ,SX” ,  where 
Sx” is a constant increment in X”  and 6Ap is 2’pSx’l. This will be discussed 
more fully in Section 7.4. 

The conservation of 0,” makes possible the definition of a conserved 
four-vector that we identify with the field energy-momentum: 

Equation (7.3.6) for 0,” follows by setting 

p f i =  d3X@”C”, (7.3.12) I 
such that 

d P K  
- = 0. 
dxo 

(7.3.13) 

The tensor 0,”’ is not symmetric, except for scalar fields. If we could 
find a tensor T’”” that was both conserved and symmetric (and we can), 
we could, as discussed in Section 6.6, define a tensor field 

which would then be locally conserved: 

d, M p ” ”  = 0, (7.3.15) 

leading to the global conservation of the angular momentum tensor 
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that is, 

-- - 0  
dLUA 
dxo 

(7.3.17) 

Equation (7.3.17) shows the general value of finding a symmetric 
tensor T p U .  

We next show how a conserved, symmetric stress-energy tensor can 
be constructed for a Lorentz-invariant Lagrangian density. Since the 
canonical stress tensor 0’”” is symmetric only for a scalar theory, this 
is a useful procedure. We start from 

and add to W” a tensor 

6 @ ~ ”  = a A @ l * u  

where QAp” is antisymmetric in A and y ,  so that 

TP”” = @’*” + S @ P ”  

(7.3.18) 

(7.3.19) 

(7.3.20) 

is conserved (since d QAp” = O), and P” = 1 d3xT”” is left unchanged 

In addition, it will be shown that QAp” may be chosen so that T’”“ in 
(7.3.20) is symmetric under the exchange of y and v .  We proceed by 
deriving an identity that follows from the Lorentz invariance of the La- 
grangian density, 2(&, 

Under a Lorentz transformation, the fields +ha transform so that 

(since I d3xaAa*O” =T ;3xa,w”” = 0). 

where Sob is a matrix representation of the Lorentz group. If the transfor- 
mation is infinitesimal, specified by e p Y ,  as in (7.2.23), then the matrix S 
will be of the form 

s = 1 + E p y C W ”  (7.3.22) 

where each Cp“ is an antisymmetric matrix in the (a,  b)  space. We give 
some examples: 
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1. J, a scalar field: C = 0. 
2. I(I a spin-one-half field: 

where up" is the set of six relativistic Pauli matrices: 

3. J, a covariant vector field IL,. Then 

a+"= -7% ha J, b *  

On the other hand, from (7.3.22) 

a*"= E ~u 2'"". a l(lb 

so that 

correctly transforms J, . 

(7.3.23) 

(7.3.24) 

(7.3.25) 

(7.3.26) 

(7.3.27) 

Similarly, a second-rank covariant tensor field transforms like 

with ZPubb' given by (7.3.27). 
The Lorentz invariance of the Lagrangian 2($, a,@) requires that 

where 

s* = €'""xfl"* 

(7.3.30) 

(7.3.31) 

Note the abbreviated notation: 64 and dLf/aJ,  are vectors in the (a ,  6 )  
space in which 2 is a matrix, as are s(a,+) and aL?/a(a,+). Note that if 
J, is covariant, a2?/aJ, is contravariant and vice-versa. 

With 
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a 2  -- 
d(d,*) - p ”  ’ (7.3.32) 

the Lagrange equation applied to (7.3.30) tells us that 

The transformation law (7.3.21) together with (6.2.31) informs us that 

s(a,t,q = a,s+ - ~ ~ ~ a ~ $ .  (7.3.34) 

This follows from the recognition that s(d,@) is not equal to a,st+h; the 
added Lorentz index p must also be transformed. Thus, (7.3.33) becomes 

(7.3.37) 

We return now to 

and note that with 

has all the desired properties. The divergence of the first term of (7.3.39) 
added to p“d“+ produces a ( p , v )  symmetric sum. The second and third 
terms of (7.3.39) are already ( p , ~ )  symmetric, as is the $‘” term in 0””. 
Therefore T”“ is ( p , v )  symmetric. However, Wp“ is ( a , p )  antisym- 
metric, so that the new symmetric T”” is conserved and leads to the same 
conserved energy and momentum as 0””. 

We consider an example: a hypothetical scalar field. 
The simplest consistent Lagrangian density is I/J~, where $ is the scalar 

field. This choice yields the variational equation = 0; this is not a very 
interesting result. The next complication is to add a derivative. Since 2 
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must be Lorentz-invariant, we can only add 

to obtain 

1 1 z= - aA4aA+ - - p 2 q 2  
2 2 

(7.3.41) 

(7.3,42) 

The arbitrary constant $ determines our units, which here and from now 
on are rationalized. This saves a lot of 471. writing! The constant 
p = is real and is, as we will see, the minimum frequency at which 
the field will oscillate. 

To derive the field equations from the Lagrangian density, it is useful 
(only this time) to go back to the more explicit notation 

so that 

and 

(7.3.43) 

(7 * 3.44) 

We recognize 

Equation (7.3.44) is, of course, the familiar wave equation with solu- 
tions e i k A r ~ ,  where 

The canonical stress-energy tensor for this theory is 

which is symmetric and, therefore, entitled to be called 
vector P“ is given by 

(7.3.45) 

(7.3.46) 

T“”. The four- 
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P ”  = j [a”ga.* - O U ( ~ * * ~ A *  2 - p’) ]  d3X (7.3.47) 

with 

= A [ d3xX[rl12 + (‘4)’ + p2+’] ,  
2 

(7.3.48) 

clearly showing the need for positive p’, since otherwise Po would be 
unbounded both below and above and the system would be unstable. 

The momentum is 

Pi= d0t+h3’$dd3x or P = - d 3 x  @$. (7.3.49) I 
The angular momentum density I(r) is r X p(r), where p is the momentum 
density. That is, the angular momentum Lv contained in a volume V is 

L v =  - $r x O $ d 3 x ,  I V 
(7.3.50) 

and the angular momentum flux is obtained from the equation 

s 

Thus, the loss (radiation) of angular momentum through 

(7.3.51) 

a surface S is 

(7.3.52) 
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7.4. INTERACTING FIELDS AND PARTICLES 

Following the work in Section 7.2, we use particle coordinates y$(u,), 
with u an invariant parameter to be determined, as, for example, by 
(7.2.11). In what follows we drop the labelp, with the understanding that 
we must sum over all participating particles. 

The particle Lagrangian L, is a function of j , (a)  = dy,(a) /du,  and 
the particle action is the functional 

S,, = L, d a  = - j , (u ) j ” (a )  d a ,  (7.4.1) i 
as given by (7.2.8). 

action is the functional 
The field coordinates &(x) are functions of space and time. The field 

where 3, is the Lagrangian density. For a scalar field, 
(7.3.42) that we may take 

The Lagrangian corresponding to 2 is 

that is a function o f t ,  whereas the particle Lagrangian 

L ,  = -mi2 d y P l d u  dy,ldu 

is a function of u. 
It is therefore necessary to consider the action as 

(7.4.2) 

we have seen in 

(7.4.3) 

(7.4.4) 

the fundamental 
functional. The action for the scalar field particle system will be 

s = s, + s, + SI (7.4 * 5 )  

where S, is the interaction action. We have seen in (7 .2 .2 )  how S, must 
be chosen to give the correct equation for charged particle motion in an 
electromagnetic field: 
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(7.4.6) 

We see that S, is also a functional of the field A,(x) by rewriting 5’1: 

dYP SI = 4 I d4x d a  - a4(y - X) A , ( x ) ,  
du 

(7.4.7) 

in which form the field variable A ,  depends on the field point x ,  as is 
required by the Lagrangian procedure. 

In general, we will have 

S, = d4xLfg, (7.4.8) I 
I S, = duL,  (7.4.9) 

and Sf with two equivalent forms: 

S I =  duL1 I 
as in (7.4.6), or 

S, = d4x9/  J 

(7.4.10) 

(7.4.11) 

as in (7.4.7), the first form appropriate to the y p ( u )  equation, the second 
to the & ( x )  equation. 

The Lagrange equations for the combined I)&), y ’ ” ( u )  system are 

and 

(7.4.12) 

(7.4.13) 

The interaction action SI in all the cases we will consider is linear in the 
and 

d,&’s. Therefore, the overall sign of SI, which is equivalent to the sign 
of the coupling constant, is irrelevant, since it can be changed by a redefi- 
nition of $a : (Fin + - &. By the same token, the signs of S, and S, alone 
are irrelevant. The important sign is the relative sign of S, and S, and, 

in first approximation, the field action S, is bilinear in the 
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if there are several independent S*'s and S,,'s, corresponding to several 
fields and particles, their relative sign. We choose the relative signs so 
that the energy of the noninteracting system has a definite sign, which we 
normally take to be positive. 

If the equations of motion are translation-invariant in space and time, 
we can apply Noether's theorem to find the conserved energy-momentum 
four-vector. The translational invariance is with respect to the transforma- 
tion 

y w  -+y* + S y P  (7.4.14) 

with 8yp  a constant four-vector, and 

or, for an infinitesimal transformation, 

As in (7.3.9) and (7,3.11), we calculate 6 s  in two ways. First, using 
the Lagrange equations, we get 

(7.4.17) 

In the d'x integration, we can carry out the time integral from ti  to t2 ;  
the space components of a,, integrate to zero. Similarly, we carry out the 
do integral from u, to uz, where n1 is such that y"(a,)  = t ,  and y"(u2) = 
tz .  6 s  becomes 

since a 2 1 / d ( d o $ a )  = 0. 
Second, remembering that 6 y p  is constant and, as in (7.4.1) and 

(7.4.6), that S, and S, are invariant under the transformation, we find, by 
a direct calculation 

Equating (7.4.18) to (7.4.19), we find with 61)~ = -6y"a,1,!1~ 
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(7.4.20) 

with P, a constant: 

Equation (7.4.21) gives us a rule for extending the field theoretic 
canonical formalism of (7.3.6) to include particle degrees of freedom, the 

We return to the example of the scalar field, considered earlier in 
Section 7.3, but now interacting. We choose the action (see Problems 7.1 
and 7.2) 

Y , ( U ) .  

S =  I d x  [ ”” - p 2 @ 2 ]  - I d a  dye“ dy, (1 + g @ ( y ) ) .  (7.4.22) 
2 d a  d a  

The equations of motion are 

(7.4.23) 
d c  da 

and 

The “W” conservation law is for 

which we may set equal to 1. The energy momentum vector P, is 

(7.4.26) 
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Note the positive energy 

*z + (V*)’ + p2*2 + m(1 + g*y2 
, (7.4.27) 

2 v F - 7  

provided the expression ( d d d v ) ’  (1 + g$) = 1 behaves properly. 

conserved tensor 
ent? The answer is yes. It can be written down by inspection. It is 

If we return to (7.4.21), an obvious question arises next: Is there a 
of which P,  is the space integral of the O v  compon- 

It is left as Problem 7.4 to show that O””, has the desired properties. 
The totally contravariant form of O w y ,  

(7.4.29) 

is, in general, not symmetric. 
The next question: Can we always find a tensor 6 W ”  such that 

has the desired properties listed in Section 7.3? That is, is it symmetric, 
conserved, and having the same Pp integral as Ow”? Again, the answer is 
yes. The construction technique parallels the treatment leading to  (7.3.40). 

We make use of the fact that Y,,, and L = L,, + LI are separately 
invariant under the Lorentz transformation 4 + 4 + E~,,Y,@”+,  as in 
(7.3.22), and 

,’”-+I;” + €”A y” (7.4.31) 

From the invariance of Y* follows 

aY+ ---a* +p’Is(a,*) = 0 (7.4.32) 
a* 

where p p  is still given by (7.3.32). From the Lagrange equation for $, we 
learn that 
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so that, with 6(d,+) = d,S+ - ~ ~ , a ~ + ,  (7.4.32) becomes 

or 

(7.4.33) 

and from (7.3.22) 

so that 

We define WP” as in (7.3.39) and add 6OP” to W”, where 

and 

(7.4.36) 

(7.4.37) 

The symmetry properties of (Pup” show that 6 W ”  is conserved: 

a,@,” = 0 (7.4.38) 

and the energy-momentum vector Pc” is unchanged by 6 W “ :  

d’x SOo” = 0. (7.4.39) 

It must next be shown that T,” is symmetric. We sce that the last term 
on the right of (7.4.35), @”aF+ -p”a”$)l2, added to the first term of 
0’”” in (7.4.29), plLa”$, is symmetric. 
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There remains 

From the invariance of L ,  we find 

or 

The variational derivative GLISl//(x) is given by 

(7.4.40) 

(7.4.41) 

(7.4.42) 

(7.4.43) 

so that 

which is p v  symmetric. This completes the construction of T p ” .  

served, symmetric stress tensor directly from an action principle. 
In Section 7.8, we will find a second method of constructing a con- 

7.5. VECTOR FIELDS 

We return now to electrodynamics. We first ask for a Lagrangian density 
for a free massive vector field A, ,  analogous to the vector potential of 
electrodynamics. We require an invariant bilinear function of A,, involv- 
ing at most first derivatives. A first guess might be Yc; (G for a guess): 

,Ur, = -a ,A”a”A.+ p Z A ” A y .  (7.5.1) 

This choice has an obvious problem: If we consider each v value separ- 
ately, we have in (7.5.1) a sum of four scalarlike Y s ,  three with the sign 
to give a positive energy and one with the opposite sign. Therefore, there 
is no lower or upper bound on the energy and the system is unstable. 
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How do we produce an 2 with positive energy? There are two ways. 
The first, which we leave as an exercise (see Problem 7.9), is to write 
down all possible invariant bilinear functions of A ,  and d ,A with arbitrary 
coefficients, calculate the energy, and adjust the coefficients to make the 
energy positive-definite. 

A second way is easier2 and perhaps more enlightening. Notice in 
(7.5.1) that the space components of A ,  carry positive energy, the time 
component negative energy. Furthermore, the space components form a 
rotational vector, and the time component a rotational scalar. Perhaps the 
scalar is present only to preserve Lorentz invariance, and we should try 
to eliminate it as an independent field. The clue is in the four-vector wave 
number k p , 3  which for a massive propagating field will be timelike: 

k,k" = p2. (7.5.2) 

Therefore, there is a Lorentz system for which k' = 0, and the Lorentz- 
invariant condition 

k,A" = 0 (7.5.3) 

will set A" = 0 in that coordinate system. 

to an equation resembling 
We expect the field to be radiated by a current density j ,  according 

(8 ,da  + p 2 ) A A  = - j "  (7.5.4) 

(note rationalized units), but requiring that a propagating solution with 
wave number k" will satisfy k,A" = 0. 

We try to accomplish this by projecting (7.5.4). With wave number 
k p ,  (7.5.4) becomes 

( ( ika ) ( ika )  + p 2 ) A A  = - PA,,jv (7.5.5) 

where P is a projection operator that makes (7.5.3) hold for k 2  = p2. The 
projection operator P A ,  is clearly S^, - (k"k,, /p*),  since 

kA( S^, - F) = k,,( 1 - 5) 
'This is especially true in the case of a second-rank tensor field, like the gravitational 

'We go back and forth freely between a coordinate space description of the fields and 
field, where, as we shall see in Chapter 8, the Lagrangian has numy possible terms. 

their Fourier-transform space. 
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which vanishes at k2 = p2. Note that this procedure, as opposed to the 
direct construction of a Lagrangian density suggested earlier, requires that 
one start with p f 0. 

Equation (7.5.5) now becomes 

(7.5.6) 

We eliminate k + j by operating on (7.5.6) with k , :  

( p 2 - k 2 ) k . A = - k . j  1--  or k . j = - p 2 k - A  (7.5.7) ( 2 
and (7.5.6) becomes 

(p' - k2)AA + k " k .  A = - j " .  (7.5.8) 

In coordinate space, k ,  = (l/i) a,, so 

p 2 ~ "  + &d"A" - a A  a,A" = - j A  

or 

d,(d"A" - 8"AU) + p2A" = - j A  

or 
a,FQA + pzAA = - j "  (7.5.9) 

the natural extension of Maxwell's equations to the case of finite p. 
Equation (7.5.9) is called the Proca equation. 

The cancellation of the factor p2 - k 2  in (7.5.7) would appear to 
contradict the assumption that would make k . A = 0 for a propagating 
mode. However, the remaining identity, p2k . A = - k - j or 

shows that the cancellation does occur, since it is only at  the source j ,  
that d+Aw fails to be zero. An equivalent statement i s  that k A has no 
pole at kZ = p2, although A" does have such a pole. The residue of the 
pole represents the propagating radiation. Since k . A has no pole, the 
propagating solution has k . A = 0. 

We see in (7.5.9) that there are only three degrees of freedom for the 
vector potential A @ ,  since the second-order time derivatives only act on 
the space components A'. Therefore, A' is a constrained variable, and 
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there are only three propagating modes. Of course, this results directly 
from the way in which we derived the equation, that is, from demanding 
that the propagating mode with kj  = 0 have no A' component. The three 
degrees of freedom correspond in quantum theory to the three directions 
of spin of a massive spin one particle. 

The presence of the mass term has destroyed the gauge invariance of 
the massless theory. We also note that the limit p2+ 0 requires a con- 
served current ;*, since in that limit the left-hand side of (7.5.9), a,F@", 
is identically conserved by the antisymmetry of F@*.  Of course, in that 
limit gauge invariance is restored, and any one spatial component of the 
vector potential can be eliminated by a gauge transformation, leaving two 
independent modes. 

We next write a free field Lagrangian density that will yield (7.5.9) 
when the A @  are taken as the independent  coordinate^.^ Since it is the 
spatial vector coordinates that correspond to the actual degrees of freedom 
of the field, we choose the sign of Y to make their energy positive. Also, 
for p2 = 0, 2 should be gauge- and Lorentz-invariant, and bilinear in A p .  
The only choice is 

1 1 
4 2 

z= -ct - F*,,F*" + - C ~ ~ ~ A * A *  (7.5.10) 

where c, determines our units and c2/cI = 1 satisfies the field equation 

From now on, we work in rationalized units with the free field La- 
(7.5 3 ) .  

grangian density 

1 P2 L?= - - F ~ , , F ~ ~  + -A*A*.  
4 2 

(7.5.11) 

We already expect, from our work with particle Lagrangians in exter- 
nal fields, that the scalar potential enters as -q+(y, , ,  t ) ,  where y p  is the 
particle coordinate and q its charge. Since 

where p is the particle charge density, we guess that the correct interaction 
Lagrangian density should be 3, = ;@A,. The Lagrangian density (to 
whose action we will eventually add the particle degrees of freedom) is 

'And j' is set equal to zero. 
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then 

With 

we have 

1 F2 Lf= - - F,,F“” + -A,A” + j”A,,. 
4 2 

and 

(7.5.12) 

(7.5.13) 

(7.5.14) 

leading as expected to (7.5.9): 

-8,F”” = p2A” + j ” .  (7.5.15) 

We may repeat the argument following (7.5.9) kom the Lagrangian 
point of view, by noting that A, does not appear in 2. Therefore, the 
A.  equation 

is a constraint equation, and only the three Ai equations are dynamical. 
As before, when we consider the p = 0 limit, we eliminate one more 
degree of freedom with the introduction of the arbitrary gauge function. 

We wish to verify that the energy Po of this theory, with j ,  = 0, is 
positive. It is 

(7.5.16) 

since the canonical tensor 0‘“” and the symmetric tensor T,” give the 
same conserved energy-momentum vector P. In terms of (4, A) = 
- (Ao,  A’) with 

2?= - 1 (“4 + A)’ - - 1 (V X A)’ + - P2 (42 - A’) (7.5.17) 
2 2 2 
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we have 

1 1 P2 2 P2 0"" = (v4 + A). A - -(v4 + A)2 + -(v x A ) ~  + --A - - 42 
2 2 2 2 

-- - A2 + -(v 1 x -A12 + --A P2 2 - -(v4)2 1 - - 4 2  P2 
2 2  2 2 2 

or, with IT = V$ + A, and using the equation [from (7.5.15), with j *  = 01 

v * IT = p24 

we find, after an integration by parts, 

which is positive-definite. 

transform of the vector field? 
It is also of interest to express the energy Po in terms of the Fourier 

A,(x)  = d3k[a,(k)  er(k.x--k@o) + C.C.]. I 
Since is time-independent, only cross terms between ek iwr  will be 
different from zero. In addition, the d'x integral will only connect +k to 
-k and, hence, a ,  to a:, From the divergence condition on A , ,  koao = 
k . a, and from (7.5.18), 

or, with k in the three direction, and klko = E < 1 

'Note here, and remember in the future that el(' x-k"x"l  = Crk x .  
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We s e e t h a t a s p + O ,  k + k o a n d E - + l , s o  

(7.5.21) 

and the longitudinal mode a3 carries no energy, unless a3 becomes singular 
as p -+ 0. This does not happen in the vector theory we are now consider- 
ing. We shall see later that the situation with the gravitational field is not 
so simple. 

From the general result (7.4.37) and the preceding discussion we can 
calculate the symmetric stress tensor T P ”  for the electromagnetic field and 
a charged particle in interaction with each other. The action is 

dyp ] (7.5.22) m dyP dyp - - - - - q - A ,  . 
2 d a  d a  d u  

The stress tensor is 

(7 ..5.23) 

in agreement with (6.6.19). (See Problem 7.5.) 

terms in the action correctly, since the energy density 
Evidently, we have chosen the signs of the free field and free particle 

is positive. 
As we have remarked earlier, it is an exceptional circumstance that 

the electromagnetic and particle stress tensor T’”“ is the sum of the free 
particle and free field stress tensors, even though the equations for E, B, 
and y involve the interaction between them. It is clear from the discussion 
leading to (7.4.37) that T p ”  will normally have an explicit interaction term 
in other field theories. 

One must realize that the fact that the energy density (73.24) is 
positive (strictly, nonnegative) is a necessary, but not sufficient condition 
for the equations of the theory to havc sensible (i.e., finite) solutions. In 
fact, the equations of the electrodynamics of point particles do nor appear 
to have sensible solutions. In classical theory, this is manifested by the 
electromagnetic contribution to the inertia of the point particle becoming 
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infinite (a consequence of the singularity of the electric and magnetic fields 
at the position of the particle). This problem was discovered by Lorentz, 
who tried to remove it by renormalization. We explain. 

Lorentz calculated the self-force (i.e., the force of the retarded fields 
generated by the electron on itself) for an electron, instantaneously at 
rest, but undergoing arbitrary motion as a function of time. To make the 
calculation finite, he assumed a charge density for the electron 

where 

f(x) d3x = 1. (7 .5 .26)  I 
Lorentz found for the force 

d2y 2e2d3y 
dt2  3 c3 dt3 ’ 

F = - - + --__ 

where 6m is the electromagnetic self-mass 

6m = 2 - e 2 [ d 3 x d 3 y  f (4f  (Y) 
3 k - Y l  ’ 

(7.5.27) 

(7.5.28) 

and Y ( t )  approaches y ( t ) )  as the characteristic radius R of the cut off 
function f approaches zero. In the limit of a point electron, the integral 
(7.5.28) diverges like 1/R.  The second term in (7.5.27) (which we have 
already seen in Section 5.9 and Problem 4.8) is independent of R as R + 0. 
In this limit, there are no other terms. 

Lorentz observed that the equation of motion for the electron would 
follow from (7 .5 .27) :  

mo d2y = -am d2y - + 2e2d3y 
dt2 dt2 3c3  dt3 

(where mo is the nonelectromagnetic mass of the electron) or 

d2y 2 e 2 d 3 y  
m-=--- 

dt2 3 c3 dt’ 

where 

m = mo + Sm. 

(7.5.29) 

(7.5.30) 

(7.5.31) 
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Since the equation of motion for the electron only involves m, and 
not mu and Sm separately, one might optimistically hope that a finite m, 
achieved either by a negatively infinite mo, or by a cut-off at small r ,  
would leave us with a sensible theory. 

These two alternatives must be considered separately. The first, a 
negatively infinite mo, does not work, because (7.5.30) has exponentially 
growing solutions. We have already seen a hint of this problem (without 
the infinite Sm) in Section 5.9, with (5.9.11) and (5.9.12). 

One can, in fact, show that the run-away solutions and the divergent 
self-mass are related problems: A charge density that makes the integral 
(7.5.28) finite does not have run-away solutions. Unfortunately, such a 
cut-off function would violate special relativity, since the action, as in 
Problem 7.8, would not be Lorentz-invariant. The application of relativis- 
tic quantum theory improves the situation but not enough: It turns the 
linear divergence of (7.5.28), that is, the linear dependence on 1/R,  into 
a logarithmic divergence. The run-away solutions disappear, but new prob- 
lems arise. 

How should one deal with this situation? There is probably a modest 
consensus favoring the following view. 

We know that the electron mass is finite; therefore, our theory is 
wrong. At some small distance, Ro, the equations must become less 
singular so that the equivalent integral (7.5.28) converges. One can try 
to guess a value for RO. A popular guess is the Planck radius R , .  R,, is 
the Compton wavelength and radius of a body whose gravitational self- 
energy is equal to its rest energy.' This radius is 

(7.5.32) 

Here, G is Newton's gravitational constant and h Planck's constant divided 
by 2 r .  

Why pick R,,? For one thing, the quantum theory of gravity must 
come into play at that radius. We have no satisfactory quantum theory 
of gravitation; perhaps a correct quantum theory of gravity would provide 
the necessary cut-off. Since the divergence is only logarithmic, the self- 
mass is relatively insensitive to the  cut-off. The self-mass value given by 
quantum electrodynamics, cut-off at the Planck radius, is 

h 
6m 4 a  m,c 
m 3 T R,) 
_ -  ---log- (7.5.33) 

'Incidentally. a particle with this radius would be a black hole. 
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where a is the fine structure constant: 

1 
- 137 
a 

and hlm,c is the Compton wavelength of the electron: 

(7.5 34) 

(7.5.35) 

The resulting logarithm, log lozz, is small enough so that 6mlm is still 
smaller than 1. 

Of course the cut-off, the distance where our present theories fail, 
could be much greater than 10P3’cm. We know experimentally from 
electron-positron collisions that electrodynamics holds at least as far down 
as lo-’’ cm, so the cut-off could be anywhere from 

To conclude this brief discussion of the boundaries to our understand- 
ing, we summarize. 

Our present theory of electromagnetic fields interacting with electrons 
does not lead to finite results. However, modifications of the theory at 
interaction distances that might be as small as 10-32cm might provide a 
consistent, finite theory, with no perceptible effect on present-day physics, 
including atomic and nuclear scale phenomena. We proceed with this 
assumption, even though we do not know how to construct such a theory. 

to cm! 

7.6. GENERAL COVARIANCE 

We next take up the subject of general covariance, that is, the study of 
objects that transform like tensors under general coordinate transforma- 
tions. We need this knowledge in order to formulate a consistent theory 
of gravitational fields (Sections 8.6 and 8.7). We consider it now because 
it permits us to construct a symmetric stress tensor F’’ directly from a 
generally covariant action (Section 7.8). In addition, it permits us to write 
known dynamical equations in arbitrary coordinate systems. 

We start from the notion of physical tensors under Lorentz transfor- 
mations and define an extension to general coordinate transformations. 
Whatever the coordinate transformation x ’ ( x )  be, define a contravariant 
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vector to transform like dxF, that is, like 

(7.6.1) 

Higher-rank contravariant tensors transform like products of vectors, so 
that 

(7.6.2) 

etc. 

will 
Tensor equations hold in all coordinate systems. Thus, if V” = 0, so 

and conversely. To see the converse, multiply (7.6.3) by dxAlax‘” .  There 
results 

(7.6.4) 

The tensor transformation property defined by (7.6.1) is consistent. 
That is. if 

and 

then 

or, by the chain rule, 

There are physical invariants under Lorentz transformations. We 
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define them to be invariants under general coordinate transformations. 
Thus, if 4 is an invariant field, 

~’(x‘(x)) = $(x) and 4(x + ax)- $(x) = 7 a4 Sx” (7.6.5) 
ax 

is also an invariant. Evidently, 

(7.6.6) 

this transformation rule is called covariant. Just as in the case of Lorentz 
tensors, the contraction of a covariant with a contravariant index produces 
an invariant. We see a special case in (7.6.5); the general rule follows 
from the defined transformation properties. 

Contravariant, covariant, and mixed tensors can be found by multipli- 
cation. As usual, symmetry properties are preserved under tensor transfor- 
mations. 

An interesting object is at:, which is a mixed tensor since 

(7.6.7) 

The space-time interval 

dr2 = d[+  v,,, d t ”  (7.6.8) 

where the 5’”’s are the normal rectangular coordinates in some Lorentz 
system is an invariant. In a general coordinate system, it will have the 
form 

= g,, dx“ dx” . (7.6.9) 

Since dr2  is an invariant, grrh is a tensor and symmetric. It is called the 
metric tensor.’ The tensor g,,, can be used to lower indices. Thus, if V p  
is a contravariant vector, V ,  = g,,V” is its covariant representation. This 
can be seen as follows. Let U’” and U, = vp,,U“ be the contravariant and 
covariant representations of a vector in a Minkowskian coordinate system. 

’Conversely, if gp,.  is a tensor, d~~ as defined in (7.6.9) is an invariant. 
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Remember: If U F  = (U",  U), U, = (U" ,  - U). Then, by the definition of 
contravariance and covariance, 

and 

Since 

(7.6.10) 

(7.6.11) 

Equation (7.6.11) yields 

The metric tensor has its contravariant counterpart, defined here by 

(7.6.12) gPAgg, Y = 8: ; 

from (7.6.12) we see that lowering both indices of gp"  produces gPY,  since 

g,"g"AguA = s,*se = g,". (7.6.13) 

The determinant of g,, is another interesting object. Of course, the 
determinant of v P y  is - 1 and remains unchanged under Lorentz transfor- 
mations. The same is not true of det gWw. We define 

g = -det g,, (7.6.14) 
and calculate g ' :  

and 

(7.6.15) 
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An object that transforms like 6 is called a scalar density of weight 
-1 .  The number of powers of det(dx'ldx) that multiply a normal tensor 
transformation law is called the weight of the tensor density. Thus, for 
example, (l/$)T,"" is a second-rank tensor density of weight 1. 

The transformation property of 6 provides us with an invariant 
volume element. Since 

d4x = det(--) axa d4x' 
dX'P 

G d 4 x  = ~ l e t ( ~ ) G d ' x '  ax I P  

= @ d 4 x t ,  (7.6.16) 

a ci4x is an invariant volume element. 
We have learned how to rewrite some Lorentz covariant formulas so 

that they are generally covariant. For example, suppose 4 is a scalar field 
and C ,  a covariant vector. Then 

(7.6.17) 

is a generally covariant equation, as is 

A, g'"" B,, = constant (7.6.18) 

if A ,  and B ,  are covariant vectors. The equations of electrodynamics, 
however, involve space-time derivatives of vector and tensor fields. In a 
Minkowskian coordinate system, these form Lorentz covariant tensors of 
one higher rank; they are not tensors under general coordinate transforma- 
tions. To take a specific example, we recall that the space-time derivatives 
of a contravariant vector U w  in a Minkowskian coordinate system form 
the components of a mixed Lorentz tensor: 

(7.6.19) 

We can therefore define a tensor TFA in a new coordinate systems by 
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its transformation from QwA 

(7.6.20) 

On the other hand, we have already agreed to define the vector V* 
in a general coordinate system by the equation 

If we now calculate dVP/dx^ ,  we find 

or, since 

or 

where 

(7.6.21) 

(7.6.22) 

(7 15.23) 

(7.6.24) 

(7 h.25) 

(7.6.26) 

(7.6.27) 

T'", is called the covariant derivative of Vw. It is the tensor that in a 
Minkowskian coordinate system is the tensor a U * / a ~ ^ .  

The extra term in (7.6.26) arises from the correct formulation of 
parallel displacement. If we displace the vector U w  from 6 to 5 + d t ,  the 
new vector is still U P .  However, in a general coordinate system, the first 
vector is 
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(7.6.28) 

and the displaced vector is 

ax I* V” + 8V’ = --(x + Sx) U” 
a 5“ 

or 

S V P  = - r y , ~ x A v ~ .  (7.6.30) 

The covariant derivative subtracts the parallel displaced vector from the 
vector at the new point; this results in a covariant derivative, as given by 
(7.6.26). 

The three-index quantity r‘ru is called the affine connection. Although 
r f v  has tensor indices, it is not a tensor. For example, it vanishes in a 
Minkowskian coordinate system (x = 6). We note here that rrv is sym- 
metric in A and v. 

We introduce some convenient notation: The ordinary derivative of 
V p  is written as 

(7.6.3 1) 

The covariant derivative is written as 

T’, = If”;,. (7.6.32) 

The rule for covariantly differentiating a higher-rank tensor follows 
trivially from the above procedure: There is one extra “kinematic” deriva- 
tive for every axlag in the transformation replacing (7.6.21). Therefore, 
one must replace the single extra term in (7.6.26) with a sum: 

(7.6.33) 

etc. for higher tensors. 
Finally, we derive the equivalent rule for a covariant index by noting 
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that if A ,  and B” are vectors, then A,Bp is a scalar, dA(A,B’) is a 
vector, and 

On the other hand, we can consider (7.6.34) in a Minkowskian coordinate 
system and then transform each term separately. The second will become 

A ,  B p ; A  (7.6.35) 

and the first 

AP;A B p .  (7.6.36) 

Therefore, 

A p ( B p ; ~  - B,,,) + Bw(A,;A - A,,A) = 0 

or 

A w r Y m  B“ + B‘(Ao;A - Ac3A) = 0 

so that, since A and B are independent, 

We can express the T’s in terms of the metric tensor by noting that 
the covariant derivative of gr, ,  must be zero, since g,, is a tensor, and 
g,, = qPu,  a constant, in a Minkowskian system. Therefore, 

(7.6.38) 

We can solve (7.6.38) for I‘. Interchange v and A in (7.6.38) and 
subtract. Then interchange p and A in (7.6.38) and subtract this from the 
first subtraction. There results 

or 

(7.6.40) 

Thus, given the components of g ,  r can be calculated. We will see in 
the next section that we can find a coordinate transformation that takes 
any metric tensor to Minkowskian form at a point, with vanishing deriva- 
tives, and thus vanishing r. This a posteriori will justify the procedure of 
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transforming from a Minkowskian system to derive the formulas for co- 
variant differentiation, whether or not the underlying space is Minkowsk- 
ian.8 

It is possible, but nontrivial, to derive (7.6.40) directly from (7.6.9). 
We now know how to make any Lorentz covariant expression 

generally covariant. We simply replace all derivatives by covariant deriva- 
tives, and all d4x  integrals by d 4 x G  integrals. 

There are some special cases worth noting: 

This is a very helpful formula in electrodynamics. 

by virtue of the antisymmetry of F and the pv symmetry of r;,, 
all the I' terms cancel, leaving 

This is also a very helpful formula in electrodynamics. 
3. The divergence of a vector (or tensor) From (7.6.26), 

V p L A  = dAVp  + rr, V"  

From (7.6.40), 

and V p ; ,  = d,Vp + r;,, V " .  
(7.6.44) 

r;, = g p A  - g p  A .  v 
2 

(7.6.45) 

which can in turn be calculated from the determinant g = 

- W g ,  : 

'That is, whether or  not therc is a coordinate system in which g,,, = 7," everywhere. 
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and 

so 

(7.6.49) 

For V P : ,  we then have 

The divergence of a tensor follows in a similar way: 

for the special case Fw“ = - F u p ,  the last term in (7.6.51) is zero, 
and we have, for the electromagnetic field tensor, 

(7.6.52) 1 
F w ” : p  = a,(G F P ” ) .  G 

4. We can use (7.6.50) to derive the general expression for the IZ- 

dimensional Laplacian (or pseudo-Laplacian, if the space is Min- 
kowskian rather than Euclidean): 

(7.6.53) 

where $ is a scalar. 

We can illustrate (7.6.53) with the familiar case of V 2 +  in orthogonal 
coordinates in three dimensions: With 

(ds)2 = h: dq: + h; dq; + h: dq: = gcLy dq‘‘ dq” and % = hlh2h3, 
(7.6.54) 

we have 



7.7. Local Transformation to a Pseudo-Euclidean System 323 

(7.6.55) 

7.7. LOCAL TRANSFORMATION TO A 
PSEUDO-EUCLIDEAN SYSTEM 

We will now show that any symmetric tensor that is analytic in the neigh- 
borhood of a point can be transformed to pseudo-Euclidean form at that 
point. Let g,, be that tensor and xo = 0 that point. The theorem states 
that we can find a coordinate system in which g,,(xo) = v,,, and 
ag,,,/dxA I x = . x o  = 0. Here, 7,. is the appropriate pseudo-Euclidean tensor, 
in that it must have the same number of positive and negative eigenvalues 
(all +1 in this case) as g,,,. As was noted earlier, this shows that the 
existence of a coordinate system in which the tensor g,, = vPv everywhere 
is not necessary for the arguments of Section 7.6. We start in a coordinate 
system with metric g,,,(x). In the neighborhood of x = 0, 

We transform to a new coordinate system 

(7.7.2) 

for x and X I  close to zero. The equation for ghy is 

or 

We must now solve for a’s and b’s that make g;,(O) = v,,, and 
ag; , , /dx’A = 0 .  The first condition specifies 10 values of gG,(O), and there 
are 16 at’s. Thus, six parameters are left over, corresponding to the six 
parameters of a Lorentz transformation, which are undetermined, since 
v P  L’ is left invariant by a Lorentz transformation. There are 40 aAgpy’S 
and 40 by,’s, so that there are just enough conditions to determine the 
local transformation ax‘lax up to a Lorentz transformation. We must still 
show that the equations have a solution. We divide the proof into three 
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parts. First, we diagonalize g:, at x = 0. Since g,, is a real, symmetric 
tensor, we can diagonalize it by an orthogonal transformation. An ortho- 
gonal transformation can always be written as el’ ,  where A is real and 
antisymmetric; hence, there are six independent parameters that are 
determined by this process. The metric will now locally be of the form 
g,, = C5,,A(pL), where the A ( @ )  are the eigenvalues of the original matrix. 
We can now reduce the A’s to -+1 by a scale change, determining four 
more parameters. It must be the case that three of the eigenvalues of g 
are negative and one positive; otherwise, we cannot transform to v,“ 
without a singular transformation. 

The remaining 40 equations are expanded to first order in x ’ ,  with 
u;  = 8; and gAc,(0) = qAV: 

and therefore, 

The solution to Eq. (7.7.5) is easily seen to be [repeating the work leading 
to (7.6.40)] 

If we try to go to one higher power of x, that is, make all second 
derivatives vanish, we will, in general, fail. The number of conditions 
is now the vanishing of aAa,gp,, or  10 second derivatives of a 10-corn- 
ponent tensor; thus, 100 conditions. The coordinate transformation is 
x p  = .x’”x”~’“; the available number of transformation parameters is 
four (for p = 0, 1 ,2 ,3 )  times the number of components of a symmetric 
tensor of rank e (with t = 3) in four dimensions. This number is calculated 
in Appendix B. It is given by (B.2.7): 

(7.7.7) 

(t + l)([ + 2 ) ( t  + 3) 
(7.7.8) - - 

6 

and for & = 3, S ( 3  ,4) = 20. Thus, there are 4 x 20 = 80 adjustable para- 
meters in the transformation, and 10 X 10 = 100 equations to satisfy. This 
leaves 20 combinations of second derivatives that cannot, in general, be 
set equal to zero. As we shall see in the next chapter, this is just the 
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number of components of the curvature tensor in four dimensions. (See 
also Problem 8.6.) 

In three dimensions the number of nonzero second derivatives is six; 
in two it is one, and in one dimension it is zero. In each case, this number 
is the number of components of the curvature tensor. 

We see that we cannot, in general, carry out a local coordinate trans- 
formation to a pseudo-Euclidean coordinate system, up to vanishing se- 
cond derivatives of gPy, although we can do so, up to vanishing of all first 
derivatives of gWv. 

The metric tensor can therefore inform us of intrinsic properties of 
the space: for example, as just seen, the impossibility of finding a coordin- 
ate system for which the metric is pseudo-Euclidean. We recall here two 
examples with which the reader is surely familiar: an invariant interval 

(ds)’ = (dr)’ + r2(d8)2 + v2 sin’ 8(dp)2, (7.7.9) 

corresponding to a diagonal metric tensor 

g,, = 1,  g,, = r2, g,, = r2sin2 8,  (7.7.10) 

will permit a transformation 

z = rcos 8 ,  x = vsin 8cos c p ,  y = rsin 8 sin cp (7.7.11) 

which expresses (ds)’ as 

(ds)2 = (dx)2 + ( d y ) 2  + (dz)2 (7.7.12) 

for all r ,  6 ,  p. 

and invariant interval 
A space of two variables, 8 and c p ,  with 0 5 8 I T and 0 I p I. 2 7 ~ ,  

will permit no such transformation. Of course, (7.7.13) describes a spheri- 
cal surface embedded in three-dimensional Euclidean space. We will see 
later, when we discuss curvature, precisely how the metric tensor deter- 
mines intrinsic geometry. 
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7.8. ALTERNATIVE CONSTRUCTION OF A 
COVARIANTLY CONSERVED, SYMMETRIC 

STRESS-ENERGY TENSOR 

The method takes advantage of the possibility of writing a Lorentz- 
invariant action in a generally invariant form. Thus, we introduce a sym- 
metric tensor g,, and rewrite the special relativistic action with the substi- 
tutions 

d‘x -+ d4x (7.8.1) 

A,.,, -+A,:,, ,  (7.8.2) 

etc. 
The action S is now a general invariant, so a general coordinate 

transformation does not change it. The main point is then the following: 
A general, but infinitesimal coordinate transformation changes all the 
dynamical variables. However, provided y,”, A , ,  etc. satisfy the Lagrange 
equations, the infinitesimal variations Syg, 6A, ,  etc. will leave the action 
invariant. Therefore, the only interesting consequence of the transforma- 
tion is the change of g,,, which is not a Lagrangian variable; this change 
alone must therefore leave S invariant. We shall see that the statement 
6 S = O  is equivalent to the conservation of a specific symmetric tensor 
T””. 

The algorithm is the following. Write S in generally invariant form; 
then make an infinitesimal variation in g,,, gWW+ g,, + 6g,,. T,” is given 
by the equation 

which obviously defines a symmetric tensor. We 
conserved: 

(7.8.3) 

will show that T’”” is 

(7.8.4) 

is a correct equation with :W representing the covariant divergence. All 
we need for the special relativistic case is this equation with g,, set equal 
to q,,,, where (7.8.4) would become 

Note that (7.8.3) would change sign were we to choose the metric 7,” 
with positive space components instead of a positive time component. 

Consider as an example the action for charged particles with charge 
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qp interacting with the electromagnetic field. We know the action 

(7.8.6) 

where up is an invariant parameter associated with the pth charged parti- 
cle. We remember that this choice of S is not reparametrization-invariant, 
so that d a ,  will be determined by the equation of motion. It is proportional 
to dr , ;  choosing d a  = dT makes mp the observed particle mass. 

We can easily write a generally covariant form for (7.8.6): 

We make a small change in gpv: 

The result is 

dY,” dY;; 6s = -1 2 du, d4xa4(x  - y p ( u p ) )  - - 6 g p v ( x )  
P 2  “I d u ,  d u ,  

+ - d4~$6g, , , (FpAF”“ + FAPFA”), 
4 ‘I 

(7.8.7) 

(7.8.8) 

(7.8.9) 

(7.8.10) 

(7.8.11) 
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so that, setting gPu = vP", we find 

Note that the last two terms are equal and symmetric in p and v. With 
du, = d?,, 

= v T 3 3 ( x  - y,,) 

so that 

(7.8.13) 

1 
(X - y p )  + - q p i , ~ A v ~ A u  - F'*,F''~,  dy? dyj; 

P dr, dTp 4 
T P" = 2 r n , q  __ S 3  

(7.8.14) 

in agreement with our earlier result (7.5.23). 

trace of the electromagnetic stress tensor: 
We call attention to an important property of (7.8.14), the vanishing 

T@& = 2 m p q  s3(x - xp) + F,,F~" - F,,F'*' 
P 

(7.8.15) 

Note also that the particle contribution to (7.8.15) can be written as 

2 
mP 3 1 - 6 (x - x,) 

p EP 

and therefore vanishes like m; as mp + 0, Ep remaining finite. In the case 
of a massive vector field, with a term 

added to the Lagrangian density, the trace of the vector field stress tensor 
no longer vanishes. 

We show that (7.8.3) defines a conserved TP".  Assume 
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(7.8.16) 

where 3' is an invariant density and $u are the dynamical variables in the 
Lagrangian, including the metric gwY. The meaning of the $u is clear 
enough for A, ,  gWv, etc.; for the particle variables, we would write 

The action S is invariant under a general coordinate transformation 
x" = x ' ( x ' ) ,  under which 

axu 
ax'" 

d 4 x  + d 4 x r ,  g(x) - -+gr(x ' ) ,  A ,  +A:(x')  = -AU(x) ,  

etc., so 

The integration variable x r  in (7.8.18) can be changed to x without 
changing the value of S. Thus, in one dimension, 

d x f ( x )  = l d x ' f ( x ' )  (7.8.19) 

with x '  and x single-valued functions of each other with the same end 
points, and f an arbitrary function. Similarly, 

d 4 x m g T  (x). (7.8.20) 

The superscript 3'' instructs us to calculate 2 a s  a function of the transfor- 
med field, but with x '  set equal to x .  For example, if $ is a scalar field 
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and x = x '  + Sx, then 

@'(x '> = 4 ( x )  

$'(x) = @'(x') + @'(x) - $'(x') 

and 

= $(x) + ~ all, SxA (7.8.21) 
ax" 

to first order in Sx; similar definitions hold for the other variables. 
We now return to (7.8.20). As shown above, we replace x' by x ,  

which leaves S unchanged. Next, we expand S in the first-order changes 
in A,, y: ,  etc. Since A, ,  y,", etc. obey the Lagrangian equations, their 
first-order changes leave S invariant. The only change that could affect S 
is in g,, with 

(7.8.23) 

still accurate to first order in Sx. However, this transformation does not 
affect S ,  since S is invariant. Thus, we have from the definition (7.8.3) 

(7 23.25) 

= 

= 0. (7.8.26) 

d4x 6x"{d,(g,.fiT"") + a,,(g,,GTp") - (~c ,g , ,J$TpY)  
2 

Since the integral in (7.8.26) is generally invariant, (7.8.26) can be 
written as 

o =  d 4 x 6 6 x " Q u  (7 3.27) I 
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where Qu is a vector under general coordinate transformations. Since 
locally, in the [ system, Q, = (d/de“)T”, , Qu must be the vector: 

Equation (7.8.27) then shows that T w m ,  and hence T p u ,  is conserved. 

CHAPTER 7 PROBLEMS 

7.1 Consider a particle of mass m moving in an external scalar potential 
$, Consider the action 

S =  Ld t  I 
with L = -(m + g ~ ) m  and g a dimensionless coupling 
constant. 

(a) Derive the equations of motion for x ( t ) .  

(b) Show that they form the space components of a consistent four- 
vector equation. 

7.2 Consider next the action 

s= L ’ d a  

with L’ = -(m + g4) dywldu dy,ldu and u an invariant parameter 
replacing time. 

(a) Derive the equations of motion for y ” (u ) .  
(b) Show that (m + g4) dywldu dy,ldu is constant and that the 

constant may be freely chosen without affecting the equations of 
motion. 

(c) Compare the equations derived from L’ with those derived from 
L in Problem 7.1 and show that there are no scale changes of g 
and m that bring them into agreement. Thus, if we assume that 
we complete the scalar theory with the usual field Lagrangian for 
I), the two Lagrangians L and L‘ lead to different theories. 

(d) Show, however, that there is a nonlinear transformation of the 
field 4 in the Lagrangian L‘ that will bring it into agreement with 
the Lagrangian L.  This shows that with a given external field (CI, 
one can use either Lagrangian for determining the particle mo- 
tion, providing one makes the appropriate transformation of 4. 

I 
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*7.3 Complete the construction of a scalar field theory outlined in the 
text: (7.4.22-7.4.27). 

(a) Derive the Lagrangian equations for the field $(x) and the parti- 
cle coordinates y p .  

(b) In the non-relativistic limit (&/m < 1, a$/& << IV$l, d a  = dy'), 
show that the interparticle force is attractive between like part- 
icles. (Do not try to calculate the force of the particle on itself.) 

7.4 Verify that O*, as given by (7.4.28) is conserved, d,OC", = 0, and 
P,, = I a',. d3x is correctly given by (7.4.21). 

*7.5 From the action for an electromagnetic field interacting with a 
charged particle, 

where A,(x) and y p  are the dynamical variables: 

(a) Construct the canonical stress tensor O p u  given by (7.4.29). 
(b) Construct from it the symmetric stress tensor T S u  as defined by 

(c )  Show that in the p2 = 0 case the energy Po = To"d'x is given 

*7.6 Consider a Lagrangian density Y, that is a function of a set of fields 
Icla(x) and their first and second space-time derivatives, ~,I+!J&) and 

(a) Derive the Lagrange equations for this case. 
(b) Assuming that Yhas no explicit x dependence, apply the Noether 

procedure [as in (7.4.9-7.4.17)] to find an expression for the 
energy-momentum four-vector P". 

(7.4.37). 

by (7.5.24). 

a,a,$,(x). 

(c) P" has the form 

pa = dSx 0"" I 
where 0"" is the 0-a component of a tensor Construct the 
tensor OfiU and show that it is locally conserved: a,@"" = 0. 

(d) Construct a single invariant Lagrangian of the form d,A,', with 
A ,  a function of a single scalar field $ and its first derivatives. 
Imagine that this function is added to an existing Lagrangian. 
Verify that the Lagrange equations are unchanged by the addi- 
tion. Show that the tensor 0,'' is changed, symmetric, and con- 
served, but does not contribute a change to the energy-momen- 
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tum vector P”. (The fact that O P V  is symmetric will not, in 
general, be true for more complex theories.) 

“7.7 A Lagrangian density 2 is changed by adding a A 2 =  apAp(+CT, 
d h + , ) ,  where the +v are the set of fields described by the Lagrang- 
ian. 

In order to simplify the problem, choose A” so that the A 2  (as 
well as 2) depends only on the fields and their first derivatives. 

(a) Find the condition on A’* such that A 2  not depend on second 
derivatives. 

(b) A* (and 2) are taken to be independent of x P  except through 
the x” dependence of the fields. Show that the Lagrange 
equations for the fields are unchanged by the addition of ALE. 

(c) Construct the change in the canonical stress-energy tensor AOaP 
and show that it is conserved (but not zero). 

(d) Show, however, that the change in the energy-momentum four- 
vector 

A P P =  d3xAOoP I 
is zero. 

*7.8 The action that yields the model of Problem 3.2 is 

where 

1 
2 

2= - ( 0 ~  + A)’ - - q[4(X, t )  - j ,  . A(x, t)]f(x - y) 

and L1  = my2. 

(a) Show that the above action yields the equations of Problem 3 .2 .  
(b) Show that, providedf(x - y) =f(lx - yl), the Lagrangian L + L1 

Define the field Lagrangian L = I 2 d 3 x .  

is invariant under a rotation; that is, a transformation 

where to first order in Q 

X’=X+EXX 
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and 

y ’ = y + E  x y. 

(c) Use Noether’s theorem to construct the conservation law emerg- 
ing from this symmetry. The conserved quantity SQ = E - L; the 
axial vector L is a conserved angular momentum. 

(d) Show that L = Le,m. + Lmrch + Li,,t, where Le.m, is the electrom- 
agnetic angular momentum: 

L,.,,,, = d 3 x  r x (E x B), 
47T 

Lmech the particle angular momentum: 

and L,,, an “interaction” angular momentum: 

L,,, = q (y - r) x Af(r - y). I 
( e )  Show that L,,, is gauge-invariant [only, of course, when f(r - y) 

is invariant under rotations: f = f( I r - y I ) .  
*7.9 Show that the Lagrange density 

1 
2 

2’= - - (d,AvdfiA” - ad,APd,,AF) 

does not lead to a positive energy except for a = 1. 

(a) Do this in two steps. First, with a = 1, show that the A” equation 
is an equation of constraint: a,(d’A” - 8A’)  = 0. 

(b) From this, using the technique that led to (7.5.19), show that 
the energy integral P” = 1 43”’ d3x is positive-definite. 

(c) Now take a # 1. The equation for A” is no longer a constraint 
equation, since it gives the A” in terms of the fields (potentials) 
and their first derivatives. Show that the energy integral is now 
unbounded in both positive and negativc directions. 

7.10 Consider a freely propagating electromagnetic field. Let the vector 
potential have a well-behaved Fourier transform a , (k ) .  a , (k)  satisfies 
the Maxwell equations 
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k2a, - k,k“aA = 0. 

Show from this that if k 2  = k$ - k2 # 0, the field Fourier 
transform k,a, - k,a, is zero. 
If k 2  = 0, evidently k*aA = 0, and we are in a Lorentz gauge. 
Clearly, the requirement that the Fourier transform for A be 
well behaved is a strong condition. 

Consider a flat two-dimensional space with polar coordinates 
x p = p  and x ‘ =  tp which we define to be contravariant. The 
invariant distance squared is 

(dS)2 = + p2(dtp)2* 

Find guy ( p ,  u = 1,2), gp”,  and express the invariant V2$ = 
(g””t3,$);, in terms of p ,  and derivatives of the scalar $ with 
respect to p and p. 

What are the covariant coordinates x ,  and x,? 
Repeat the exercise for spherical coordinates in three dimensions. 
There 

= (dr l2  + r2(dO)2 + r2 sin2 e(dq)2. 
h 

7.12 Consider a vector V = PV, + jV, + kV,, whose spherical components 
are c. vo, and v,. That is, 

V=;v,+e^vo+CpV, 

where ;, g, and 8 are unit vectors in the corresponding directions. 

(a) Give q, %, and in terms of the rectangular components of 

(b) Give the covariant components of V: V,, V,, and V, in terms 

(c)  The same as (b), but give contravariant components. 

ian 

V and r. 

of c, v,, v,. 
*7.13 We consider here a pair of scalar fields, and &, with a Lagrang- 

1 1 
2 

2+ = a r $ l a w $ ,  + - - v($? + $3 
We note the symmetry of Y+ under a rotation like mixing of t,bl and 
@2, that is, 

+’, = $ , c o s a +  t+k2sina, -$,sins+ $zcosa .  

The infinitesimal symmetry is 

641 = 6(Y*2, 6*2 = -6a$1 .  
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Thc Noether charge is 

which suggests a locally conserved current 

j p  = - + ~ a , + d .  
A more convenient representation is obtained by introducing a 

complex field 

and its complex conjugate 

* I  - i*2 ** = -- v 5 ’  
in terms of which 

=Y+ = a,**av - v(s*(cl), 
and the invariance described above becomes the invariance of 2‘ 
under the phase transformation 

+’ = efu* 

with real, constant (Y. 

(a) Show that the independent variation S+, and can be replaced 
by independent variation Sll, and a+*; then verify that the Lag- 
range equations are the same. 

(b) Find the Noether current arising from the phase invariance 9’ = 
era$. 

The phase transformation is “gauged” by permitting a to be 
space-time-dependent and introducing a vector field A, into 

P+ = (8 ,  + ieA’”) +*(a, - ieA@)+ - V(I/I*$). (1) 

Evidently, 2?+ is invariant under the combined transformations 

* I  = ,‘,a*, $’* = eFfra+!t*, and A’, = A, + d,a. (2) 

One must add the Lagrangian 2A of the vector field to have a 
complete theory of the interaction of the A and (I/ fields. Of course, 
TE, must also be invariant under the gauge transformation of A for 
the symmetry to hold. However, independent of 
(c) There is a conserved current for the new 2,, . It is 
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(3) 

Show by explicit calculation that this current is conserved for $ 
and $* satisfying their equations of motion. 

(d) Show that the gauge invariance of the Lagrangian (1) implies the 
conservation of the current given by (3). The general theorem is 
the following: Given a Lagrangian 2+(1,6~, A, )  that is invariant 
under the transformation I,+a -+ $a + StlrU and A ,  -+A,  + S,A, 
then j ”  = d&,/dA, is a conserved current, that is, d w j F  = 0, 
provided the Lagrange equations are satisfied by the $ fields. 
Hint: If the Lagrange equations for the I / J ~  are satisfied, the 
action S = I d4x Lfq, is also invariant under the transformation 
I,+n -+ I,+* + S $ ,  with no change in A,. 
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CHAPTER 8 

Gravity 

8.1. THE NATURE OF THE GRAVITATIONAL FIELD 

T h e  essential phenomenology that leads to a theory of gravity was given 
by Newton: 

The force of gravity between two bodies is always attractive and proportional 
to ml  m21r:2, where m ,  and rn2 are the inertial masses of the two bodies and 
r I 2  the distance between them. 

From our discussions of massive field theories, we recognize that the 
gravitational field must be massless and presumably satisfies some equation 
like 

(8.1.1) 

where p is the source density and 4 some component of the gravitational 
potential (for simplicity, we will call it the gravitational potential). The 
asymptotic potential arising from a body with source density p1 will be, 
just as for a scalar field, 

and the asymptotic interaction energy with body two will be 

(8.1.2) 

(8.13) 

with the minus sign for attraction. Therefore, we expect to have 

338 
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I drp,(r) = Am, J 
dr p2(r) = Am;! 

(8.1.4) 

with A a universal constant. 
The remarkable feature of (8.1.4)-the equality (to within a choice 

of units) of gravitational and inertial mass-is known to hold to very 
high accuracy. All bodies at the same point in space fall with the same 
acceleration to about one part in 10”. We will try to find a relativistic 
field theory that accounts for the simple phenomenology outlined above. 
We will be led to a theory that will turn out to be a linear approximation 
to Einstein’s theory; when we try to make the theory internally consistent, 
we will be led to the complete Einstein theory. This approach was initiated 
by Feynman,’ Gupta,2 and T h i r ~ i n g . ~  

What kind of field can carry gravity? Clearly, a vector field is out of 
the question, since it generates a repulsive force between like particles. 

We have seen (Problem 7.3) that the force produced by a scalar field 
is attractive, and therefore a scalar field is a candidate for the carrier of 
gravity. However, it does not work. Note that the density p(r) in (8.1.1) 
must be proportional to energy density, since I p(r) dr  = Am. However, 
the density that couples to a scalar field is a scalar source, which for a 
point particle, we have seen, is 

p,(r> = m a 3 (  r - y P )  (8.1.5) 

and [ p3(r) d r  = m, which is not the energy. In contrast, the Too 
component of the free particle stress tensor precisely integrates to the 
energy. From 

we find 

m \ dr T F  = -. 
V’l - v* 

(8.1.6) 

(8.1.7) 

‘R. P. Feynman, 1062 CalTech lecture notes. 
* S .  N. Gupta. P h j ~ .  Rev. 96, 1683 (1954). 
‘W. E.  Thirring, Ann. Phys. 16, 96 (1961). 
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For a collection of elementary particles forming a nucleus, atom, molecule, 
planet, etc., the stress tensor TF" is guaranteed to give the energy via 

(8.1.8) 

no matter how complex the ~ y s t e m . ~  
How decisive is the failure of the scalar coupling to yield the inertial 

mass? Suppose we consider a nucleus and take a scalar density pS = 
mp v m  @(r - y,) for each particle. The integrated coupling of the 
scalar field to the nucleus would be 

M, = 2 r n p v F - $  + (?) (8.1.9) 
P 

where (?) stands for interactive effects, perhaps arising from other scalar 
sources in the nucleus. There is no reason to expect that (?) would correct 
the error in the factor m, which is - m@m, or roughly the binding 
energy of the nucleus over its rest energy, Mev over Gev, or - 
maybe or lo-' with a little conspiratorial help, but huge compared 
to the lo-" equality of gravitational and inertial masses. 

Another general way of seeing that there is difficulty is to suppose 
that the hypothetical scalar gravity is coupled to the natural scalar source 
density in a nucleus or atom, the trace of the "matter" stress tensor: 

T = T F F ,  (8.1.10) 

where 'matter' includes the electrons and quarks and the gluon and elec- 
tromagnetic fields. Here, we recall that the trace of the electromagnetic 
stress tensor vanishes; therefore, its contribution to T p F  cannot match its 
contribution to Tm, so we would have a correction to the equality of 
gravitational and inertial mass of order TFm./Ty:,a,, a few tenths of a 
percent or more. In addition, gravity would in first approximation not 
deflect light. 

It would clearly take a remarkable conspiracy to cancel out all these 
problems and restore the known equality of the two masses, gravitational 
and inertial. We must consider the pure scalar theory of gravity decisively 
ruled out. We turn, therefore, to the next simplest possibility, a symmetric 
tensor field 4 F v .  

'we here exclude internal gravitational energy. 
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8.2. THE TENSOR FIELD 

We expect to find equations resembling 

where T,,, is the  matter stress tensor, and + . allows the addition of 
terms like d,d” 4,,,  etc., as required to give a positive energy. A is a 
coupling constant; the minus sign is a convention. 

As in our discussion of vector fields, we have two ways to proceed. 
We can write the most general Lagrangian density that will give equations 
like (8.2.1)-that means bilinear in 4,,,, and a,4,,-and adjust the 
constants to give positive energy. This is possible, but difficult. It is much 
simpler to repeat the process we used earlier, that is, to require that the 
source Tp ,, radiate only fields possessing in their characteristic coordinate 
system (rest system for particles, wave number zero for fields) only the 
five components associated with a three-dimensional symmetric traceless 
second-rank tensor. As in Section 7.5, we work with the four-dimensional 
Fourier transform of the field variables. In order to carry out this program, 
we must start with a massive field. The equation will be 

(acx aa + k 2 )  4,” = - A P P ~ , , ~  T”‘ (8.2.2) 

where P is a projection operator that eliminates the unwanted compo- 
nents. 

How do we eliminate the unwanted components of 4,,,? In the 
k, = O  coordinate system, we require that the three-dimensional scalars 
and vectors that we can form from the tensor +,,” all vanish: 

for a propagating mode, that is, for k2 = k,k” = p 2 .  This elimination can 
be expressed covariantly: 

k P 4 , , ,  = 0 and 4,’=0 (8.2.4) 

reduce to (8.2.3) when k ‘  = 0. 
We have thus reduced the ten component symmetric tensor (by 

dropping the three-vector, 4ol ,  two three-scalars, 4 0 0  and cb I I )  to a five- 
component traceless, symmetric three-tensor. 

We write thc most general covariant operator P P ” ^  T ,  symmetric in 
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p v  when operating via P p w A , T A r  on a symmetric tensor, and satisfying 
k P P P u A ,  = 0 and ~ p w P p w A c  = 0 when k2 = p . 2 

The most general structure for P is 

where a ,  P ,  y ,  6 ,  and E are adjustable constants. We first trace p v ,  
setting k2 = p2 : 

or 

(1 + y + 45) = 0 and (a + 4p + 2 ~ )  = 0 .  (8.2.7) 

Next, we multiply with k,: 

E + ykYTAr + r$k”vA, + EkAS: + 7 k ” k A k , =  0 (8.2.8) 
P 

so that 

1 + ~ = 0 ,  a + p + ~ = O ,  and y + 5 . = 0 .  (8.2.9) 

The solution of (8.2.7) and (8.2.9) is 

2 1 1 1 a = -  p = -  € = - I ,  y = - ,  ( = - - .  (8.2.10) 
3’ 3’ 3 3 



8.2. The Tensor Field 343 

Our equation for 4," follows from (8 .2 .2):  

( k2 - p 2 ) + ' v  = A { T p "  + 2 k P k ,  1 kAkTTAT k A k r T A T  + .pw - 
P 2  

1 k P k "  1 + -- q A T T A r  - - qP"qXrTAr  
3 P 2  3 

P 2  

1 - - ( k P k A T A u  + k " k A T A P )  (8.2.11) 

where the coupling constant h will be determined later, and k 2  is no 
longer subject to the constraint k 2  = p2.5 

Equation (8.2.11) has the property that the modes kP+,,, and qpv4p" 
will not be radiated-that is, the pole l l ( k 2  - p2) in the solution of 
(8.2.11) will be canceled for those modes. 

We now turn (8.2.11) into an equation for 4""; in its present form, 
it is not simple to take the limit p+ 0. We follow the same procedure 
as in the vector case. We express the objects that appear divided by p2 
in terms of 4,". These objects are T = qp,,Tp", T P  = k A T p A ,  and 
?; = k , T P .  In terms of these, (8.2.11) is 

- 

( k2 - p 2 )  4,  v = A [ T P  " + - - 
3 c L  

1 l k P k u  1 1 

3 P  3 P 
+ - 2 T - - 77'" T - y ( k P T Y  + k " T P )  . (8.2.12) 

Call ~ p , , ~ p y  = 4 ,  kAqhAu = +", and k , k A 4 A P  = 4. Now trace (8.1.2): 

. (8.2.13) 

Next, multiply (8.2.12) by k,:  

2 k 2  1 k " -  l k 2  
311. 3 P  

T + - i T + - , k " T  

(8.2.14) - L k " T - i ( k 2 T " +  1 k ' T ) )  
3 I* 

'We apologize for the use of A both as a coupling constant and a Lorentz tensorial 
index. Unfortunately, we have run out of suitable Greek letters. 



344 Gravity 

and now multiply (8 .2 .14)  by k ,,: 

2 k 2  -1 - i 3 p  3 F  3p-  3 P2 

- 2 k 4 -  1 k 2 -  1 k 4  1 
( k ’ -  p2)+ = A T + -;T + - 7 T  + - l T -  - k 2 ~ -  -7‘ 

(8.2.15) 

From (8 .2 .13)  and (8 .2 .15) ,  we solve for T and T .  We rewrite 

and 

- T (El ) ;( 2 k “  5 k 2 )  
(8 .2 .17)  + = - k Z - - l  + 7  I + - - - - -  

(k’ - I.’) 

A 3 3 p 4  3 p 2  

so that 

2 AT = 3+(p2 - j k 2 )  + 2 6  and AT = p 2 ( k 2 4  - 6). (8 .2 .18)  

Substituting back into (8.2.14), we learn that 

AT” 
~ 

= k ” *  - 4” 
P 2  

(8.2.19) 

and finally putting T ,  r and 7’“ back into (8 .2 .12) ,  

or in coordinate space, with k,, = 1 li a,,, 

Equation (8 .2 .21)  tells us thc number of propagating modes of @’”. 
Of course, for p f 0 we know the number will be five by construction, 
just as the number for a massive vector field was three. We first note that 
whether or not p is zero, (8.2.21) involves no second time derivatives of 
the four quantities 4’”; hence, the equations for them are equations of 
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constraint. For /I f 0, however, there is one more condition, obtained by 
operating on (8.2.21) with a,,: 

Thus, for v = j ,  we have constraint equations on do+”. However, for 
v = 0, we find 

(8.2.23) 

eliminating one more propagating mode. We will see later that for p = 0 
a different mechanism takes over. 

In order to have a theory that treats consistently the generation of 
gravity by matter and the action of gravity on matter, we need a Lagran- 
gian that includes gravity, matter, and their interaction. We turn now to 
a Lagrangian formulation. 

8.3. LAGRANGIAN FOR THE GRAVITATIONAL FIELD 

We write the Lagrangian density as 

where all possible pairings of the six and four indices must be included. 
The number of independent pairings of the four indices associated 

with the p2 terms in (8.3.1) is two: + p u + p y  and +;I$:. The total number 
of pairings of the six indices in (8.3.1) is 5 x 3 = 15. Of these, only four 
are independent: A paired with A‘  gives two (as in the p2 terms above). 
A and A ’  paired with pv gives one; A paired with p v  and A‘ with p’ v’ gives 
the last one. All other pairings are reducible to these four by symmetry, 
relabeling, or integration by parts. 

Our Lagrange density therefore must take the form 

(8.3.2) 
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where we have chosen the factor to give the conventional positive 
coefficient for the “natural” term, ( 4 j j ) 2 / 2 .  Note that because $ p v  = 
# y p ,  +py  = <bVp and can be written 4; with no ambiguity. In order to work 
out the Lagrange equations, it is convenient to keep track of indices by 
writing (8 .3 .2)  in the form suggested by (8 .3 .1) .  That is, 

and 

(8 .3 .4)  

where { } is the first bracket in (8 .3 .3)  and { }’ the same bracket with 
primed and unprimed indices exchanged. 

Similarly, 

(8 .3 .5)  

Thus, the Lagrange equations are 

We must still symmetrize in p v ,  since the only permitted variation of 
4p”, 84p“ ,  must be symmetric in p and v. The equation is then (with 
4 =  4 3  
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a , , a h + P u  + a ( a , , d U + p A  + a , , a P + u A )  

+ capaU+ + gY(2ba, ,aA4 + ~ a , , i ) ~ + ~ ’ )  

= p y ( Y + p v  + p 7 f v + ) *  (8.3.8) 

Comparing with (8.2.21), we find a = -1, c = 1, b = -1/2, a = -1 and 
p = 1 ,  so 2 is as follows: 

Before continuing, we wish to verify that the energy of the free field 

Note first that the second term in (8.3.9) may be rewritten as 
described by the Lagrangian density (8.3.9) is positive. 

a,, 4p,,au+ph = au4p,,a,,+ph + total derivatives. 

We may therefore calculate the energy from the canonical stress ten- 
sor, dropping every term except 

9; = -[aA4puaA+pu 1 - c ~ ~ 4 ~ ~ + ~ ~ ]  (8.3.10) 
2 

since all the other terms are bilinear products of expressions, each of 
which vanishes by the equations of motion. The energy is therefore 

We proceed here as we did in (7.5.20) by Fourier expansion: 

SO that Po becomes 

po = ( 2 ~ ) ~  I d 3 k ( k 2  + p2 + k z )  l f i p V ~ * p y ~  (8.3.13) 
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$ p  ,, is restricted by the conditions 

k " $pu = 0 and $6,,,$"' = 0. (8.3.14) 

Thus, 

k" $0,. + k' = 0, (8.3.15) 

k" $oo + k' = 0, (8.3.16) 

and 

so that 

and 

k" +,), + k' = 0, (8.3. 

(8.3. 

7) 

(8.3.19) 

We see that $00 and are not independent degrees of freedom, nor i5 

= $oo. With k in the three-direction, there remain as independent 
components $73, h, + $Z = 
$oo - $33 is already determined by $ 3 3 .  Substituting (8.3.18) and (8.3.19) 
in (8.3.13), we find for $ ,,,, +*p" 

$ 1 2 ,  and $11  - $22.  The term 

(8.3.20) 

which is positive-definite, since E = k / k o  < 1. 
I t  is interesting to consider the limit of this theory as p 2 - 0  and 

(1 - c') = p 2 / w 2  -+ 0. In order to make a nonzero contribution to the 
energy, I $3L l 2  and I $ 3 2 1 2  must go like l / p 2 ,  and like l/p4 as p2 + 0. 
We can find their actual behavior from (8.2.12). For the limit p2+ 0 to 
exist at all requires a conserved source, so we take 

k ,  Tp"  = 0. (8.3.22) 
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The equation for +“” becomes 

where T = qp,, = T P ” ,  as before. We note the singularity of as p2+ 0: 
It is uniquely in the amplitude @33r since k is in the three-direction, and 
makes I $ 3 3 / 2  go like l /p4 as p2 + 0. The mode 

*I1 + $22 = $00 - $33 

= ( c 2  - 1) qP3 -+constant (8.3.24) 

as p2 -+ 0. The modes $” and $32 are finite in the limit and therefore 
carry no energy. The independent modes that survive and carry energy 
are therefore $ I 1  ~- $ 2 2 ,  $ I 2 ,  and $33. As we shall see later, the p2 = 0 
theory, based on (8.2.21) with p2 = 0, has only two independent modes- 
essentially, +” - t , ! ~ ~ ~  and $”. The limit of the nonzero p2 theory as 
p2 -+ 0 exists and is different from the p2 = 0 theory. 

We will come back later to a discussion of the free Lagrangian- 
propagating modes, zero mass limit, stress tensor, etc. We wish first to 
study the system gravitational field plus point particles. 

8.4. PARTICLES IN A GRAVITATIONAL FIELD 

We write the action as the sum of three terms: 

s = s, + s, + SI 

where 

and 

(8.4.1) 

(8.4.2) 

(8.4.3) 

as discussed in Section 7.2; for the interaction we take the simplest in- 
variant, nonderivative coupling: 

(8.4.4) 
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m,, is inserted by hand to guarantee the equivalence principle, that is, 
acceleration at a point independent of the particle. We could also add a 
coupling to the trace +== ?@”+,,,, but that would be in some ways 
equivalent to adding a scalar field and subject to the same experimental 
problems. 

It is obviously simplifying to define 

The particle Lagrangian can then includc the interaction by writing 

The equations of motion are 

or 

or 

where r is defined in (7.6.40). 
We determine drr, by calculating the u “energy” “W“ from 

as in (7.2.12). It is 

(8.4.6) 

(8.4.7) 

(8.4.8) 

(8.4.9) 
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so that (daP)' = const. X d y ~ d y ~ g , , ( y , ) .  As in (7.2.11), we may choose 
const. = 1 by adjusting mi,. Thus, 

1/2 
d u ,  = (dYF d Y j : g , d Y J )  (8.4.10) 

and in the equation of motion (8.4.8) do;, is to be understood as given by 
(8.4.10). 

The field equations now follow. Once we have chosen the Lagrangian 
to give the effect of the field on the particle, the particle's effect as a 
source of the field is determined. Then, the field equations follow from 
SS/S4,, (with p2,  the gravitational field mass,'set equal to zero). Thus, 
with 

we have 

d a ,  d u p  

The last term in (8.4.11) is transformed via 

to 

(8.4.12) 

'More precisely, in classical field theory,  l / p  is the Compton wavelength of the field. 
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which we will call A C, T;" where T:" is the particle stress tensor: 

with 

Equation (8.4.11) becomes 

Equation (8.4.14) has two remarkable properties. First, if we operate 
with a, on the left-hand side, we get zero identically. Therefore, the 
equation is inconsistent, since a,TW" is not zero. It is not zero because 
there is exchange of energy and momentum between matter and field, so 
that the matter stress tensor alone cannot be conserved. However, if the 
field is weak, then to lowest order, Tf:"is conserved. In fact, from (8.4.13), 

It is clear what program might be followed. Instead of TF" on the 
right-hand side of (8.4.14), we should have Tp",  the total stress tensor of 
our linear theory. This way of proceeding poses two difficult problems. 
First, it is not clear how we should choose the T," that is carried by the 
gravitational field. We saw in Section 7.7 how to construct a conserved 
tensor from a Lagrangian density. However, since the Lagrangian density 
can be modified by adding a derivative (without changing the Lagrangian 
equations and therefore without changing the theory), there is an infinite 
set of possible Tp"'s ,  all conserved and symmetric. Second, if we modify 
the right-hand side of (8.4.14), the new equation will conserve a different 
stress tensor. To find the new stress tensor, we will need to find a Lagrang- 
ian for the new equation, and so on,  ad infiniturn. This process can be 
carried out, but we will not do so here.' Remarkably, both problems are 
solved exactly by Einstein's general theory of relativity. We shall see how 
this is done in Sections 8.7 and 8.8. For the moment, we will consider 

'It is discussed in  some detail in  Feyninan's notes, previously cited in footnote 1 
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(8.4.14) as an approximate equation and deduce its immediate conse- 
quences. Therefore, imagine an extra term 6T*“ on the right-hand side 
of (8.4.14); this extra term makes the equations consistent, but is small. 
We shall need to find i t  later in order to calculate the precession of 
planetary orbits. 

The second remarkable property of (8.4.14) is that it no longer (be- 
cause p = 0) determines $*”. It is, in fact, invariant under the transforma- 
tion 

$@” 4“” + apty  + a ”y (8.4.15) 

where the four 6” are arbitrary functions of x.  
The transformation (8.4.15) is analogous to the gauge transformation 

of the potential A ,  in electrodynamics. There are two important differ- 
ences, however. The first is that the gravitational field ryu which, accord- 
ing to (8.4.8), determines the motion of a test particle is not invariant 
under the transformation, unlike the electromagnetic case. The second is 
that a coordinate transformation can eliminate the change in the gravi- 
tational field. To see this, we observe that the action SA in (8.4.6) is 
invariant under the gauge change (8.4.15) together with a transformation 
to new coordinatesX 

all to first order in h4c lv  and he,. 
The existence of this invariance provides us with a rigorous but difficult 

way of dealing with the gauge problem: Formulate all experiments in 
terms of gauge invariants. In practice, one does less: One usually assumes 
that experiments are carried out in gravity-free regions, where the only 
coordinate ambiguity is that associated with Lorentz transformations. That 
is a not very subtle and not very satisfactory way of instructing the reader 
not to worry too much about the choice of gauge. 

We wish before proceeding to make sure that the weak field, low- 
velocity limits of (8.4.8) and (8.4.14) yield Newtonian mechanics. We try 
to solve (8.4.14) for a heavy, stationary source (like the sun), with mass 
M -). 

A convenient gauge that decouples the tensor components of (8.4.1) 
is defined by the condition 

1 
2 

aCL+*”=  - a  ”4. (8.4.16) 

‘The alert reader will note here the first appearance of general covariance, albeit in 
approximate form. 
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This gauge is called harmonic. It is analogous to the Lorentz gauge in 
electrodynamics. 

To see that we can always go to this gauge, suppose d ,4””  - d”+ = 
4“ # 0. Then we let + p u - +  + p u  + (a”[” + a”[”) and demand 

(8.4.17) 

or 

a, a p t u  = - 9’’ (8.4.18) 

which is an equation we can solve for 5”. Note that like the Lorentz gauge, 
the harmonic gauge is really a class of gauges, for transformation within 
which the gauge parameter 5” satisfies the four-dimensional harmonic 
equation a, d ” t p  = 0. Hence, the name harmonic gauge. 

If we insert (8.4.16) into (8.4.14), we find 

where T K  is the stress tensor of the sun. 
A further simplification results from the trace of (8.4.19): 

with T,= T$”. 
Therefore, 

a, aA4 = AT(-) (8.4.21) 

and 

(8.4.22) 

For our source, d.y;-,/du( = 0, and for weak fields and low velocities, 
duo = dyg ,  yielding 

7-g = M , , 8 3 ( x  - y,,(y;:)); (8.4.23) 

all other components of T?? are approximately zero. Let us define t,” 

by the equation 
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(8.4.24) 

Then from (8.4.24), too = t ”  = t2* = t3’ = 1; all other components are 
zero. The static solution of (8.4.24) is then the solution of 

or 

(8.4.25) 

We next substitute (8.4.25) into (8.4.8). We take the static field, low- 
velocity limit of (8.4.8). That is, 

The equation for y ;  is then 

(8.4.26) 

(8.4.27) 

But for a static, diagonal c $ ~ ” ,  as ours is, 
and we may take u = y:.  

= 0. Thus, (d2yE/da2)  = 0,  

The space components of (8.4.26) are therefore 

In the weak field static approximation, 

(8.4.28) 

( 8.4.29) 

and 
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with 

so 

A2 - = G ,  
877 

Newton’s gravitational constant. 

(8.4.30) 

(8.4.31) 

8.5. INTERACTION OF THE GRAVITATIONAL FIELD 

We consider a given gravitational field, g,,, = v,,, + 2A+,,,. We have seen 
in Section 8.4 the action of a point particle in the field g,”: 

with the resulting equations of motion [as in (8.4.8)] 

d y h  dy’ 
d a 2  d u  d a  

~ + r y - -  d2y 

(8.5.1) 

(8.5.2) 

We have left out the p subscript in (8.5.2) since from now on we will be 
considering only one particle at a time. 

If we let g,, transform like a tensor under general coordinate transfor- 
mations (under which dyp /da  transforms like a vector), the action (8.5.1) 
will be exactly, rather than approximately, invariant, and the equations 
of motion (8.5.2) covariant under such transformations. Further, the argu- 
ments given in Section 7.7 that show that g,, can be transformed to g,,, = 
T ~ , ,  at a point, and rfT = 0 at that point, hold here as well. Therefore, 
at each point there will be a coordinate system (the elevator system) in 
which the equations of motion are 

(83.3) 

accurate up to and including linear terms in the expansion of g,,, about 
6 = 6”. At the center of this freely falling clevator system. masses move 
under the effect of all other than gravitational forces: The gravitational 
force has been eliminated. For this to hold over the entire elevator, the 
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elevator must be small enough so that the effect of the neglected quadratic 
terms in the expansion of g,. about 5 = to is small compared to that of 
the other forces at work. 

The principle that all effects of gravity should vanish in the elevater 
system was called by Einstein the principle of equivalence of gravitation 
and inertia. 

At this point, we must ask about other interactions. In particular, it 
does not seem possible that all particles move freely in the elevator frame 
unless, in that frame, all the laws of nature take their gravitation free 
form. 

This apparent extension of the equivalence principle is certainly neces- 
sary to make the  original limited principle consistent. For example, if it 
were not true, the electromagnetic contribution to mass, which is different 
for different atoms, would show up in the Eotvos experiment (and its 
children and grandchildren), now accurate to  one part in 10”. The action 
(8.5.1) shows us how to accomplish this more general goal: We use the 
gravitational tensor g,, to make the Lorentz-invariant action generally 
invariant and the Lorentz-covariant equations generally covariant. Thus, 
we take for the action of the electromagnetic field interacting with charged 
particles, as in (7.8.7): 

In (8.5.4) we have taken the fundamental field A ,  to be a covariant vector 
and the particle displacement d y p  to be a contravariant vector. The fields 
F,,, = (d,At, - B,,A,) are given by ordinary derivatives, since, as we have 
seen, the ordinary curl is a tensor. 

The equations for the electromagnetic field are then 

The relativistic quantum wave equation for a charged scalar field 3 
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with charge e would be the covariant extension of 

[ ( d p  - ieA,)(a” - k A p )  + m2] 4 = 0, (8.5.6) 

or 

[g””(d,  - ieA,,)$]:,  - ieA,gp”(d,. - ieA,,)+ + in’+ = 0. (8.5.7) 

We shall use this equation shortly to study the gravitational red shift. 
We take up now three consequences of the tensor theory developed 

so far. These are the bending of light, the precession of elliptic Keplerian 
orbits, and the gravitational red shift. 

We discuss the bending of light and the orbit precession togcther. In 
both cases, what is at issue is the orbit equation for an object in a given 
static gravitational field. We treat the light ray as a rapidly moving particle 
(u - 1). 

We start from (8.4.7): 

(8.5.8) 

We consider the case where 

and 
(8.4.31), 

and g, are functions of IyI = r alone. We found, from (8.4.25) and 

2MoG 2Mr3G 
g,=l - -  and g,y= 1 +--. (8.5.10) 

r r 

We consider here the more general case [in which (8.5.9) still holds], 
where we have corrected the right-hand side of (8.4.14), as discussed 
below in Section 8.8. Under these conditions, (8.5.8) has three integrals. 
First. 

so 

dyO 
d a  

go ~ = constant = W 

(8.5.11) 

(8.5.12) 
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Second, from (8.4.10) 

(8.5.13) 

and third, from the space component vector equation 

where 9 = y/y and y = ( y 1, we derive angular momentum conservation: 

L = g,7y x - dY = constant. (8.5.14) 
d a  

We learn from (8.5.14) that the motion stays in a plane; we choose 
polar coordinates Y and 8 in that plane. Then (8.5.13) becomes (with 
d A / d a  =A) 

(8.5.15) g u y  - g,@ + 2 8 2 )  = 1, 

(8.5.14) becomes 

g,yr28 = L ,  

and substituting j0 from (8.5.12) in (8.5.15) yields 

or 

We change to 8 as an independent variable, using (8.5.16): 

The substitution u = l / r  gives 

(8.5.16) 

(8.5.17) 

(8.5.18) 

(8.5.19) 

(8.5.20) 
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The differential equation for thc orbit is found by differentiating (8.5.20): 

(8.5.21) 

We see from (8.5.10) that expanding gs and go in powers of l l r  = u is 
equivalent to expanding in powers of l /cz.  Thus, since we are considering a 
slowly moving body (a planet), w e  may expand 

Equation (8.5.21) becomes 

d 2u 
~ + ~ ( 1  - 2C) = B 
d o 2  

(8.5.22) 

(8.5.23) 

or 

u-- -  - U(,COS ( I  - 2C)”*(O - 0,) 
1 - 2 c  

or for small C ,  with Bo set to zero (choice of axis) 

u = B + u,,cos[(l - C)(H)] (8.5.24) 

for a precession angle 2 ~ r C  per orbital year. 
We have seen earlier that our linear field equations are not 

consistent- the right-hand side is not conserved if the particle is accelerat- 
ing. When we learn how to deal with this problcm, we will find corrections 
to g,,, that contribute to C in (8.5.22). We will return to (8.5.24) when 
we have that information [see (8.7.23)]. 

We turn now to the bending of light by the sun. We treat the light as 
a fast particle with uo-+ 1. In this calculation we need only keep the weak 
field limit, that is, the linear term in the expansion of g, and go in powers 
of the potential 2Mc-,GIr. The constants W and L that appear in the 
equation can be calculated from their values far from the sourcc 
Mt->: L = b u ~ , l d ~ l  and W = l l \ m ,  Thus, the orbit equation for 
uO+ 1 is [from (8.5.20)] 
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i!- b2 (1 + yL G) + O (  ( 7)) (8.5.25) 

and 

(8.5.26) 
2 
b 

U" + u = 7 MoG 

where b is the impact parameter of the light ray passing the sun. 
The solution of (8.5.26) is 

(8.5.27) 
2MoG 

u - - -  a cos 0 ,  
b2 

where a is a constant. We have again chosen our axes to make 0" = 0. 

to LT: 
We determine the coefficient a by differentiating (8.5.27) with respect 

(8.5.28) 
1 dr d0 

- a sin 0 -. 
r2 d a  d a  

- 

As r -+ m, before the scattering, 

the t sign depending on the initial sign of 4, which without loss of 
generality we take to be positive. a is then given by a = l /h  sin 19; and 
(8.5.27) becomes 

(8.5.29) 

whcre 0, is the initial direction of 0 from the scatterer, or with 5 = r/b 

cos 0 1 
5 sin 8; 

E - --, - - -  

where E = 2 M ,  ,G/b is a small dimensionless number. 
For 5- 2, 

cos 0 
E = + - '  

sin 0, ' 

(8.5.30) 

(8.5.31) 
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the two solutions of (8.5.31), 8 = kOi, give 0 before and after the scat- 
tering. For E = 0, 0, = ?7~/2,  so the particle comes in along the ?y-axis, 
goes out along the ty-axis, and is undeflected. The scattering angle is 
therefore the difference between 20, and T. Since E is small, the equation 
for Oi can be solved: 

0 = E- cot 0, 

and with 

we have 

€ -a  = 0 .  

(8.5.32) 

(8 .S .33) 

The scattered angle is therefore, without paying attention to sign, 

or in ordinary units 

(8.5.34) 

To find the nature of the trajectory (attraction or repulsion), we have to 
trace out the orbit from (8.5.29). We write again 

(8.5.35) 

We start with 13, - ~ / 2 ,  8 > 0, 115 E - cos 8 so that (see Figure 8.1) 

7F O . = - - E  
I -  2 

E -  cos 8, 0 ,  

Clearly, 0 must increase from 6, to keep 1 /5>0.  Thus, the trajectory 
circles the origin, ending at 0, = ~ rr/2 + E .  The particle is attracted to the 
scatterer. 

We may compare (8.5.31) with a naive (sometimes called Newtonian) 
application of the equivalence principle, which would have a light wave 
packet accelerate under gravity according to the local gravitational field. 
Thus, for a small deflection, we can calculate the transverse change in 
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Figure 8.1. 

velocity Av from the unperturbed straight-line motion of the light. That 
is, 

L 

hv = 1 d t a , ( t )  
-z 

with 

The result for impact parameter b is 

c c"b 

half the correct result. 
We take up next the gravitational redshift. We note first that it follows 

directly and simply from the equivalence principle, as is shown in Problem 
8.1. 

A general argument fclr the effect is based on the tensor g,, itself. 
Consider, in a static gravitational field, a stationary clock at point A with 
an intrinsic period T~ and a stationary clock at point B with an intrinsic 
period T ~ .  Communication between them is by a fixed-frequency light 
wave. This is possible because g,, is time-independent. Call the period 
of the light wave T.  

Now consider two events at A : two clicks of the stationary clock. The 
light wave will resonate with the clock if T is the time (not the proper 
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time) between ticks of the clock, that is, if T = Ayo, and 

Since the clock is stationary, our resonance condition is 

Similarly, at R 

Therefore, 

and the frequencies wB and wA have the ratio 

Thus, if A is deep in a gravitational potential and R is not, wiilwA < 1. 
That is, the atom at A appears to be red-shifted. 

We can also give an explicit mechanism for this to happen. We assume 
a g,l’ that is time-independent and imagine an atom in the sun and a 
different atom on Earth exchanging a light signal of definite frequency 
wo. We then calculate the resonant frequency w ~ ,  of the two atoms in 
terms of the gravitational potentials at the two positions and the field-free 
resonant frequencies wR. We will be solving an atomic equation at each 
site, so that the variation of the gravitational potential at each site will be 
negligible and may be ignored. Thus, wc imagine gpL, to be constant at 
each site, but different from one site to the other. 

The atomic equation will be (for a scalar particle with charge e) 

[(a,, - ieA,)gI*”(a,, - irA.) + m’]$ = 0 ,  (8 .5 .36)  

where we have replaced covariant derivatives with ordinary ones, as dis- 
cussed above. The Klein-Gordon equation (8.5.36) with constant f ’ ’  and 
time-independent A ,  will permit a time dependence 
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where x is time-independent. The result is an eigenvalue equation for E ;  
the differences of E between two states of the same atom will be the 
exchanged frequency wg. 

Before writing the equation, we transform to a coordinate system in 
which the three g,,,'s are zero. This can be done by shifting the time origin: 

xo = x r O  + A(x'), x = XI (8.5.38) 

so that 

and 

(8.5.39) 

(8.5.40) 

This equation can be solved - always neglecting the variation of gidg"0. 
The solution is 

(8.5.41) 

Note also that (8.5.38) leaves g,, unchanged. 

components of the vector potential equal to  zero. The equation is 
We now return to (8.5.36), with the insertion (8.5.37) and the space 

[ -go"(E + eAO)' + a,a,g" + rn2],y = 0 .  (8.5.42) 

The vector potential A'' will be given (in non-rationalized units) by 
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where j 0  is the charge density of-as a model-a heavy proton: 

(8.5.44) 

where -g, is the determinant of the three-dimensional matrix g i j :  

g3 = - det g ,  (8.5.45) 

Since both (8.5.42) and (8.5.43) are spatially covariant equations, we 
can transform them to  the form 

and 

6'(X') 

4G Vf2A" = 47re,, ___ (8.5.47) 

so that 

The eigenvalue equation is now 

(8.5.49) 

and E = E R ,  the solution of the eigenvalue problem in the absence 
of a gravitational field. Taking the difference of two states, we find, with 
A E  = hwo, 

(8.5. SO) /7iii L g  w O = w I < ?  

so 
in thc sun, where 

w H  = w ( , ,  for the two atoms that are exchanging the signal. Thus, 

goo = 1 + 24, (8.531) 

with 4 the gravitational potential, g,l,l -< 1. whereas on Earth goo will be 
much closer to 1. Therefore, the light emitted by the solar atom will have 
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a lower frequency wcI than w R ,  the frequency that would be observed for 
the same atom in a field-free region. This calculation shows how general 
covariance produced a mechanism for the gravitational red shift. 

8.6. CURVATURE 

We are now ready to confront the inconsistency of the linear field theory 
with which we have been working. The clue is the equivalence principle. 
We have seen that the equivalence principle for particle motion or  electro- 
magnetic field equations could be guaranteed by making the equations 
generally covariant with respect to the second-rank tensor gww.  However, 
for g,, to transform like a tensor, it must satisfy covariant equations. The 
problem is therefore to construct a covariant function H’*”.. .  of the g’s 
and their derivatives and set it equal to the assumed source -presumably 
still the correctly calculated stress tensor for matter, Tit,”. If so, the 
equation must be something like 

(8.6.1) 

The immediate problem is that the obvious way-introducing the covariant 
derivatives g,w;h-does not work, since they are all zero. 

There is, however, a tensor function of the g’s that we can construct. 
We take advantage of the covariant derivatives of a vector field V :  

so that the tensor Vp:z , :h  - V F : A : v  is given by 
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Since V g : v : h  is a tensor and V" a vector, R@,,,,, is a tensor. It is called the 
curvature tensor. It has the following properties. 

First, if the tensor g,,, describes a space-time metric, and any compo- 
nent of R;,,, is different from zero in a finite region, then no coordinate 
change can transform g,,, to pseudo-Euclidean form. This is true since if 
it  could, and since all the components of Rt,,,+ vanish in the pseudo- 
Euclidean system, and since Rt;,,, is a tensor, all the components of 
Rt;,,, would have had to vanish in the original coordinate system. 

Second, the converse, which we shall not prove, also holds: If all 
Components of Rt;,,, are zero in a finite region of space, then it is possible 
to introduce a coordinate system that transforms g,,, to pseudo-Euclidean 
form in that entire region. 

Third, the translation to the gravitational field g,,, follows: I f  any 
component of Rt;,,, is different frotn zero in some region of space-time, 
there is no coordinate transformation that eliminates the gravitational field 
in that entire region. Conversely, if all the components of R;,,, are zero, 
onc can find a pseudo-Euclidean coordinate system, in which g,,, = q,*, in 
the entire region, the gravitational field +,,, is zero, and the gravitation- 
free laws of special relativity hold. The curvature tensor RG,,, carries the 
invariant reality of the gravitational field. 

In order to decide on the equations to bc satisfied by Rt,,,. we need 
to know some of its general properties. These are most easily studied in 
the local coordinate system that makes g,,, = qP1, and d g , , , l a x A  = 0. In 
that coordinate system, at the chosen point, 

1 
2 

- 
- - 7 f T d K ( d , g . , .  + (d,,gT, - dTg,r,) - {K" V} (8.6.6) 

We can read off from (8.6.7) the symmetry properties of RY:,,K; since 
RA,,,, is a tensor, they will hold in general. These are: 

1. 
2. 
3. 
4. There is one more algebraic relation: 

is antisymmetric in exchange of 11 and K .  

is antisymmetric in exchange of A and p. 
is symmetric in exchange of the pair ( A p )  with ( v K ) .  
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Equation (8.6.8) only adds one constraint (in four dimensions) since 
if any two of the four indices are equal, the sum is identically zero by the 
symmetry properties 1-3. 

We can now calculate the number of independent components of 
by considering R(AP)(,,K) as a symmetric 6 x 6 matrix-six being the 

number of values the antisymmetric pair ( A p )  and the pair ( V K )  can take. 
This number of components is 

~ + 6 = 21. 6 x 5  
2 

Subtracting the single constraint (8.6.8), we 
number, 20 (see the discussion in Section 7.7). 

get exactly the expected 

There is in addition one more identity, but this time it is differential 
rather than algebraic, the Bianchi identity, 

RhPVK:T + (cyclic permutation of V K T )  = 0 (8.6.9) 

or in the locally flat coordinate system 

RFi,,ti,7 + (cyclic permutations of U K T )  = 0 (8.6.10) 

which is easily verified from (8.6.7). 
Two more tensors can be constructed from RAlrvK by tracing. Note 

that the symmetry properties of RAvvK permit only one trace (to within a 
sign): 

R CLK = gA’”RA,,, (8.6.11) 

so that 

which is symmetric in (p,  K ) ;  a second trace gives the curvature scalar 
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8.7. THE EINSTEIN FIELD EQUATIONS AND THE 
PRECESSION OF ORBITS 

We recognize in (8.6.12) and (8.6.13) the two components of the equations 
for $ p , ,  that we found in (8.2.21) (setting /.L = 0). That is, remembering 
S P Y  - - V P I ,  t 2h$,,,, we found 

(8.7.1) 

where T'"),, is the matter stress tensor in the locally Minkowskian coor- 
dinate system. As in Section 8.4, the left-hand side of (8.7.1) is identically 
conserved: 

(8.7.2) 

Notice that now, however, (8.7.1) is consistent, because the right-hand 
side TZd is also conserved (the T's are all zero!). 

The covariant equation that follows from (8.7.1) in a general coordin- 
ate system is 

The conservation law (8.7.2) becomes 

f "K  

(R"" - - R )  = 0, 
2 .Ll 

(8.7.3) 

(8.7.4) 

which, of course, is the reflection of the Bianchi identity on the properties 
of the second-rank tensor R p K .  However, the right-hand side of (8.7.3) 
also has vanishing covariant divergence, since i t  is constructed from the 
covariant matter (including electromagnetic) Lagrangian as discussed in 
Section 7.8. The equations are therefore formally9 consistent. 

Note that in arriving at the field equation (8.7.2), the weak field 
assumption has not been made, although it is clearly the case that the 
weak field (small $&,,) limit of (8.7.3) reproduces (8.2.21): however, in 
this limit, the right- and left-hand sides are no longer consistent with the 

'They are only formally consistent since the same kind of poinl singularity that occurb 
in other relativistic ficld theories occurs here. 
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particle equations and must be supplemented by the higher-order terms 
coming from the nonlinearities in R,, and TWL, .  We turn now to that 
problem, with the goal of finding the next approximation to the gravi- 
tational potential produced by the sun, and in particular of finding the 
correct value of the coefficient C in (8.5.22). 

We wish to expand (8.7.3) in powers of the potential V =  CMaIr, 
which by the virial theorem is -u2, and therefore small for U I C  < 1. We 
see from (8.5.21) and (8.5.12), since W - 1, that we need g,, only to first 
order in V ,  but goo to the next order. Thus, we must find the next 
correction to 4oo. 

We write 

R w K =  RE? t RE? f . . . 

where RE: is linear in 4, R ( 2 )  quadratic, etc. In turn, g,, is calculated as 

(8.7.5) 

with 4:: given by (8.4.27): 

with too = t L 1  = fZ2 = t33 = 1, all other components zero. We expand by 
expressing R“) as a function of +(’) and R(”) as a function of the known 
& ( l ) ;  we then solve the resulting inhomogeneous equation for + ( 2 ) .  

Before carrying out that procedure, we observe that (8.7.3) provides 
us with an exactly conserved, symmetric tensor r,”, which is a nonlinear 
function of the $ field and a suitable candidate for the stress tensor of the 
coupled system. Since 

( 0 )  

2 
R(1) ggv R(1) = G(0) 

f i  1’ 111’ 

is identically conserved [i.e., WG:,! = 0, where 3 ,  is not the covariant 
derivative, but the ordinary derivative], we must have that 

is also exactlv conscrvcd. Further, since Y” inciudes contributions from 
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all nongravitational sources (point particles, electromagnetic field, etc.) 
that reduce to known forms in the [ coordinate system, the conserved 
tensor T ~ ”  correctly describes the exchange of energy and momentum 
between gravitational and other degrees of freedom. The tensor T@” 

therefore makes it possible to calculate conventional energy, momentum, 
and angular momentum fluxes of gravitational radiation. In the present 
application, it makes it possible, by using (8.7.3), to calculate the next 
approximation to g,, [as defined in (8.5.9)] and from that and (8.5.22) the 
precession of the planetary orbits. 

We choose a gauge (coordinate system) in which +(’) satisfies the 
same linear gauge condition as 4( ’ ) ,  that is, 

where 4 = 4; and all contractions are carried out with qSY. Then 

1 
R(’)  = - a,a”g,, = A a u a Y + l l K  (8.7.9) 

” K  2 

and 

(8.7.10) 

Equation (8.7.3) is therfore 

[Note that (8.7.11) would become an exact equation if instead of R”), we 
wrote R - R“’.] Proceeding systematically, we rewrite (8.7.3) as 

We note that R(’) is zero outside the source to lowest order. Since contri- 
butions inside the source will give corrections to the l l r  potential, which 
causes no precession, they can be ignored. Then the equation we have to 
solve is 
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and, in the chosen gauge, 

Ad,d"$,F,! = - R$(@"'). (8.7.15) 

We first find a general formula for RC2) and then specialize to the case 
at hand: 

and 

In (8.7.17), 4 stands for + ( I ) ,  and all raising is done via $'". However, 
note that with this convention 

although 

since 

(8.7.18) 

We now specialize to the case at hand: We set ,LL = 77 = 0, a, = 3 ,  = 
0 since we are looking for time-independent solutions. This leaves (note 
the gauge condition on $"'), 
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The first term in (8.7.19) will be proportional to V2c#w, and, hence, 
confined to the source; it therefore does not contribute to the precession. 
There remains 

RIw:) = -2A'  dA+: rl*r&) = 2A2(V4(,(1)2 (8.7.20) 

and (8.7.15) becomes 

-V*A#{,:,' = -2A2(V7"0)2 

or 

and 

(8.7.21) 

(8.7.22) 

where A and B are integration constants that do not affect the precession. 
Our formula for go is then 

where 

is thc nonrelativistic potential of the sun. 

we find 
We now return to (8.5.20) for the orbit equation. Setting W -  1 - c, 

The nonrelativistic equation would be 

7 

2(E - 1') 

(8.7.24) 

where E is the total energy, E = (mu2/2) 4- V. Thercforc, the equivalent 
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potential for our problem is V,,, = V - 3V2, and the precession is given 
by the solution 

which returns to the same value of u at 

(8.7.25) 

(8.7.26) 

for a forward precession of 67r(GMolL)2 per revolution. 
Note that L - ru and G M a / r  - u2,  so that the precession angle is of 

order (u /c ) ’ ,  equivalent to the scale of fine structure in atomic physics. 
(See Problem 8.8.) 

Note also that the second-order contribution to go was -2V2 out of 
a final 6V2. However, that division is not gauge-invariant ; transformations 
of the form r‘ = f(r) can shift contributions between different orders, since 
both first- and second-order potentials give precession of order (olc)’. 

We close this section by constructing an action integral for (8.7.3). 
The Lagrangian density for the field g p y  must be an invariant. The simplest 
guess is, of course, R itself. We therefore try the action 

s, = d 4 x 6  R ,  
a 

(8.7.27) 

where a is to be determined from the known equation of motion, with 

We can verify our guess most simply by transforming, at a given 
point in space, to the coordinate system that is pseudo-Euclidean in the 
immediate neighborhood of that point. It is easily seen that 6 R differs 
by a derivative (or equivalently by an integration by parts) from a function 
of the g,”’s which is bilinear in the first derivatives of g,,’s. Therefore, 
at the chosen point, we may set gpv = vPL,  in the Lagrangian, since the 
variation in g,, will be multiplied by derivatives of the gl*”’s that them- 
selves vanish. We may not set the derivatives equal to zero in the Lagrang- 
ian, since this variation will lead to second derivatives, which do not 
vanish, in the equations of motion. However, since the local equations in 
this coordinate system are given by the weak field equations (8.2.21) (with 
p2 = 0), the Lagrangian must be given by the weak field Lagrangian, 
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(8.3.9). One verifies easily that the equality holds with l / a  = 16rC. Note 
that the sign of the curvature scalar is an odd function of the sign of g,,,. 
Therefore, choosing g,, to have positive space components would result 
in a negative sign for a. 

8.8. GRAVITATIONAL RADIATION 

The equation satisfied by the gravitational potential +*” is given by 
(8.4.14). In the harmonic gauge, it is given by (8.4.22): 

(8.8.1) 

and T w ”  is supplemented, as in (8.7.7), to make it exactly conserved: 
a,TF” = 0; this leads to the harmonic gauge condition on S * ” :  

where 

(8.8.3) 

(8.8.4) 

As usual, we choose the retarded solution, to which we return shortly. 

Thc propagation equation (for finite p ,  which we consider first) is 
First, we discuss the radiation itself. 

By applying the operator d P  to the left-hand side of (8.8.5), we find the 
constraint equation 

p2(a’4,,, - ( 3 4 )  = 0 

ap&,, = a,,4. 

or, since p2 + 0, 

(8.8.6) 

Equation (8.8.5) can therefore be rcwritten as 
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(8.8.7) 2 (dAd" + p2)  4pz .  - d p a u $  - v p v p  4 = O .  

The trace of (8.8.7) gives 

p24 = O  or 4 = o ,  (8.8.8) 

and, thus, from (8.8.6) 

dPf.pP" = 0. (8.8.9) 

Equations (8.8.8) and (8.8.9) were the starting point of our investigation 
of tensor fields, so it should not be a surprise that we have recovered 
them. The propagation equations are thus 

(d,d" + /.L2)4,u = 0 (8.8.10) 

which with the five constraint equations leaves five propagating modes; 
one sees from the Fourier transform constraint equation (with ko = w and 
k1 = k2 = 0) 

(8.8.11) 

(8.8.12) 

and 

400 - 4 3 3  - 411 - 4 2 2  = 0, (8.8.13) 

that one can conveniently take as dynamical variables + , 3 ,  +23r q533, 
and 411  - &. The other components can then be found from (8.8.11), 
(8.8.12), and (8.8.13). 

We turn next to the gravitational field, with p = 0. We note first that 
the four constraint equations (8.8.6) cannot be derived and, in fact, will 
not usually hold. There are, however, four constrained variables. We see 
directly from (8.8.5) that no second time derivatives of &, and &, occur, 
so that +oo and +or are constrained variables. The second derivatives that 
do occur are of the six linearly independent components 412, +13, 423, 
c$qI + 422. qbII + c$33, and 422 + +33. We still have the four freedoms of 
gauge choice, so that we can eliminate four more components, leaving us 
with two propagating modes. We now proceed to carry out the reduction. 
The wave equation (8.8.5) in wave number space is 
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Taking the trace of (8.8.14) shows that the q,,, term can be dropped, 
leaving 

k 2 4 , ,  - kAk,4 , , ,  - k A k , 4 , ,  + k , k , 4  = 0. (8.8.15) 

Consider first k2  # 0. Then 

(8.8.16) 

and the gauge transformation 

k ” A ,  1 kw4 
k 2  2 k 2  5y=------- (8.8.18) 

reduces every component to zero. 

the harmonic gauge. as we now show! Since k 2  = 0, (8.8.15) becomes 
Therefore, only k 2  = 0 modes propagate. They, however, must be in 

k , h .  + kU$, = k , k , +  (8.8.19) 

where It., = k ” 4 , , .  
We solve (8.8.19) by letting 

k u 4  lCIu = - + E ,  
2 

(8.8.20) 

so that 

k,E,, + k,E, = 0. (8.8.21) 

Clearly, the only solution of (8.8.21) is c, = 0. For example, go to a 
Lorentz system where no component of k ,  is zero. Then k c r e ,  (no sum) 
must be zero, as must 6,; since E ,  is a four-vector, i t  is zero in general. 

so. 

(8.8.22) 

which is the harmonic gauge. 
Within the harmonic gauge, w e  can eliminate the four &,’s by the 



8.8. Gravitational Radiation 379 

gauge transformation 

4”P+ 4ocL + 5 ! L b  + 50k, (8.8.23) 

with 

40” 60 = - ~ 

2ko 

and 

(8.8.24) 

This leaves (8.8.22) as a further constraint: 

First, take v = 0. This gives k’”c$,, = ko4/2, so that (b = 0 and, thus, 

From k’4,1 = 0, we see that for i = 3 ,  433 = 0. Since c$ and c $ ~  are also 
zero, so is + c$22. We are thus left with the two propagating compo- 
nents c$ll - 422 and 412. 

We can understand these degrees of freedom by studying their trans- 
formation properties under a rotation about the z-axis: 

x = x’ cos 8 - y’ sin 8, y = x’ sin B + y’ cos 8 (8.8.26) 

so 

ay - sin 8 ,  and - dy - - cos 8. ax ax 

ax ’ aY‘ ax’ dY ’ 
-=cos8,  -- - -sin 8, -- 

Thus, since 4,,, is 8 tensor, 

(8.8.27) 

and 

4 ! 1  = cos’ B4,1 + sin’134~~ + 2sin Bcos B4L2, 
4i2 = cos2 6422 + sin2 B411 - 2 sin @ cos B412, 

(8.8.28) 

(8.8.29) 
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and 

+ i 2  = - cos @sin e+ll + cos osin 0 4 ~ ~  + (cos2 6, - sin2 e)4,2 (8.8.30) 

so that 

and 

4 I 1  - 4 2 2  4i2 = c o s 2 8 ~ $ ~ ~  - sin20 
2 

Evidently, the linear combinations 

transform by a phase 28: 

(8.8.3 1) 

(8.8.32) 

These components are said to have helicity + 2  ( h  = +2),  respectively. 
We note that the helicity should be proportional to the projection of the 
wave angular momentum in the direction of propagation. The normaliz- 
ation for a classical plane wave would be 

J ;  0-J h = - .  
W 

(8.8.33) 

This is analogous to the case of the electromagnetic field that we 
studied in Section 3.8. There we found h = k 1 for thc propagating modes, 
and we explicitly demonstrated the relationship (8.8.33) for a suitable 
wave packet. 

We return to (8.8.1) and solve for the retarded gravitational radiation 
emitted b y  a known source S p ” :  

4P”(x )  = - - d4x‘ G R ( X  - x’) s y x ’ ) .  (8.8.34) 
477 * I  
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Cli is given in (4.2.14). For a monochromatic source, 

we have, for large r ,  

(8.8.35) 

with 

€ W ”  = - S’*”(r‘, w )  = S , ” ( k ) ,  (8.8.36) 

and k,S’*”(k) = i k ” S : ( k ) .  

the last term in (8.7.11): 
The gravitational stress tensor 7:. is calculated to lowest order from 

2 
1 

A 2  
7 k K  = - (R/” - (8.8.37) 

Now (g,,R)(’) = T + , , R ( ~ )  + 2A4,,R“’; since R(’)(+‘*)) = 0, we drop it. 
Our 7:’’ is then given by 

(8.8.38) 

( 2 )  ’ with R,, given by (8.7.17). 
As usual, we average T~~ over a cycle of the radiation. In evaluating 

the expression (8.7.17) for T , ~ ,  we may then substitute E : ,  for + F v  on 
the left and E , ,  for 4cLy on the right, finally adding the complex conjugate. 
With a, + i k p ,  we have, in harmonic gauge, with k,k“ = 0 

(8.8.40) 
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Evidently, the trace R(2)  of (8.8.40) is zero. Thus, we have for T@' 

(8.8.41) 

The expression for 7 p T  is easily seen to be gauge-invariant (for E@' '  

in the harmonic gauge). Since we can choose t = 0 and E ( , ,  = 0, (8.8.41) 
shows that the energy of the free field is positive. 

The gravitational Poynting vector 8, follows from (8.8.41). Since the 
only amplitudes that differ from zero are e l l ,  E~~ = - e l l  and E ~ ~ ,  we have 

(8.8.42) 

(8.8.43) 

and the energy radiated per unit time and solid angle in the three-direction 
is 

To find the angular distribution of the emitted radiation, we must express 
dWldt dl2 in invariant terms: We find 

1 * A  

2 
- - I E , ,  l2 + I E , ,  l2 + - 1 E , ,  k,  k ,  1' - 2 ~ , ,  k^, E ,*( IC( 

which, with k in the three-direction, yields (8.8.44). The total rate is given 
by integrating (8.8.45) over dfl. With 

A 4T 
(10 k,k,  = - 6,, (8.8.46) 

3 

and 
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the result is 

dW 2(k0)' 6 
dt 4rr 15 
_-  -- (8.8.48) 

We note here [as is already clear from (8.8.44)] that (8.8.48) responds 
only to the quadrupole (i.e., traceless) components of e i j ,  since, with 

Therefore, turning to (8.8.36), we have 

(8.8.49) 

(8.8 S O )  

(8.8.51) 

For kr' G 1, we can express the integrals over Tii in terms of moments of 
the energy density Too. From the conservation of TPY, 

follows 

and 

(8.8.52) 

(8.8.53) 

(8.8.54) 

where 

with or without a subtracted trace. Also, although Q,  evidently depends 
on the choice of origin of the coordinate system, it only depends on it 
through the constant total energy, I dr T,, = W ,  and the center of cnergy 
coordinate, dr Too x, which depends linearly on t ;  since we are consider- 
ing a finite frequency, neither of these terms will survive. 
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Putting it all together, we find for the total radiation rate: 

At this point, we reinstate the velocity of light c: 

dW 2 G w h  
dt - 5 c5 {Qt,Qf - :lQli12], 

with w the circular frequency of the radiation. 

(8.8.56) 

(8.8.57) 

CHAPTER 8 PROBLEMS 

8.1 The weak field gravitational red shift follows directly (both classi- 
cally and in quantum theory) from the equivalence principle. Show 
this by considering the emission and absorption of light, as follows: 

(a) Consider an emitter A and absorber R,  both at rest, separated 
by a distance L along a uniform gravitational field. Describe 
the emission by A and absorption by B of a light signal from an 
appropriately accelerated coordinate system. In that coordinate 
systcm, thc velocity of B when thc light is absorbed will differ 
from the velocity of A when the light is emitted; the light will 
therefore be Doppler-shifted. Show that the Doppler shift 
agrees with the expected gravitational red shift. 

(h) Consider an atom on the ground in a state of definite mass M , .  
The atom emits a photon of frequency w and goes to a state of 
mass MZ. The photon, now with frequency w ' ,  is absorbed by 
an atom with mass M 3  at a height L .  The atom now goes to a 
state of mass M 4 .  Using energy conservation, show that w'  has 
the correct rcd shift. 

8.2 Examine the effect of a rotating source on the gravitational field. 
Consider a set of particles of equal mass m making up a rigid 

sphere that is rotating with angular velocity w. The linear velocity 
of a particle in the sphere is then 

v,, = w X r,, , 

and the first-order (in w) addition to the stress tensor is an off- 
diagonal component T"' ,  

For a spherically symmetric distribution of matter, the angular 
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momenturn of matter J of the sphere is given by 

J = Zw 

where Z is the moment of inertia of the sphere 

with p the spherically symmetric density of matter in the sphere. 

is given by 
Now find the new gravitational potential outside the sphere. It 

A ~ x r '  
4"' = - G ( 7 ) .  

*8.3 (a) One suggested way of detecting the new potential would be to 
measure the precession of the spin of a gyroscope in an orbit 
around Earth. 
Calculate the effect, starting from the last equation in Problem 

8.2, keeping only the leading terms in u / c  and &, in the equation 
for d2x /d t2 .  Proceed by considering each point mass b in the gyro- 
scope to be at a position x b  = x + Y h r  where Ch Y b  = 0. 

Expand in yh to include only linear terms in Y h  (this is legitimate, 
since 

size of gyroscope I; - spin velocity of gyroscope L G 1 and - - =G 1. 
r radius of orbit i velocity in orbit 

Now sum over h. The yh and y b  terms disappear and the internal 
forces cancel by momentum conservation, leaving an equation of 
motion for the center of the gyroscope. Subtracting this equation 
from the original ones gives an equation for each d2yh/d t2  in terms 
of the external gravitational field (Earth's field) and the internal 
forces. 

Now calculate 

The internal forces holding the gyroscope together cancel again, 
this time by angular momentum conservation, leaving a right-hand 
side having terms bilinear in y and y, and terms quadratic in y .  
Assuming a spherically symmetric gyroscope, express the first in 
terms of the angular momentum L itself; then show that the second 
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is a time derivative. You should find 

1 4  _ -  - a x L - - -  dL 
2 dt dt 

where I is the moment of inertia of the sphere, 

and a= ql2. 
The time derivative makes no contribution in a periodic orbit 

(or, for that matter, in any confined orbit, averaged over a long 
time.) The final result is thus 

= r R x L ,  dL 
dt 
__ 

showing that L precesses about the vector Ci with angular velocity 
a. This precession is called the Lense-Thirring effect. 

Remember: The spherical symmetry of the gyroscope yields the 
iden tities 

and 

d 
dt n 

- c X:.; = 0 .  

(b) Calculate the precession rate in relevant units for a satellite 
experiment: arc-seclyear. Take the satellite at one Earth radius 
in a polar orbit. 
The effect you have just calculated is of special interest, since 

it is distantly related to Mach’s principle, which to some extent is 
embodied in Einstein’s gravitational theory. Mach proposcd that 
inertial frames are those frames that are at rest, or in uniform 
motion, with respect to the total matter in the universe. Thus, 
proximity to a large mass must distort the choice of inertial frame; 
indeed, we know that to be the case, since the curvature tensor is 
not zero near a gravitational source. 

Near a large rotating source, the transformation to an inertial 
frame should involve a rotation, so that a gyroscope would be 
expected to precess about the rotation vector of the source. Your 
result shows that this is not exactly true, since the precession vector 
rR is not in the direction of J; however, the smallness of the effect 
shows that the mass of the earth is much too small to compete with 
the large-scale matter in the universe. Presumably. a large enough 
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mass, properly configured and rotating, would drag the inertial 
system around with it. 

"8.4 (a) Starting from the equation of motion for a particle in a gravi- 
tational field, 

dx A dx " 
~ + rEA ~ - = 0 , 
d2xp 
da2 d a  d a  

d u  = dgwy dxc"dx" (1 )  

transform to a new independent variable d r .  With uw = dxw/d.r, 
show that the new equation of motion is 

(b) Expand dup/dr in characteristic vectors of the matrix 
M z  = vwupgap/uog,,u'l. One of these is urn ,  with a characteris- 
tic value of 1; call the three others, with a characteristic value 
of 0,q:.  

(c) Show that the 71: can be chosen as 

71: = gaPu,p 

where the three u,'s are orthogonal to ucL and to each other: 

u5L,, = 0 

uru,, = -6, (note minus sign!) 

where u/" = ~ ' l " u , v .  
Equation (2) now becomes, with duw/d.r = guw + El b,qlp, 

with g remaining undetermined until a definite choice for dT 
has been made. 

The free choice of g arises from the circumstance that the 
four components of (1) are not independent: 

dx'" dxL' --g,,,- - - constant = 1. 
d a  d a  

Since g may be freely chosen, only three of the resulting 
equations are independent. 

(d) Two obvious choices for T are time and proper time. Show how 
g must be determined for each case. We will then continue with 
T chosen as the proper time, since that will give us a covariant 
set of equations- the gravitational equivalent of the Lorentz 
force law. 
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( e )  Show how to project the coefficients h, from (3) and find (after 
some work) the new equation of motion: 

where 

( 5 )  
1 

2 
rcr = - ( 3 v g w A  + a A g r r v  - a v g A v )  “ u  u *  

Note that the tensor gpLn in (4) is not the tensor gWu raised with 
the Minkowski metric vpU. It is the matrix inverse of g,,,: 

g p L y g u l ,  = 8: 

Remember for future applications. For weak fields, 

g,, = v,” + 2A9,,, but gp“ = 7,” - 2A4,’”. 

8.5 (a) The covariant curvature tensor RAP,, ,  is antisymmetric in A f-f p 
and v f t  77; it is symmetric in Apt, VT. Show that these condi- 
tions make Q A p v t )  = RAPvt) + RAT,,, + RA1,,,, antisymmetric in 
any pair of indices. Therefore, the equation QApur l  = 0 consti- 
tutes an extra constraint on R but only in dimensions four or 
higher. 

(b) From the symmetry properties of R,,,,A,, find the number of 
independent components of R,,A, in three, two, and one di- 
mension(s). 

(c) Show that in two dimensions RAP,, can be expressed as 

-g  

and, therefore, the curvature R = 2 R L 2 / - g  and RAP,, = 

8.6 (a) Extend the work of Section 7.7 to an arbitrary dimensionality 
d. Calculate the number of conditions N,. that must be imposed 
in transforming the tensor g,, at x = xu to the form g,,, = 
v,,, + O((x - x ~ ~ ) ~ ) .  Now count the number of parameters Np 
available to carry out the transformation. Show that N ,  = 

N,, - NL, where NL is the number of paramcters of a Lorentz 
transformation in d dimensions. 

(b) Now, in one, two, and three dimensions, compare the number 
N,‘ of conditions impostd in transforming g,,, to the form gp,, = 
77,” + O((x - x#) with the number of parameters NL available 
to carry out the transformation. Show that N I =  
N; - NL + N R ,  where N X  is the number of independent compo- 

(g A u g p q  - gAt)gp,u)R/2. 
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nents of the curvature tensor that you found in Problem 8.1 
above. 

“8.7 Verify the statement made following (8.7.28) that justifies the for- 
mula (8.7.27) for the gravitational action. 

“8.8 Consider an electron bound to a proton in a relativistic Coulomb 
orbit. The proton generates a potentiai A,) = - e / r ,  A = 0. Follow- 
ing the technique of Section 8.5, find the orbit equation r =  
f ( e L ,  e’, m), where L is the electron’s angular momentum. 

8.9 (a) Show that in one dimension the radius of curvature of a curve 
y =f(x) at a point x is R = (1 + (Y’)~”’’”’’, where a negative 
R signifies that the curve is concave downward. The radius of 
curvature is here defined as the radius of the tangent circle that 
has the same second derivative at the matching point. 

(b) A two-dimensional surface is embedded in three-dimensional 
space. It is described by an equation x3 = f(xl, x2). Choose 
df/dxl and df/8x2 to be zero at xl = x2 = 0. Then f(xl, xZ), near 
x, x2 = 0, can be expanded (with proper choice of axes) as 

x: x: 3 f ( x , ,  x2) = __ + ~ + O(x-) 
2R1 2R2 

Calculate the metric tensor g,. (Note that g, = g‘l = 6, at x1 = 

(c) Calculate the curvature tensor R 1212 at x1 = x2 = 0 and from it 
x?; = 0.) 

the curvature scalar R .  

8.10 Define 

where 1) is the usual 1, -1, - 1 ,  -1. Show that gfLu is the inverse 
matrix of g,“. 

8.11 Consider a two-dimensional space, with metric 

(d4* = ( d x d 2  +f(xl)(dX2>2, 

g,, = 1, g22 =f(x1), g12 = g21 = 0. 

so 

Find the value of rgA for all p, u, A.  

8.12 (a) Consider a metric g,, = 1, g2, =f(xl). Calculate the curvature 

(b) Verify that for f(x) = sin x, R is constant. Verify that for f(x) = 

tensor R 1212 and from it the scalar curvature R .  

x, R is zero. 
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8.13 In the harmonic gauge, a,Lt$P’y = ;8’+, the equation coupling t$tL” 
to Tp”is  

where 

Show that (1) is consistent with the choice of gauge, in that 
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APPENDIX A 

Vectors and Tensors 

~~ 

A. 1.  UNIT VECTORS AND ORTHOGONAL 
TRANSFORMATIONS 

A given orthogonal coordinate system determines an orthonormal set of 
unit vectors in terms of which an arbitrary vector can be expanded. In 
three dimensions, with e l ,  &, and 2, as the unit vectors, 

The numbers A l ,  A 2 ,  and A3 are called the 1, 2, 3 components of the 
vector A. 

A useful simplification is achieved by introducing tensor notation, in 
which a subscript takes on successively the values 1, 2, 3. Thus, (A. l .1 )  
would be written as 

A = C.$,A; 
i 

or 

A = GiAl 

(A.1.2) 

(A .  1.3) 

where in (A.1.3) the summation convention has been introduced. This 
convention requires that a repeated index be summed, unless otherwise 
stated. Notice that the dimensionality is now implicit. The tensor formal- 
ism allows us to deal simply with any (finite) dimension. 

The sum of two vectors A and B is defined as 

A + B = ̂ e;(A; + B ; ) .  

391 
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The product of a scalar c and vector A is defined as 

cA = G,(cA,). 

The unit vectors are orthonormal. That is, we define the dot, or inner, 
product by 

^el . ̂e, = a,, (A.1.4) 

where the Kronecker delta aij is defined by 

1 i f i = j  
0 otherwise 

8, = (A.1.5) 

The dot, or inner, product of two vectors is defined to be distributive 
under addition. That is, 

A .  B + A .  C = A .  (B + C) (A.1.6) 

for any three vectors A, B, and C. Therefore (remember the summation 
convention), 

A * B = $,A, . G,B, 

= S,,A,R, 

=A,Bj .  (A.1.7) 

Although we have introduced vectors as abstract objects, in two or 
three dimensions we can visualize them as directed line segments in our 
very own Euclidian space. Then, in two dimensions, we would write 

A = A,$, + A$,, (A.1.8) 

and with B the angle between A and the x-axis, 2,, 

A, = A cos 6 

A ,  = A sin0 

and 

=A: + A ;  = A .  A .  

(A.1.9) 

(A. 1.10) 

A similar expansion for B, 

(A.1.11) 
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with 

B , = B c o s +  and B, ,=RsinJI  (A. 1.12) 

gives 

A .  B = AB(cos Ocos I)+ sin Osin I)) 

= A B  cos(6 - I)), (A. 1.13) 

the well-known relation of the inner product to the magnitudes of two 
vectors and the angle between them. 

We may consider a second orthogonal coordinate system with unit 
vectors 2;. The new unit vectors can be expanded in terms of the old ones: 

(A. 1.14) A el  = OfrrGr. 

Since the 2,. must be orthonormal, 

In matrix notation, (A.1.15) can be written more compactly as 

OOT = I, (A. 1.16) 

where the i j  matrix element of I is S,, and the matrix elements of the 
matrix o are or*,,  and of its transpose oT are 

(OT),/ .  = Ojr  . (A. 1.17) 

A matrix satisfying (A.1.16) is called orthogonal, since it connects two 
orthogonal coordinate systems. 

The determinant of an orthogonal matrix must be -C1. To see this, 
we take the determinant of (A.1.16). This yields 

det I = det (007 ' )  

= (det O)(det 07) 

= (det 0)' (A.1.18) 

so that det 0 = *I.  

we could have expressed the 2,'s in terms of the 2,,'s) 
It follows immediately that 0 has a unique inverse (as it must, since 

0-L = 07 (A.l .  19) 
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so that also 

OTO = I .  (A.1.20) 

It is geometrically evident that any reorientation of the three unit 
coordinate vectors, keeping their relative positions unchanged, can be 
generated by a rotation. Since any rotation can be generated by a succes- 
sion of small rotations, the determinant of the transformation matrix 0 
describing the rotation can never jump from 1 to -1. Therefore, whcn 
det 0 = 1, 0 describes a rotation, whereas when det 0 = -1, 0 describes 
a rotation followed by a single reflection, for example, 

A A  A A  e,. = e x ,  e,. = e,, and 2, = - 2 z .  (A.1.21) 

A.2. TRANSFORMATION OF VECTOR COMPONENTS 

When we transform the base vector 2;, we must transform the vector 
components Ai in such a way that the vector A itself remains unchanged: 

From (A.1.14) we see that 

so that 

or, in matrix notation, with A as a column vector, 

or 

A = OTAi 

A‘ = OA 

(A. 2.2) 

(A.2.3) 

(A.2.4) 

(A. 2.5) 

so that the components A, transform exactly like the unit vectors 2,.  This 
is a special property of orthogonal transformations. In general, the base 
vectors transform differently from the vector components. Thus, if the 
transformations on the 3,’s is P ,  that is, 

and 
(A. 2.6) 

(A .2.7) 
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we again must have, as in (A.2.4), 

A = PrA’ (A. 2.8) 

from which, in general, 

A’  = (PT)- ’A # PA (A. 2.9) 

except for orthogonal matrices. The transformation law of the base vectors 
is called covariant, that of the vector components contravariant. 

We define a vector under orthogonal transformations to be a set of 
objects A,  that transform according to (A.2.5). The prototype vector is 
formed by the x, y ,  and z components of a point in space referred to some 
origin. 

The dot product of two vectors is independent of the coordinate 
system: 

A‘ B’ = AjrBj, = Oj,,Oj,kA,Bk = A ,  Bi = A . B .  (A.2.10) 

We call A B an invariant, or scalar. There are also, of course, trivial 
scalars, such as fixed numbers, mass ratios, etc. Note that the product SA, 
of a scalar S and a vector A ,  is a vector. 

The importance of the transformation properties of vector Components 
for physics is that a linear relation between vectors is preserved under 
coordinate transformations. Thus, if a physical law is 

Aj = Bj, (A.2.11) 

then obviously O,.,A, = O,, ,B, ,  or 

(A. 2.12) 

and the law is the same expressed in the new coordinate system. There- 
fore, no experiment can tell us which coordinate system we are using. We 
say this law of Nature is invariant (strictly, covariant) under rotations and 
reflections. A simple way of describing what this means is the following: 
Suppose we go to sleep in our laboratory and a playful genie turns our 
laboratory around. There is no way that we can on awakening tell whether 
and by how much we have turned. (Of course, there must be no nearby 
unturned objects that might serve as references.) Physicists believe that 
this property is exactly true of rotations: Space is isotropic. 

A reflection of our laboratory puts more of a strain on our genie: She 
would have to tear apart the laboratory and then reconstruct a mirror 
image of it and everything in it (including us). Then, if the laws of Nature 
are covariant with respect to reflections as well as to rotations, we would 
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not be able to tell whether the deconstruction had taken place or not. Put 
more simply and avoiding the painful deconstruction, we could not tell by 
watching an experiment whether we were looking at the real world, or at 
a reflection of the real world in a mirror. Unlike the case of rotations, 
reflection invariance holds to a very good approximation for most pheno- 
mena, but not exactly for any, and not even approximately for the weak 
interactions. 

A simple example of a vector law is Newton’s second law describing 
the acceleration of a particle of mass m at position x, in the gravitation 
field of a second particle of mass M at position y i :  

(A.2.13) 

where m, M, G ,  t ,  and [ (xk  - yk)2]3 /2  are scalars, and xi and y ,  are vectors. 
Note that the summation convention defines (nk - yk)2 to be 

the square of the distance between x and y .  Note also that x , ( t )  and 
x i ( t  + Ar) are vectors and, thus, 

dx j x , ( t  + At) - x , ( f )  
-= lim 
dt Ar-0 At 

is also a vector, as is d2xi/dt2,  etc. 

A.3. TENSORS 

We define an nth-rank tensor to be a set of objects that transform like 
products of n vectors. Thus if Ti, . . . is an nth-rank tensor, 

A simple example of such a tensor is, in fact, a product of n vectors: 

Ti, .._.. i,, = AjIBj2 t . . Zin (A.3.2) 

which will obviously have the property (A.3.1). Note that a scalar is a 
tensor of rank zero and a vector a tensor of rank one. 
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Symmetry properties of tensors are invariant. Thus, if TIl,* ,, is sym- 
metric (antisymmetric) under an exchange of il and i2, then T[i,;. .,; will 
have the same property under exchange of i; and i;. 

We recall from (A.2.10) that the inner product A,B,  of two vectors 
A ,  and B, is invariant. The generalization of this rule to tensors is that the 
trace with respect to any two indices lowers the rank of the tensor by 2. 
The trace with respect to two indices is defined as 

where, as always, the repeated index i is summed. 
Laws of nature that are linear relations between tensors have the same 

property as those between vectors, in that they do not permit experiments 
to differentiate between coordinate systems. 

We give a simple example of a tensor law. Suppose for simplicity that 
in (A.2.13) we let M be a heavy immobile object at y = 0. Then (A.2.13) 
can be written as 

(A .3.4) md2xi mMGxi -- 
d? (x;)3‘2 . 

Now multiply (A.3.4) by xi: 

d *x, G ~ I  mx, - - - -mM- 
d? ( X y 2 ’  

(A.3.5) 

interchange i and j ,  and subtract. The right-hand side of (A.3.5) vanishes, 
and we are left with 

and we have a tensor conservation law: 

(A. 3.6) 

d 
dt 
- LJi = 0 (A. 3.7) 
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where 

(A. 3.8) 

Equation (A.3.7) is a new way of writing the conservation of angular 
momentum as the constancy of a second-rank antisymmetric tensor. 

A.4. PSEUDOTENSORS 

The connection between the second-rank antisymmetric tensor Li, (A.3.8) 
and the usual angular momentum vector 

L = m x x v  (A.4.1) 

is given by the equation 

(A.4.2) 

where Ei,k is totally antisymmetric in exchange of any two indices, and 
€123 = 1.  This uniquely determines all components of E :  

all other components are zero. 

To check, we calculate 
One might suppose that E is a third-rank totally antisymmetric tensor. 

Since C,-,.,8k. is totally antisymmetric in exchange of any two indices, F 
must be a multiple of E .  We can evaluate the multiple by calculating 
- 
€123: 

- 
€123 = O l 1 0 2 j 0 3 X ~ r j k  = det 0 (A .4.5) 

so that E is a tensor under rotations but has an extra change of sign under 
reflections. It is called a pseudotensor. In contrast, as shown in Problem 
(A.l) ,  a,, is a tensor. 

Returning to (A.4.2), we see that L, transforms like a vector under 
rotations, but has an extra sign change under inversions. It is called a 
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pseudovector, or axial vector. This property corresponds exactly to that 
of an ordinary vector cross-product, as in (A.4.1): Note that an inversion 
(x + -x) takes v -+ -v ,  but L + L, which is not what a true vector should 
do. 

The pseudotensor Ejjk evidently makes possible the construction of 
pseudotensors of any rank. For example, if A, B, and C are vectors, then 

is a pseudoscalar. 

A S .  VECTOR AND TENSOR FIELDS 

In the previous sections of this appendix, we have considered single ten- 
sors, vectors, and scalars. Examples are the angular momentum, the velo- 
city and the energy of a body at  some time, or the instantaneous electric 
field at a given point in space. 

We often wish to consider collectively objects associated with all of 
space, for example, the density p(x )  of matter at a given time. Since mass 
and volume are scalars, p(x ) ,  the mass per unit volume, is also a scalar. 
We call p ( x )  a scalar field. Similarly, we can consider vector fields-such 
as the electric field-and, in general, tensor and pseudotensor fields of 
higher rank. 

Let us start with a scalar field p ( x ) .  The transformation rule for p ( x )  
is 

P ’ ( X ’ )  = P ( X )  = p(x(n’)) (A.5.1) 

That is, the densities measured at the same point in both the primed and 
unprimed coordinate systems are equal. In the primed system, we express 
the density as a function of the primed coordinate x‘ .  Therefore, the new 
function p ’ ( x ’ )  is not the same function of x‘ as p is of x. Hence, the 
notation p ’ ( x ’ )  in (A.5.1). 

Differentiation of a scalar field produces a vector field. To see this, 
let p be the scalar field. Then consider the gradient 

a 
ax j  

A; (x) = - P(X) . (A S . 2 )  

The instructions for calculating the gradient in the primed coordinate 
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system would be, by the chain rule for partial differentiation, 

Recall that x,’ = O,.,x,, so 

XI = (O~) , , .X , .  , 

= (OT),,, = OItf ,  ax, 
ax, ’ 

and therefore, 

A,,  = O,*,A, 

(A.5.3) 

(A. 5.4) 

which is the correct transformation law for a vector. 

rank n + 1.’ For example, 
In general, differentiation of a tensor of rank n produces a tensor of 

where Ai is a vector produces a second-rank tensor BIl .  Note that the 
antisymmetric tensor 

is related to the curl of A :  

(A.5.5) 

Since (dlaxj) A; is a tensor, its trace, (alax,) A , ,  is a scalar. Similarly, 
the divergence of a tensor of rank n produces one of rank n - 1: 

- a 
~ F,, . . , I , ,  - Bl, . . . I , ,  

axi ,  
(A .5 .A) 

’Wuming:  We have shown this to be true for orthogonal transformations. It is 
specifically not true for general coordinate transformations. (See Section 7.6.) 
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A.6. SUMMARY OF RULES OF THREE-DIMENSIONAL 
VECTOR ALGEBRA AND ANALYSIS 

We list here, without proof, the most important of these.* 

1. For any vectors A and B 

2. 

A . B  =ABCOS 8 

where A is the magnitude of A, 

A = (A2)1’2, 

B the magnitude of B and 6 the angle between them. 

(A.6.1) 

A X B = CiABsin6 (A.6.2) 

where fi is normal to the plane containing A and B, and in a 
direction given by a right-handed screw going from A to B (through 
the smallest angle between them). Right-handed is defined here by 

the 
coordinate system in which (A.4.2) is written: 2, x ^e2 = ̂ e3. 

3 .  A X (B X C) = A . C B  - A * B C  (A. 6.3) 

provided B and C commute 

4. A . B x C = A X B . C  

(A. 6.4) 

5 .  Stokes’ theorem: 

+ d t  . A  = j dS .V x A .  (A. 6.5) 

C S 

Here, C is a closed path along which we take the line integral of 

’For a simple discussion, see H. M. Schey, Diu, Grad, Curl and All That, New York: 
W. W. Norton, 1973. 
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A, S is a surface bounded by C, and d S  = dS f i ,  with dS the surface 
element and fi a unit vector normal to the surface, in a direction 
given by a right-handed screw going around the circuit in the 
direction specified by d e .  

6. Gauss’ theorem: 

j d r V . A = j d S  . A (A. 6.6) 
V S 

where V is a volume bounded by S ,  and dS = dSB, as before, with 
6 the outward normal. 

7. A vector E with V X E = 0 is the gradient of a scalar: 

E = V#J. (A .6.7) 

8. A vector B with V . B = 0 is the curl of a vector: 

B = V x A .  (A.6.8) 

9. The gradient operator in a general orthogonal coordinate system 
q l ,  q2, and q3 with unit vectors C1, e2 ,  and e3 is given by 

where hi dqi is the increment of length in the qi direction. For 
explicit calculation, one must remember that the h’s and G’s are, in 
general, functions of the 4’s. In particular, the Laplacian operator 
V 2  is given by 

(A. 6.9) 

In spherical coordinates r ,  8, cp, h, = 1, he = r ,  and h ,  = rsin 8. 

APPENDIX A: PROBLEMS 

A . l  Show that a,, is a second-rank tensor. 

A.2 Construct a second-rank tensor T,, that is symmetric, has zero trace, 
and is a function of only one vector and the Kronecker delta. 
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A.3 Repeat Problem A.2, but for a third-rank tensor. 

A.4 Repeat Problem A.2, but for a fourth-rank tensor. 

A S  Construct the most general third-rank tensor T,Jk that is a linear 
function of a vector y ,  a bilinear function of a vector x ,  and antisym- 
metric under the exchange of i and j .  

A.6 Construct a third-rank tensor T,Jk that is a function of two vectors, 
x, and y , ,  antisymmetric under exchange of i and j ,  and symmetric 
under exchange of x and y .  

A.7 Show that the triple scalar product, A . B x C, is given by 

A . B x C = d e t ( B x  A x  A, B, A ,  B7], 

c x  c, c, 
from which you must show that A . B x C is invariant under an 
interchange of the dot and cross-product, that is, 

A . B X C = A X B . C .  

A.8 Using (A.6.3), show that the triple vector product is not, in general, 
associative, that is, 

A x  (B x C ) # ( A  x B) x C ,  

and find under what circumstances the inequality becomes an 
equality. 

A.9 Given a tensor TIJkr,  symmetric (or antisymmetric) in i and j ,  prove 
that the transformed tensor T,,, k ’ [ ’  has the same property in i’ and 
j ’  . 

A.lC Let T,,k be a third-rank tensor. Show that T,,J is a first-rank tensor. 

A.11 Show that €,lk€l/m = S,/Skm - SlmSk/. 

A.12 Use the result of Problem A . l l  to prove the formula (A.6.3) for 

A.13 Use the definition of A X B: 

the triple vector product. 

(A X B), = E,jkA]Bk 7 

to show that A x B is orthogonal to A and B. 

is given correctly by (A.6.2). 

satisfies the right-hand rule. 

A.14 Use the result of Problem A . l l  to show that the magnitude of A x B 

A.15 Show that the direction of A x B, as defined in Problem A.13, 
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A. 16 Suppose a body is spinning about a fixed point with instantaneous 
angular velocity w. That is, every point rp in the body has instan- 
taneous velocity v p  = w X r,. The angular momentum L of the body 
is 

L = E mprp x (o x rp). 

Show that the components of L are linear functions of the compo- 
nents of w: 

L,  = Itjmj 

where I , ,  is called the moment of inertia tensor. Show that Zl, is a 
second-rank symmetric tensor. 

A.17 Using the fact [derived in (A.1.13)] that A * B for any two vectors 
is given by AB cos 8, where 8 is the angle between them, show that 

cos 6 = cos 8, cos 8, + sin 8, sin B0 cos(cp, - Po) 

where 8, and OB and cpA and (pB are the spherical coordinates of the 
vectors A and B ,  with 8 their polar angle and cp their azimuth. 

A.18 Derive a formula equivalent to the one in Problem A.17 for the 
angle between two vectors in a four-dimensional Euclidean space, 
with polar angles 8, $, and cp for each vector, that is, A, = A cos 6, 
A3 = A sin Ocos $, AZ = A sin Osin I#Jcos&, and Al  = A sin Osin JI 
x sin 4. 

A.19 From Gauss’ theorem, (A.6.6), prove 

V S 

V S 

for any function 4 and vector A. 

A(x) is the gradient of a scalar I#J(x), with @(x) given by 

$(x) = 

A.20 From Stokes’ theorem, show that if a vector A(x) has zero curl, then 

X 

d t  ’ . A(x‘) 

XU 

independent of the path from xo to x. 

show that 
A.21 Let V be a volume bounded by a surface S. From Gauss’ theorem, 
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V S V 

from which prove that a vector whose divergence and curl are both 
zero, and which vanishes sufficiently rapidly at CQ, must be zero 
everywhere. Give the criteria for “sufficiently rapidly.” 

A.22 From Gauss’ theorem applied to a small cube, derive the expression 
(A.6.9). 
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APPENDIX €3 

Spherical Harmonics and 
Orthogonal Polynomials 

B.l .  LEGENDRE POLYNOMIALS 

The simple potential function 

1 #l(x - XI) = 
[(x - x1)2]1'2 

(B. 1.1) 

can be expanded for small r l l r  in a power series in r ' l r ,  and for small r l r ' ,  
in a power series in that variable. In order to avoid confusion with the x 
component of x, we here denote the magnitude of x by r: 

We can test for the radius of convergence of the series by finding the 
zeros of the function 

D = (x - x ' ) ~  = r2 + r r 2  - 2rr' cos 8, (B. 1.3) 

where 19 is the angle between the vectors x and x'. 
If we let r ' / r  = u ,  the equation D = 0 becomes 

1 + u 2 - 2 u c o s 8 = 0  (B .I  .4) 

whose solutions are 

u -- cos o 2 \/cosz 0 - 1 = e "'. (B . 1 .S) 

The function $J, considered a function of the complex variable u, is 

406 
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therefore analytic in u for 1 u I < 1 so that the power series in u is convergent 
for u < 1. Thus, we may write 

for r < r ' ,  and 

(B . 1.7) 

for r > r'. 
The function PL(cos 0) defined by (B.1.6) and (B.1.7) is clearly a 

polynomial in cos 0 of degree 4 ,  even or odd in cos 0 according to whether 
t is even or odd. It is called a Legendre polynomial. It is also clear that 
the function r'P,(cos 0) is a polynomial of degree t in the components x, 
y ,  z of the vector x, with xf held fixed. In particular, if we choose x' 
as the polar axis of the x coordinate system, then r cos 0 = z and r2 = 
x2 + y 2  + z2, so that r'Pf(cos 0) is a polynomial function only of z and 
r2. The function 4 with the property (B.1.6) is called a generating function 
for the P"s. 

We study some properties of the P i s :  

1. Since 
1 V 2 -  - 0  - (x#x') and V ' 2 - - - - = 0  ( x f x ' ) ,  

(x - X'I ( x  - xq 
(B.1.8) 

(B.1.6) shows that the polynomial function of x, r'PPr(cosO), is 
harmonic; that is, it satisfies the equation 

V2r ' P ~  (cos 0) = 0; (B.1.9) 

Similarly, 

1 
rC+'  

v2 - P ( ( C 0 S  0) = 0. (B. 1.10) 

2 .  In the forward and backward directions, the expansion (B.1.6) 
becomes 

(B , 1 .11) 

so that 

P [ (+ l )  = (B . 1 .12) 
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3. Harmonic polynomials of different order are orthogonal. That is, 

(B. 1.13) 

if 

v2pt = v2qt. = 0 

where p t  and q c  are polynomials of order t? and 4' in x,  y ,  z ,  then 
the integral over solid angle, dR, 

Proof: Integrate over a spherical volume: 

(B. 1.15) 

so that 

integrated over the spherical surface bounding the volume. Since 
dS . V  = r2dR(a/dr) ,  (B.l.16) becomes, with 

and the result is proved. In particular, Legendre polynomials P , ( w )  
and P t , ( w )  with e # e' are orthogonal when integrated over w. 
Here, w = cos 0, dw = sin OdB, and dR = d q d w ,  where cp goes 
from 0 to 27r and w now goes from -1 to 1. 

4. The normalization integral for P r  can be found by integrating 
l / ( r  - r'(': 

1 

27r ( r  + r'12 
=--log- 

2rr' ( r  - r 1 ) 2  

27r 
rr' 

= - [log(r' + r )  - log(r' - r ) ]  (B.1.19) 



R.1. Legendre Polynomials 409 

for r' > r. Here, the symbol logx stands for the natural logarithm 
of x. Expanding in powers of rlr', we have 

On the other hand. 

so that, in all, 

2 
2 t  + 1 

j P p ( w )  P t , ( w )  dw = - 6tC * (B . 1.22) 

5 .  The Pi's are orthogonal polynomials of parity ( - l ) f  and of order 
t in w, with a weight function 1 on the interval w between tl and 
a normalization P1(l) = 1. Evidently, the Pr's can be sequentially 
constructed from these rules. Thus, 

P " ( W )  = 1 

P l ( W )  = w 

P2(w) = a + p w 2 ,  

(B. 1.23) 

(B . 1 .24) 

(B. 1.25) 

etc. 
P2 is automatically orthogonal to P I ;  orthogonality to Po 
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requires 

or 

1 I-, dW((Y + O W 2 )  = 0 

P 
3 '  

( Y =  - -  (B. 1.26) 

Together with P2(1) = 1, or (Y + P = 1 ,  (B.1.26) determines Pz as 

(B.1.27) 
3 1 

P2(w) = - w 2  - - 
2 2 '  

This procedure can be continued to construct any finite-order Leg- 
endre polynomial. 

B.2. SPHERICAL HARMONICS 

We return to (B.l.1) and expand directly in powers of x ,  y, and z using 
the three dimensional Taylor's theorem. That is, for r < r ' ,  

or, in tensor notation, 

We define multipole fields of order t as 

(B .2.1) 

(B .2.2) 

(B .2.3) 

4(')(x') is a symmetric tensor of rank P .  It is also traceless, since con- 
tracting on any pair of indices in (B.2.3) produces a VI2, which in turn 
gives zero acting on l / r r .  

At a given point in space, we can count the number of independent 
components of c$() [i.e., the number of independent numbers we must 
specify to determine all the components of 4'"]. That number is 2P + 1, 
as we now show. 
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We count first the number S ( e , N )  of Components of an eth-rank 
symmetric tensor in N dimensions. We call the number of x1 components 
n l ,  of x2 components n2, etc. The number of independent components is 
then 

S(4 ,  N )  = I: ' * E * 1. (B .2.4) 
n l  nN 

(f,=[) 

The sum can be deduced from 

= (g (B .2.5) 

which is convergent for I z 1 < 1. We can recover the 4th term in the series 
by integrating the complex function 1/(27riz'+') S ( z ,  n)  around the origin: 

which is the desired formula. For N = 3 ,  w e  have 

(B .2.6) 

(B .2.7) 

(B .2.8) 

The number &(e, 3 )  of independent components of a traceless sym- 
metric tensor in three dimensions is 

S,,(t,  3 )  = q e ,  3) - s(e - 2,3) = 2e + 1 (B .2.9) 
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since the symmetry of S(C, 3) assures that all traces are identical and since 
the trace of an &-rank symmetric tensor is an t - 2th-rank symmetric 
tensor, 

We return to (B.2.2), which we may write as 

(B.2.10) 

where 

is a symmetric tth-rank tensor. 
Since there are only 2C + 1 indepe-ndent ~ ( O ' S ,  there must be only 

2C + 1 independent components of the F(') 's  that matter. We exhibit this, 
making P t  traceless by subtracting Kronecker deltas. These have no effect 
on 4, since 

We illustrate the subtraction procedure for C = 2. Define 

such that P:f) = 0; that is, 

and 

(B .2.14) 

The above procedure, applied to P l  of arbitrary rank, produces an Cth- 
rank, symmetric, traceless tensor, Pj:) l,(x), with 2C + 1 independent 
components. 

Since V2 1/lx - x ' I  = 0 for (x # x'), the polynomial product 
Pj:) I,(x) 4:;) r r ( ~ ' )  must satisfy Laplace's equation; since there are 
2 t  + 1 independent +(')'s and 2 t  + 1 independent P(')'s,  each PC0 must 
satisfy Laplace's equation, that is, 

V"p , ;/ = 0. (B.2. IS) 
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We have thus shown that there exist at least 24 + 1 harmonic polyno- 
mials of degree t :  the P!:). . ,('s. And we may write 

(B.2.16) 

We show next that there are exactly 2 t  + 1 independent harmonic 
polynomials of degree t. We proceed by writing an arbitrary polynomial 
of degree e as 

$(() = E (x + iy>"l(x - iy)m2zm3a(ml, m2, m3) 
m l + r n 2 + r n j = = l  

where the coefficient a(m,, m2, m3) is to be determined. 
Suppose m l  > m2; we then write 

(x + iy)"'I(x - iy)"' = (x + zy)"'-"'(x2 + y')"'; 

if m, < m2, we write 

(x + iy)"'l(x - iy)"* = (x - + y2)"l. 

We can expand 
(CIW = 2 (CI(W 

rn 

(B .2.17) 

(B .2.18) 

(B .2.19) 

(B .2.20) 

where, for fixed m = m, - m2 > 0, 

(x + Zy)" I: (x' + y2)mzzm3a(rnl, m2, m g ) .  (B.2.21) , p t . n l )  = 
2mz+rn3=( -m 

Note that m may take on values from 0 to 4.  The m2 and ml values with 
m2 > m l  add e functions proportional to (x - iy)'"', so that in all we have 
functions $ ( r 3 r n )  whose azimuthal cp dependence (in spherical coordinates) 
is elnlQ , with m taking on 2e + 1 values between ki?. Note that functions 
with different m values are orthogonal: 

We already know from (B.1.14) that $ t 3 m r ~  of different e are orthogonal. 
Finally, we show that orthogonality between different t values 

determines $(""I) to within a constant multiple; normalization determines 
it to within a phase. 
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We first note from (B.2.17) that 

The transformation x + - x in spherical coordinates is given by 

c p j c p + 7 F ,  e + . r r - e  (B .2.24) 

so that, since eimv --f (- l)”le’mq under the transformation (B.2.24), the 
residual function in (B.2.21) 

must be multiplied by (- l )Lpnl under the transformation z + - z. 
Factoring the r‘ dependence of +b(‘9m), we define 

where PC,,(cos 0) is a polynomial of degree C - m in cos 0.’ Under the 
transformation r + - r, then, 

The functions (B.2.26) are already orthogonal for different m values. 
If they are to be harmonic, they must also be orthogonal for different t 
values. That is, 

d R = 0 ,  t f P’ or m # m’. (B.2.27) q,(t,m) * q,( t ‘ .m ‘) 

Following (B.2.27), we construct, for each m, a sequence of ortho- 
gonal polynomials of degrees e - Irn( in z ,  starting with C = Iml and 
containing only even or odd powers of z according to the parity (- l ) f - m * .  
The weight function for the sequence is (sinim10)2 = (1 - cos’ @ ) I m 1 .  

‘We introduce the bar in the symbol Pc.,,, because there exists a conventionally defined 
symbol Pt ,m with a different normalization. 
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TABLE B. l .  

4 sin4 @e4"" 
3 0 e3ic  

2 sin' Oe2" sin2 Oe"9 cos o sin2 Oe"q(g cos' o + h )  
1 
0 1 cos O a cos' O + b cos O(e cos20 + f) . 

sin3 o e3rq cos o 

sin 0 ei* cos e( j cos2e + k )  sin o el9 sin o e" cos o sin o e"(c cos2 0 + d )  

-1 sin Be ir sinOe-'"cosO . 
sin' 

This is illustrated in Table B.l. 
Evidently, there are just enough orthogonality relations to determine 

all the coefficients to within a constant multiple. If we normalize these 
functions to one, they are determined up to a constant phase. For some 
purposes, it is convenient to choose 

and we shall generally do so. 
We have now constructed for each m a unique orthonormal set of 

polynomials of degree e ;  since rn ranges from -8 to e ,  there are, for each 
e ,  2.t + 1 polynomials. Harmonic polynomials may be chosen to have a 
fixed m, since the Laplacian operator V2 does not mix values of m, that 
is. 

v2 i m p  F ( 8 )  = eimVG(8). (B .2.29) 

In addition, harmonic polynomials must be orthogonal for different 
e ,  a property by which they are uniquely determined, as we have just 
shown. Therefore, our orthogonality procedure has determined the 2 t  + 1 
harmonic polynomials of each order. 

The notation we use for the normalized functions is  

B.3. COMPLETENESS OF THE Ye,, 

We show first that the Legendre polynomials are complete, that is, that 
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for f(r) a sufficiently well-behaved function of angle, and where the 
vectors rf  and r have the same length: lr’l = Irl = r .  

Appendix B: Spherical Harmonics and Orthogonal Polynomials 

We proceed by considering the integral 

where the surface S’ is a sphere of radius r .  The vector ri is inside the 
sphere, ro outside the sphere; for simplicity we take them to be colinear. 
We will take the limit r, + r and ro + r in two different ways. 

Except for the singularities in the integrand (B.3.2) at r’ = r, and rr = 
ro, the limit would be zero. We take the singularity properly into account 
by expanding f(r’) about rr in the first term of (B.3.2) [as f(r’) = 
f(ri) + (r‘ - r,) . V f +  . . .] and about ro in the second. The terms with 
rf - r, and r’ - r0 to the first and higher powers remove the singularity 
and, hence, in the limit can be dropped. There remains 

+ terms that go to zero, so that 

lim F = 47rf(r). 
r,+r 
rg+r+ 

(B .3.3) 

On the other hand, expanding l / / r  - riI in powers of r j l r  and 
l / ] r  - ro 1 in powers of r / r o ,  we have, from (B.3.2), 

or 

It is now safe to take the limit, which yields, as claimed, 

Next, we note that since r f P ( ( ? .  ?’) is a harmonic polynomial of order 
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e,  as is r“Pl(P-P‘), we must be able to expand P((? .  P‘) in terms of the 
Y,,,(R)’s and Yt,,(R’)’s, that is, 

p,(P.P’) = 2 U ~ , ~ , Y Y , ~ ( O ,  cp) YT,,,(O’, cp’). (B.3.5) 
m,m’ 

Since 3 .? = cos Bcos 8’ + sin Osin 8’ cos(cp - cp’), (B.3.5) must depend 
only on cp- cp‘ (not on 4p + cp‘). Therefore, must equal zero unless 
m’ = m, and (B.3.5) becomes 

Note that since Pl  is real and invariant under interchange of P and P‘, a,,, 
must be real. We perform two operations on (B.3.6): 

1. Set P = P’ and integrate over d o .  We find 

477 = 2 a , .  
m 

2. Now square (B.3.6): 

3. Integrate over dR. There results 

4%- _ -  - C la, I* I Yt.m(.n’> I*. 
24 + 1 m 

4. Finally, integrate over dfi’ to find 

(B.3.7) 

(B .3.8) 

(B .3.9) 

(B .3.10) 

The unique solution of (B.3.7) and (B.3.10) is urn = 4 ~ / ( 2 t  + 1). (See 
Problem B. l l . )  Our final result is therefore 
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The completeness theorem (B.3.4) for the P i s  then tells us that any 
function of angle can be expanded in the Yr,,’s: 

Appendix B: Spherical Harmonics and Orthogonal Polynomials 

or 

The Y p , m ’ ~  are sometimes referred to as spherical tensors. Recall the 
Cartesian form of harmonic polynomials generated by the coefficients of 
r$(‘)’s in (B.2.16): 

Pi ,... = (x i ,  . . . xi(  - traces). (B.3.13) 

These transform under rotations as tth-rank, symmetric traceless ten- 
sors. 

The YP,,’s also have a simple transformation property, since a solution 
of the Laplace equation must remain a solution under rotations. There- 
fore, 

where f lR  takes the 8, rp of the original coordinate system (a) and changes 
them to the 0, cp of the same point with respect to the new coordinate 
system. The expansion coefficients D L,,,, ( R )  define the transformation of 
a spherical tensor. 

APPENDIX B PROBLEMS 

B . l  From the definition (B.1.6) of the P,’s, show that P ; ( w  = 1) = 
q e  + 1)/2. 

B.2 Again using (B.1.6), show that with w = cos 13, 

P ( ( W  = 0) = 0 for t odd 

where n = t12, and the product 4. . . ( n  - 4) = 1 for n = 0. 
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B.3 Again using (B.1.6), show that the P,’s satisfy the differential 
equation 

d d 
dw dw 

--(I - w 2 ) - ~ l ( ~ )  = e ( e +  ~ ) P & v ) .  

B.4 Again using (B.1.6), show that 

( t  + 1) P ( + ~ ( W )  + e P C - I ( w )  = W ( 2 e  + 1) P ~ ( w )  

and from that, show that 

PewPFdw = 0 
- I  i 

unless t’ = t 2 1 and that 
1 

- 1  

B.5 Use the orthonormality of the Yt,,’s to construct all the Y p , m ’ ~  for 
e I 4 as suggested by Table B. l .  

B.6 Show that the function 

1 
T ( X  + iy) - - (X - iy) - 2~ 

7 

for any T is a harmonic polynomial of order e and is a generating 
function for the YF,,,,’s: 

L 
L 

~ ( ( 7 ,  r) = r X TmCt ,m ~ ~ . ~ ~ ( e ,  cp)  
m = - t  

where the C [ , ~ ’ S  are constant coefficients. 

B.7 Show from the results of Problem B.6 that 

that 
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and that 

- r  Y4,m = dy,nl r'-' Yc-, , , , ,  
az 

where d,  d ' ,  and d" are e, m-dependent constants. 

B.8 The charge distribution on a spherical surface is given by 

cr= A . r ,  

where A is a constant vector 
Find the potential 

and the field 

E = - V 4  

inside and outside of the sphere. 

B.9 Verify by direct integration Newton's theorem that the potential 
outside a spherically symmetric charge distribution plY(r) is the same 
as it would be were all the charge concentrated at the center. That 
is, for r outside of the region in which p is nonzero, 

where Q = dr 'p tr ' ) .  

B.10 We know from (B.2.26) that r t Y t , ,  is harmonic and of the form 
r' einz+'fC,m(8). Show from this that f ' . m  satisfies the equation 

d m2 (id sin 8- - - 
sin BdO d8 sin2 8 

B . l l  Prove the statement made following (B.3.10), that (B.3.7) and 
(B.3.10) imply a, = 4 d ( 2 e  + 1). 
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