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Preface

It is hard to fit a graduate course on clectromagnetic theory into one
semester. On the other hand, it is hard to stretch it to two semesters. This
text is based on a two-semester MIT ccurse designed to solve the problem
by a compromise: Allow approximately one and a half semesters for
electromagnetic theory, including scattering theory, special relativity and
Lagrangian field theory, and add approximately one-half semester on
gravitation.

It is assumed throughout that the reader has a physics background
that includes an intermediate-level knowledge of electromagnetic pheno-
mena and their theoretical description. This permits the text to be very
theory-centered, starting in Chapters 1 and 2 with the simplest experi-
mental facts (Coulomb’s law, the law of Biot and Savart, Faraday’s law)
and proceeding to the corresponding differential equations; theoretical
constructs, such as energy, momentum, and stress; and some applications,
such as fields in matter, fields in the presence of conductors, and forces
on matter.

In Chapter 3, Maxwell’s equations are obtained by introducing the
displacement current, thus making the modified form of Ampére’s law
consistent for fields in the presence of time-dependent charge and current
densities. The remainder of Chapters 3-5 applies Maxwell’s equations to
wave propagation, radiation, and scattering.

In Chapter 6, special relativity is introduced. It is also assumed here
that the reader comes with prior knowledge of the historic and experi-
mental background of the subject. The major thrust of the chapter is to
translate the physics of relativistic invariance into the language of four-
dimensional tensors. This prepares the way for Chapter 7, in which we
study Lagrangian methods of formulating Lorentz-covariant theories of
interacting particles and fields.

The treatment of gravitation is intended as an introduction to the
subject. It is not a substitute for a full-length study of general relativity,
such as might be based on Weinberg’s book.' Paralleling the treatment

'Steven Weinberg, Gravitation and Cosmology, New York: John Wiley & Sons. 1972,

ix



X Preface

of electromagnetism in earlier chapters, we start from Newton’s law of
gravitation. Together with the requirements of Lorentz covariance and
the very precise proportionality of inertial and gravitational mass, this law
requires that the gravitational potential consist of a second-rank (or
higher) tensor.

In complete analogy with the earlier treatment of the vector (electro-
magnetic) field, following Schwinger,” we develop a theory of the free
tensor field. Just as Maxwell’s equations required that the vector field be
coupled to a conserved vector source (the electric current density), the
tensor field equations require that their tensor source be conserved. The
only available candidate for such a tensor source is the stress-energy
tensor, which in the weak field approximation we take as the stress-energy
tensor of all particles and fields other than the gravitational field. This
leads to a linear theory of gravitation that incorporates all the standard
tests of general relativity (red shift, light deflection, Lense~Thirring effect,
gravitational radiation) except for the precession of planetary orbits,
whose calculation requires nonlinear corrections to the gravitational po-
tential.

In order to remedy the weak field approximation, we note that the
linear equations are not only approximate, but inconsistent. The reason
is that the stress-energy tensor of the sources alone is not conserved, since
the sources exchange energy and momentum with the gravitational field.
The remedy is to recognize that the linear equations are, in fact, consistent
in a coordinate system that eliminates the gravitational field, that is, one
that brings the tensor g, locally to Minkowskian form. The consistent
equations in an arbitrary coordinate system can then be written down
immediately—they are Einstein’s equations. The basic requirement is that
the gravitational potential transform like a tensor under general coordinate
transformations.

Our approach to gravitation is not historical. However, it parallels the
way electromagnetism developed: experiment — equations without the
displacement current; consistency plus the displacement current —
Maxwell’s equations. It seems quite probable that without Einstein the
theory of gravitation would have developed in the same way, that is, in
the way we have just described. Einstein remarkably preempted what
might have been a half-century of development. Nevertheless, I believe
it is useful, in an introduction for beginning students, to emphasize the
field theoretic aspects of gravitation and the strong analogies between
gravitation and the other fields that are studied in physics.

The material in the book can be covered in a two-term course without
crowding; achieving that goal has been a boundary condition from the
start. Satisfying that condition required that choices be made. As a conse-

*]. Schwinger, Particles, Sources and Fields, Addison-Wesley, 1970.
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quence, there is no discussion of many interesting and useful subjects.
Among them are standard techniques in solving electrostatic and magneto-
static problems; propagation in the presence of boundaries, for example,
cavities and wave guides; physics of plasmas and magnetohydrodynamics;
particle motion in given fields and accelerators. In making these choices,
we assumed that the graduate student reader would already have been
exposed to some of these subjects in an earlier course. In addition, the
subjects appear in the end-of-chapter problems sections.

My esteemed colleague Kenneth Johnson once remarked to me that
a textbook, as opposed to a treatise, should include everything a student
must know, not everything the author does know. 1 have made an effort
to hew to that principle; I believe I have deviated from it only in Chapter
5, on scattering. I have included a discussion of scattering because it has
long been a special interest of mine; also, the chapter contains some
material that I believe is not easily available elsewhere. It may be omitted
without causing problems in the succeeding chapters.

The two appendices (the first on vectors and tensors, the second on
spherical harmonics) are included because, although these subjects are
probably well known to most readers, their use recurs constantly
throughout the book. In addition to the material in the appendices, some
knowledge of Fourier transforms and complex variable theory is assumed.

The problems at the end of each chapter serve three purposes. First,
they give a student an opportunity to test his or her understanding of the
material in the text. Second, as I mentioned earlier, they can serve as an
introduction to or review of material not included in the text. Third, they
can be used to develop, with the students’ help, examples, extensions,
and generalizations of the material in the text. Included among these are
a few problems that are at the mini-research-problem level. In presenting
these, I have generally tried to outline a path for achieving the final result.
These problems are marked with an asterisk. I have not deliberately
included problems that require excessive cleverness to solve. For a teacher
searching for a wider set of problems, I recommend the excellent text of
Jackson,? which has an extensive set.

One last comment. [ have not hesitated to introduce quantum inter-
pretations, where appropriate, and even the Schroedinger equation on
one occasion, in Chapter 3. 1 would expect a graduate student to have
run across it (the Schroedinger equation) somewhere in graduate school
by the time he or she reaches Chapter 3.

Finally, I must acknowledge many colleagues for their help. Special
thanks go to Professors Stanley Deser, Jeffrey Goldstone, Roman Jackiw,
and Kenneth Johnson. 1 am grateful to the late Roger Gilson and to
Evan Reidell, Peter Unrau, and Rachel Cohen for their help with the

*J. D. Jackson, Classical Electrodynamics, New York: John Wiley and Sons. 1962.
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manuscript, and to Steven Weinberg and David Jackson for their excellent
texts, from which I have freely borrowed.

Francis E. Low
Cambridge, Massachussetts



CLASSICAL FIELD THEORY
ELECTROMAGNETISM AND GRAVITATION

Francis E. Low

© 2004 WILEY-VCH Verlag GmbH & Co.

CHAPTER 1

Electrostatics

1.1. COULOMB’S LAW

I the first half of the eighteenth century, the basic facts of electrostatics
were sorted out: the existence of two signs of transferable electric charge;
the additive conservation of that charge: the existence of insulators and
conductors. The process is described in a lively way by Whittaker.' Tn the
next half-century, the quantitative law of repulsion of like charges was
determined by Priestley and extended to charges of both signs by Cou-
lomb. By 1812, with the publication of the famous memoir of Poisson.”
the science of electrostatics was understood almost in its present form:
potentials, conductors, etc. Of course, the specific knowledge of the nature
of the carriers of electric charge awaited the experimental discoveries of
the late nineteenth and early twentieth century.

The resultant formulation of clectrostatics starts from Coulomb’s law
for the force between two small particles, each carrying a positive or a
negative charge. We call the charges ¢, and ¢., and their vector positions
r, and r, respectively:

LT (1.1.1)

F(2on1) = q,q;lr yE
1 T 12

and

F(lon2)=-F(2onl). (1.1.2)

Like charges repel, unlike attract. Most important, the forces are linearly

'A Historv of the Theories of Aether and Electricity. Tomash Publishers (American
Institute of Physics, New York), 1987 (ist edition, 1910).
IMém. de Ulnstitur, 1811,



2 Electrostatics

additive. That is, there are no three-body electrostatic forces.® Thus, with
three charges present, the total force on 1 is found to be

rr—r; ry—r
2t g ———. (1.1.3)
vy — 1y ey — 13

<

F(on 1) = ¢,q>

If r; and r; are close together, the form of (1.1.3) goes over to (1.1.1)
with g2.3 = ¢» + ¢3. Thus, charge is additive. It is also conserved. That
is, positive charge is never found to appear on some surface without
compensating positive charge disappearing or negative charge appearing
somewhere else.

Equation (1.1.1) serves to define the electrostatic unit of charge. This
is a charge that repels an equal charge 1 ecm away with a force of 1 dyne.

1t is useful to define an electric field at a point r as the force that would
act on a small test charge 84 at r divided by 8g, where the magnitude of
&q is small enough so that its effect on the environment can be ignored.
Thus, the field, a property of the space point r, is given by

E(r)zw (1.1.4)
84
and, by (1.1.3) generalized to many charges,
E(r)= 2 g ——" (1.1.5)
i |l' - l','|>

We can generalize (1.1.5) to an arbitrary charge distribution by defining
a charge density at a point r as

p(r) =24 (1.1.6)
ér

where 8¢ is the charge in the very small three-dimensional volume element
or. The sum in (1.1.5) turns into a volume integral:

mn_deri%%mf) (1.1.7)

r~r'|
where dr’ represents the three-dimensional volume element. Note that in
*This statement does not hold at the microscopic or atomic level. For example. the

interactions between atoms (van der Waals forces) include three-body forces. These are,
however, derived from the underlying two-body Coulomb interaction.



1.1. Coulomb’s Law 3

spite of the singularity at r’ = r, the integral (1.1.7) is finite for a finite
charge distribution, even when the point r is in the region containing
charge. This is because the volume element dr’ in the neighborhood of a
point r goes like |r’ — r|* for small |r — r'|, thereby canceling the singular-
ity.

We can return to the form (1.1.5) by imagining the charge distribution
as consisting of very small clumps of charge g, at positions r;; the quantity

qi= f dr’ p(r’) (1.1.8)

ith clump

is the charge g; in the ith clump. Its volume must be small enough so that
r’ in (1.1.7) does not vary significantly over the clump.

The mathematical point charge limit keeps the integral
fdump pdr’ = q constant as the size of the clump goes to zero. It is useful

to give a density that behaves this way a name. It is called the delta
function, with the properties

Sr—r)=0, r#r (1.1.9)

and

fdr’ Sr—r)=1 (1.1.10)

provided the r' integration includes the point r. Of course, 8(r) is not a
real function; however, as we shall see repeatedly, its use leads to helpful
shortcuts, provided one takes care not to multiply 8(r) by functions that
are singular at r = 0.

Evidently, the fields of surface and line charge distributions can be
written in the form (1.1.7), with the charge density including surface and
line charge (i.e., one- and two-dimensional) delta functions. When the
dimensionality of the delta function is in doubt, we add a superscript, thus
83(rs) for a point charge, 8°(r,) for a line charge, and 8'(r,) for a surface
charge; here, r3, r», and r, represent three-, two-, and one-dimensional
vectors, respectively. Note that §°, 8%, and &' can be expressed as products
of one-dimensional delta functions. Thus, for example, &(r;)=
8'(x)8"(y)8'(2), 8*(r2) = 8'(x)8'(y). and 8'(r;) = &'(x).

Given the charge distribution p(r), (1.1.7) tells us how to calculate
the electric field at any point by a volume integral —if necessary, numeri-
cally. We might therefore be tempted to terminate our study of electrostat-
ics here and go on to magnetism. There are, however, a large number of
electrostatic situations where we do not know p(r), but are nevertheless
able to understand and predict the field configuration. In order to do that,
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however, it is necessary to study the differential equations satisfied by the
electric field.

We start by observing from (1.1.7) that the electric field can be derived
from a potential ¢(r). That is,

E(r) = =Vg(r), (1.1.11)
where
M0=J$3&ﬁ. (1.1.12)
fr—r'|

Equation (1.1.7) follows from (1.1.11) and (1.1.12) since

1 ~ 0 A~ d . d)1
Vo={¢ - +& —+e —|- (1.1.13)
r ax Ty az/ r

(wheree,.€,,and €. are unit vectors in the three coordinate directions) and

J 1 dJ 1 X
R - = : 1.1.14
axr ax Vx2+y2 + 27 (x?+ y>+ 222 ( )
so that, with similar equations for y and z,
1 ex ey ez r
AV;I >r3 + ;3 + 7;=;; (1.1.15)
and
1 r—r ,
-V = . 1.1.16
r=rl jr-rT (1110
From (1.1.11) we learn that
VXE=0 (1.1.17)
since
VX Ve =0 (1.1.18)

identically for any ¢. Of course. we could have derived (1.1.17) directly
by taking the curl of (1.1.7).

On the other hand, given (1.1.17), we can derive the existence of a
potential. We define
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P{r)= —JE(r') -dY, (1.1.19)

where [ dl’ represents a line integral along an arbitrary path from the
point ry (where ¢ is defined to be zero) to the point r. We show that ¢

in (1.1.19) is independent of the path by calculating the difference of ¢
defined by two paths, P, and P;:

¢1(r)—¢:(r):—JE-dl+JE-dl

ry P2

=—§E-dl (1.1.20)
.
where {E - dl represents the line integral around a closed path C, given

C
by going from r, to r along P, and back from r to r, along P-.
By Stokes theorem,

%E-dlz[VxE-dS, (1.1.21)
C S
where dS is any oriented surface § bounded by C. Thus, since V X E =
0, ¢, = ¢> and the integral defining ¢ is independent of the path from

ry tor.
We note that changing r, corresponds to adding a constant to ¢:

r

bo, = —JEwil, (1.1.22)
and :
b, = —J'E‘a'l,
so that i
¢r,=¢r(,—JE-dl (1.1.23)

with — :I“ E - d1 the additive constant (it is independent of r).
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Finally, it is clear that —V¢ defined by (1.1.19) is the electric field.
We show this for the x component: Let

A

dr =e, dx

and choose the path to r + dr as r, to r followed by dr. Then

— _@ — ¢(r + é\xdx) - ¢(r)
ax dx

[E-di+E.dx~[ E-dl

dx
=F, (1.1.24)

in the limit dx — 0.

In general, a vector function of position (which goes to zero sufficiently
rapidly as r — =) is completely determined by its curl and its divergence.
In our case, a charge density confined to a finite region of space will—
according to (1.1.7)—gives rise to an electric field that goes to zero like
1/r?; this is fast enough for the theorem to hold. (See Problem A.21.) We
therefore turn to the calculation of V- E.

For this purpose, we consider the field of a single point charge at the
origin,

E=g—. (1.1.25)

Iz

V - E would appear to be given by

o225
ox \r’ dy \r’ 0z \r-

1 3x? 1 3y? 1 3z°
:(_3__5_>+(_3- ys>+<—3—75—>:0. (1.1.26)

r r r

Equation (1.1.26) clearly holds for r # 0. The singular point r =0
presents a problem: Consider the electric flux through a closed surface §
enclosing the charge at the origin, that is, the surface integral of the
electric field over a surface S,

1=JdS-E, (1.1.27)

S
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with the vector dS defined as the outward normal from the closed surface.

The integral (1.1.27) is independent of the surface, provided the displace-
ment from one surface to the other does not cross the origin. Thus,

I| _[2:JdSI'E_JAdSZ‘E
Y S2
where dS, and d8§; are outward normals viewed from the origin. The two
surface vectors dS; and —dS, are the outward normals of the surface

bounding the volume contained between §; and S, provided S, is outside
S>. Thus,

II—IZZJdS-E (1.1.28)
and by Gauss’ theorem
[,—12=JdrVaE=0 (1.1.29)

since the space between the surfaces does not include the singular point
at the origin.

Consider first the integral (1.1.27) with the origin inside the surface.
We choose the surface to be a sphere about the origin and find

1=JE-ds=qJ%-fer2 (1.1.30)
I
S
where d{} is the solid angle subtended by 48S. Thus,
I=4mg. (1.1.31)

If S encloses several charges, we can calculate the contribution of each
charge to [ separately (since the fields are additive), yielding Gauss’ law:

fE-dS=41r2q,~ (1.1.32)

where the sum is over all the charges inside the surface S.
If the surface has no charges inside it, the integral fE - dS is zero by
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Gauss’ theorem:
JE-dSzfcirV-E=0 (1.1.33)

since V- E = 0 away from charges. Clearly, however, V- E cannot equal
zero everywhere, since, if it did, the intcgral (1.1.32) would be zero
instead of 47 X, ¢q,.

We can find the equation for V - E by considering finite charge density
p(r). Then (1.1.32) tells us that for any closed surface, the flux through
the surface is equal to 47 times the total charge inside the surface:

JE-dS=4ﬂJ(lrp, (1.1.34)
S 14

where the integral dr is over the enclosed volume. Gauss’ theorem applied
to (1.1.34) gives

Jdr(V'E‘éhrp):O (1.1.35)
”
for any volume V. Thus, the integrand must be zero and we have the
equation for the divergence of E:

V-E-=dnmp. (1.1.36)

The special case of a point charge at the origin, for which p = gé(r) and
E = g(r/r’), shows that V- (r/r?) acts as if

v l=dmsn, (1.1.37)
;

Equation (1.1.36) yields an equation for the electrostatic potential ¢:
V-E=-V - V¢ =4dnp or Vip = —dmp. (1.1.38)

This is known as Poisson’s equation. In a portion of space where p =0,
(1.1.38) becomes

Vi =0, (1.1.39)
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which is called Laplace’s equation. A function satisfying Laplace’s
equation is called harmonic.

As we remarked earlier, given the charge density p, the potential ¢
is determined (up to a constant) by the integral (1.1.12). We have given
the subsequent development in (1.1.13-1.1.39) for three reasons.

First, the integral form (1.1.32) can be a useful calculational tool in
situations where there is sufficient symmetry to make the flux integration
trivial. These applications are illustrated in the problems at the end of
this chapter.

Second, the differential equation {1.1.38) can be used when the actual
charge distribution is not known and must be determined from boundary
conditions, as in the case of charged conductors and dielectrics.

Third, the Coulomb law does not correctly describe the electric field
in nonstatic situations, where we shall see that V X E is no longer zero.
However, the divergence cquation does continue to hold.

1.2, MULTIPOLES AND MULTIPOLE FIELDS

The electrostatic multipole expansion, which we take up in this section,
provides an extremely useful and general way of characterizing a charge
distribution and the potential to which it gives rise. Analogous expansions
exist for magnectostatic and radiating systems [discussed in Chapter 2
(Section 2.3) and Chapter 5 (Section 5.10), respectively].

As shown in Appendix B, the electrostatic potential outside of an
arbitrary finite charge distribution can be cxpressed as a power series in
the inverse radius 1/r:

o 1
¢ =2 7 Fi(B. ).
=07

The /th term in the series is called a multipole field (or potential) of order
! it can, in turn, be generated by a single multipole of order /, which we
now define, following Maxwell.

A monopole is a point charge Qy; it gives rise to a potential [choosing

$(=) = 0]
b=, (1.2.1)

where r, is the location of the charge.
A point dipole consists of a charge g at position r,, + 1 and a charge
—q at r,, where we take the limit 1 — 0, with lg = p held fixed. p is called
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the electric dipole moment of the pair of charges. The potential of a point
dipole is given by

¢1=Lim{ 9 ___ 4 }

Ir_rﬂ_ll lr”rnl

_PV 1

= —lq-v . .
Il' _rg’

(12.2)

e —ro|

We separate p into a unit vector [ and a magnitude Q, with p = Q,/.

We define higher moments by iterating the procedure: A quadrupole
is defined by displacing equal and opposite dipoles, etc. Thus, the 2'th
pole gives rise to a potential

b= Qu~1)1, VI, V-], ¥ (1.2.3)

ll"" l"()‘.

The potential ¢, is specified by 2/ + 1 numbers: the polar angles 8, and
azimuths ¢, of the / unit vectors, and the magnitude ;.

On the other hand, an arbitrary charge distribution p(r) generates an
electrostatic potential

o(r') = mdrp(r,)- (1.2.4)
lr—r'|

which can, for r’' outside the charge distribution, be expanded in two
equivalent ways. The first is

sy -3 E [owr2 mar e D20 qas)

=0 ! ax; axyr'

where the harmonic polynomials Pf,’,)_,i, are defined in Appendix B:
vall_)”,-,(r) = X;X;, . .. X;, — (traces times Kronecker deltas) (1.2.6)

where the traces are subtracted to make the tensor vaf,),_,», traceless. The
expansion (1.2.5) is then

sy =3 (:Tfﬂ 0 b () (1.2.7)

=0

where the potential ¢!’ . defined in (B.2.3), is
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(1)

é; ,r)y=— .  —— 1.2.8

Pty = sl (1.2.8)
and the Cartesian /th rank tensor Q,l 4 is

W= J dr p(r) P{}) .. (1.2.9)

We call Q% , the 2th pole moment of the charge distribution. Since
Q,l 4 1s an /th rank, traceless symmetric tensor in three dimensions, the
number of independent Q\. ,’s is 2/ + 1, as shown in (B.2).

The second equivalent expression for (1.2.4) is

!

@(r') = ;Jdr p(r) P(F-7") r,’,H (1.2.10)

=

!
_ 4m Yin(0', ¢")
- 2:0 20+ 1 mg_, Pt Qrm (1.2.11)

where the 2'th pole moments Q,,,, are given by
O = Jdr p(r)YF,. (0, o). (1.2.12)

Note that here also the number of independent Q,,,,’s for each / is 2/ + 1.
An obvious question to ask is whether the general potential given by
(1.2.11) can be reproduced by a series of Maxwell multipoles, one for
each /. The answer is yes; the proof was given by Sylvester and can be
found in that source of all wisdom, the 11th edition of the Encyclopedia
Britannica; look for it under harmonic functions. We do not give the proof
here. It is not trivial. Try it for / = 2. (See Problem 1.18.)

The number 2/ + 1 for the number of independent Q,,.’s is slightly
deceptive, since the @,,,'s depend on the coordinate system in addition
to the intrinsic structure of the charge distribution. Since a coordinate
system is specified by three parameters—for example, the three Euler
angles with respect to a standard coordinate system —the number of intrin-
sic components is, in general, 2/ + 1 — 3 = 2/ — 2. This fails to hold for
[ =1 or 0. Since rotations about a vector leave the vector invariant, the
number for /=11is 2/ + | -2 =2/ -1 =1, as it must be: the magnitude
of the vector. For / = (0, the number is 1, since the charge is invariant to
all rotations. The full effect of the freedom of rotations shows up for the
first time for / = 2. Here, it is convenient to define a coordinate system
that diagonalizes the Cartesian tensor ijz). In this coordinate system, the
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tensor Q' vanishes for i # j: it has, in general, three nonvanishing com-
ponents QP, Q. and Q%3 , with zero trace, that is,

0%+ 09 + 02 =0. (1.2.13)

Any two of the three 0‘?’s (no sum over i) characterize the intrinsic
quadrupole structure of the charge distribution.

1.3. ENERGY AND STRESS IN THE
ELECTROSTATIC FIELD

The work done in bringing a small charge 8¢, from far away to a point r,
is

£

W, = [dl "Edq, = [6(r;) — (=)]54, (13.1)

>

where we conventionally take ¢() to be zero for a system whose charges
are all contained in a finite volume.

If we bring up several charges 8¢,. each to a position r;, we have, to
lowest order in J,,,

SW =2 6W, = 2 6(r)8q;

and for a continuous distribution (with E for electric)
W, = f dr ¢(r)dp(r). (1.3.2)
ait space

This is the work done, to first order in p, in changing p(r) to p(r) + 8p(r)
and E to E + 8E, where V: 8E = 47 8p. Thus,

W, = lfdr ¢{(r)V - 6E
4

and, integrating by parts (i.e., dropping a surface integral at «), we have
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1
b W[.: =-— | drE-8E
4

:iaj drE? (1.3.3)
8

all to first order in 8p and SE.
Equation (1.3.3) can be integrated: The total work done is

1 , 1
— drE;——fdrE% (1.3.4)
8 T 87

where E/ is the field after the work has been done, E, before.

If the initial charge configuration is a uniformly distributed finite
charge over a very large volume J dr E3/8 goes to zero.
~If, however, we are bringing together small clumps of charge, then
J dr Ej/8 7 will be different from zero for each clump and must be sub-
tracted in the above formula.

Assuming the first case, we can write

WE:8L77 drE2=%Jdr ¢ (r) p(r) (1.3.5)
or
va=%fdrdr’p(r)Ir_lr’|p(r’) (1.3.6)

for the work done in assembling the charge density p. Going to the limit
of point charges (i.e., charges with radii small compared to the distance
between them) we find that

i
We = 5 > q:q;/\r. ~ x| 1.3.7

i#j

is the work done in bringing all the charges g; from r =< to r;. [The
missing terms with / = j are left out because they would have been included
in the initial energy of the separated charges. Of course, the point charge
approximation could not be made for such terms, since the integral (1.3.6)
would be infinite.]

The electrostatic energy W in (1.3.7) has the property that, together
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with the kinetic energy of the charges ¢;,

V2
T=2mi“2i, (1.3.8)
it is conserved. That is,
di(T+ Wg)=10 (1.3.9)
!

provided the forces on the charges are purely electrostatic and given by
Coulomb’s law.

We shall see later that a similar calculation can be made for a static
(really, a slowly changing) magnetic field:

‘A/M:L J dl‘BZ(r). (1310)
87

all space

Although (1.3.9) and (1.3.10) will have been derived for slowly
changing fields, it turns out remarkably, as we shall see later, that the
conservation law

’;%(TWL We+ Wy) =0 (1.3.11)

still holds for rapidly changing fields. This appears to be a lucky accident,
since it holds for electrodynamics, but does not hold for other field theo-
ries, in which an explicit interaction term appears in the conservation law.
An example is discussed in Section 7.4.

We turn next to stress in the electrostatic field. We calculate the total
electrical force on the charge inside a surface S. Introducing the sum-
mation convention we have

= [ de o ) (13.12)

1

- A~f dr E(r)¥ - E(r)
47

_ _E_Jdr E, %L (1.3.13)
47 ax;

- _LJdr[i (EE) - b!fé . (1.3.14)
477' axl' a i
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But,
d
(V X E), = €jjk '_‘Ek (1315)
(')X,‘
1, ( E ————E> (1.3.16)
2 €k ax; * ax, o

Therefore, since VX E =0, 9E;/ox; = dE;/9x; and (1.3.14) becomes

2
F - (——(EE)—llEL)
4 ax ox; 2
~2
L dr ——(EE 8 é—") (1.3.17)
477 ax; 2
Gauss’s theorem leads to
F, = de,- T, (1.3.18)

where T;;, the Maxwell stress tensor, is given by

EE, —36,E
7, = L S (1.3.19)

4

Equation (1.3.18) tells us that the force on charges inside an arbitrary
surface § may be thought of as coming from a stress through that surface,
where —T7}; is the ith component of the force transmitted in the j direction
per unit area into the surface. The minus sign exists because dS; in (1.3.18)
is the outward normal.

A simple example: Two charges are shown in Figure (1.1). If both
are positive, as in Figure (1.1a), the normal component of the field E,, at
the surface equidistant from the two charges is zero, so that the first term
in T, gives zero force through that surface; the second term is negative
and, hence, corresponds to a force into the surface, and hence a repulsion.
This is as if the lines of force repel each other.

For one positive and one negative charge, as in Figure (1.1b), the
situation is different: The parallel component of the field at the surface
E =0, E, # 0. Hence, the first term in T}, is twice the second term, and
the sign of the force changes, corresponding to an attraction. The lines of
force are under tension along their length.

Note that there is no contradiction between a right pointing force on
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E %0 Ey=0
L E,20
T T
+q < tq < *‘”;’/>' -
(a) {h)

Figure 1.1.

the object on the right and simultancously a left pointing force on an
object on the left. This is, in fact, demanded by Newton’s third law.

1.4. ELECTROSTATICS IN THE
PRESENCE OF CONDUCTORS:
SOLVING FOR ELECTROSTATIC CONFIGURATIONS

The electrostatic field in a conductor must be zero. Otherwise, current
would flow, and we would not be decing electrostatics. Therefore, the
potential difference between two points in or on the conductor must be
Zero, since

2

(blz:—fE-dl‘

{

Therefore, the surface of the conductor is an equipotential, and the field
at the conducting surface is normal to it. It then follows from Gauss’ law
that the outgoing normal ficld at the surface, E,, will be given by

E,=4ma (1.4.1)

where o is the surface charge density. Note that there can be no volume
charge density in the conductor, since V - E = 0 there. Of course, ¢ cannot
be chosen arbitrarily for a conducting surface. Only the total charge Q (if
it is insulated) or the potential ¢ (if it is connected to a battery) can be so
chosen. The surface charges will adjust themselves to make the conducting
surfaces equipotentials. The basic calculational problem of electrostatics
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is to find out how the charges have adjusted themselves and to calculate
the potential (and fields) they generate after doing so.

We show first that given a charge density p and a set of conducting
surfaces §;. with cither Q; or ¢; known, the electric field is uniquely
determined.

Let ¢, ¢ be two presumed different solutions for the potential. Then

I= fdr(V(!/n — )’ = Jdr\"(l/u = ¥2) - V(i = )

Vv v

:zjdsi(wl =)V — ) = Jdr(d’l - )V, — ¢o)  (1.4.2)

3

where V is the space contained between the conductors. Both terms are
zero. Since ¢, — i, i1s constant over the conducting surface, the first term
is proportional to 2,AQ,;A¢, = 0. The second term is zero because both
Y, and ¥, satisfy the Poisson equation V°¢y = —4p with the same charge
density p. Therefore, I is zero so that (V(ys; — ))° is zero, and ¢, and
Y, differ at most by a constant. Thus, the electric field is uniquely
determined by the boundary conditions and Poisson’s equation. Note that
if any set of conductors is joined by batteries, with given potential differ-
ences between them and given total charge shared among them, the
expression Z,AQ,A¢, is still zero.

The gencral electrostatic problem can therefore be formulated as
follows: Given a set of conducting surfaces, the (appropriately specified)
potentials and charges on the surfaces, and a given fixed charge distribu-
tion p(r) in the space outside of the conducting surfaces, find the potential
cverywhere.

There is no general method for solving this problem. For certain
geometries, however, there are available specific methods, with which we
assume the reader is familiar. These include the method of images, the
use of special coordinate systems appropriate to the geometry, and the use
of analytic functions of a complex variable for two-dimensional problems.
Examples of all these are given in the problems at the end of the chapter.

We wish to take up briefly two very general methods that are of use
in many areas of physics. These are, first, the method of Green'’s functions
and, second, the use of variational principles.

Green’s functions make it possible to reduce to quadratures a class of
problems with given potentials or charges on conducting surfaces, and
arbitrary spatial charge distribution. The formulation is as follows: given
potentials ¢, on conducting surfaces S, and total charges 2, on conducting
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surfaces S,.* The Green’s function G(r,r,) is the potential produced by
a unit point charge at r,, with zero potential on the S.'s and zero charge
on the S;’s. The potential is referred to zero at infinity. Thus, VG (r,r)) =
—478(r — r;), G(r,r,) = 0 with r on each S and is constant on each S,
with de,, -VG(r,ry) = 0. Let  be the actual potential for given p, ¢,
and Q,. Consider

Ir) = 2 | {G(r, 1) Vo(r,) — VG(ri, r) ()} - dS;  (1.4.3)

i=b.c

with d§; the inward normal to each conducting surface. On S, the first
integral vanishes, and the second is

—47T¢c ' Qc(rl)

where Q.(r;) is the charge on S. for the Green’s function boundary
condition. On S§,, the second integral vanishes, and the first is
47 Q, - ¢pp(ry), where ¢, (r,) is the potential on S, for the Green'’s function
boundary condition.

Now use Gauss’ theorem:

I(r)=—4mw f drp(r) G(r,r)) + 4= J drd(r~r))y(r). (1.44)
Combining (1.4.4) and (1.4.3), we have
W(r) = j drp() G, 1) + 2 Qo o) = 2 Qelrn) dey (1:4:5)

so that ¢ is given by integrals over presumed known functions.
We show now that the Green’s function is symmetric: G(r,r;) =
G(ry,r). Consider

11,72 = 2 [ 48, (G 7) VG (5 12) = G2 VG (0]
(1.4.6)

“Note that given ¢; corresponds to Dirichlet boundary conditions, but given Q; does
not correspond to Neumann boundary conditions, since only the total charge on a surface
is given. Nevertheless, given Q is the physically interesting case and by the uniqueness
theorem determines the solution and the Green's function.
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Clearly, I =0, since on each surface G is constant, and either zero, or
such that fVG(r, r')-dS = 0. So, using Gauss’ theorem, we obtain

0= fdr[c(r,r.)vzc(r,rz) - V°G(r, 1) G(r,12) |

=4n[G(r2, 1) - G(r1,12)]. (1.4.7)

Although there is no general exact method for finding the field in the
presence of a given configuration of conductors and charges, there is an
exact variational principle that applies to a general electrostatic problem
and can be used to generate approximate solutions.

Suppose we have a given set of conductors, with label c, on which the
potential ¢, is given, another set of conductors, with label b, on which
the charge Q, is given, and a given spatial charge density p(r). Then, as
we have shown, the field E(r) is determined, as is the potential ¢(r) to
within a constant. The variational principle we consider here is for the
quantity’

l=%Jdr(V(//)2—4TrJdrpdl—4772Qb1//(b) (1.4.8)

and states that / is an absolute minimum when the variational function

¥(r) equals the correct potential everywhere. In the variation of ¢ about

the minimum, it must take on the assigned values ¢. on the ¢ conductors.

In (1.4.8), the function ¢(b) signifies the constant value of the function

(1) on the surface of conductor b (where the potential ¢, is not given).
To prove the principle, we let

Y= +8y (1.4.9)

where ¢ is the exact solution of the electrostatic problem. Then
1)~ 19) + [ ar¥o - Vou — 4 [ arpsy

~4m 3 0,80(b) + f dr(Voy)? (1.4.10)

31 is called a functional of . A functional is a number whose value depends on a
function. We shall encounter this concept often.
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and, after a partial integration,
Iy~ () = X f Vo sy(b) - dS), — Jdrﬁapvzqﬁ
b
—4 J drpdy — 4w 2 Q.61 (b) + ;J dr(Vey) . (1.4.11)
b

The surface element dS;, points into the surface of conductor b. Conduc-
tors ¢ do not contribute, since 3. = 0. Thus,

1) = 1) = [ ar(auy. (1.4.12)
since V2¢ = —4mp and

JV(b dSb = 47TQ;,.

Therefore, I(¢) is an absolute minimum for 8¢ = (.

1.5. SYSTEMS OF CONDUCTORS

Suppose we have a set of conductors, each carrying a charge Q;. The
potential on each conductor will be a linear function of the Q;'s:

(bi—;zpi/Ql- (151)

This follows from the linearity of the equations for the ficlds. Thus, a
charge Q, on conductor 1, with boundary condition Q =0 on the other
conductors, leads to a potential ¢‘“(r) that takes on the value
¢ = p, Q; on the ith conductor. Similarly, a charge Q. on 2 with Q =
0 on the other conductors leads to a potential ¢‘*'(r) that takes on the
value ¢'* = p,,0, on the ith conductor. If both (1) and (2) carry charges
() and O, the potential is clearly the sum of these two, since the Laplace
equation and boundary condition are satisfied. The generalization is
(1.5.1). The py's are called coefficients of potential.
The encrgy of the configuration can be calculated in two ways:

1. We bring charge 8 Q; up to the ith conductor. The differential work
done is
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SW =2 6,80, =2 p,0,80;. (1.5.2)
i iy
2. We know, in general, that
1 2 1 2
WZE A (biQi'——‘Z‘ D Qi Qi (1.5.3)
giving
-3l ly
mv-»a(QﬁQf+Q@QJmf=5 Q,80/p; +p;) (1.5.4)
i.J

so that (since Q;, 80, are arbitrary)

Py * P _ _
, Pi or Py =PDji

and the matrix p is symmetric.

We have not considered a charge density p{r) here. Clearly, one
would take such a charge density into account by first solving the problem
of all neutral conductors with the given charge density p. Then if ¢”(r)
is that solution, the expression (1.5.1) becomes [with ¢? = ¢”(r on i)]

b — 0" =2p, Q0 (1.5.5)

with the p,; the same as before. ¢, — ¢? is the potential produced on the
conductor by the charges (J; alone.

Returning to (1.5.1), we may solve for the Q’s as functions of the
¢’s. This is possible, since we know that

1
W= 52 Qip;Q;>0
i

unless all Q’s are zero. Therefore, p; has an inverse, ¢;, such that
z,p,‘}’(')'k = Bik and
Oi=2c,;. (1.5.6)
J
The ¢, are called coefficients of capacitance. Of course, ¢;; is also sym-

metric.
To calculate the generalized force F; on the ith conductor, we displace
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it at constant Q:

F=~- <%>9 (1.5.7)

The generalized force F; is defined by the requirement that —F; 8¢, be the
work done in the displacement 6¢;. Thus, F; can be a force or a torque,
depending on whether 8¢, is a translation or a rotation. From (1.5.7) and
(1.5.3), we find

opij
2; Q0% o0&

(1.5.8)
Note: Differentiating at constant ¢ would give the wrong answer. In fact,

- 52 b, a;” - F (1.5.9)

This follows since, in matrix notation [¢, Q are vectors, p, ¢ are
matrices, and (f, g) is a (real) vector inner product],

F= —~(¢ ~§¢)
sl )

—a(er (i o)

i

(since p is symmetric)

(Q "’; Q) (1.5.10)

The difference in sign comes about because in a displacement keeping the
¢'s constant charge will flow, and the batteries holding the ¢’s constant
will be doing work. It follows that the derivative that gives F; in (1.5.9)
includes, in F,8¢,, both mechanical and electrical work. A correct account
can be kept. The charge transported to the ith conductor is, from (1.5.6),
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8Q,= 2 8¢, (1.5.11)
i
and the work done by the batteries is
SWy = 2 80, = E] b, 5c;b;. (1.5.12)
The total work done at constant ¢ is
Wy = -;-Z }:5c;d, = Wy + 6Wy,.
where dW,, is the mechanical work:

1
SWay =Wy — Wy = — 52 b,5c;b;

1
= 22 QiBPiij.

in agreement with (1.5.8).

The capacitance of a capacitor can be calculated from either set of
coefficients. A capacitor consists of two conductors carrying equal and
opposite charge. So, with @; = —Q> = 0 > 0, we have

&1 =pnQ +pi2Q2=(pu — P2)0
¢2=pnQi +p2r0:= (P12 — p22)Q

and

$1— ¢2=(pu1 +p22—2p12)Q

and

o 1

C (the capacitance) = — = —————.
A¢  pitpan—2po

Note that C >0, since py; + p22 > |2p12]; otherwise, the energy,

1
W= E(Q%Pu + Q%Pzz +2Q102p12),

could become negative.
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1.6. ELECTROSTATIC FIELDS IN MATTER

We wish here to study macroscopic electrostatics in the presence of matter.
We will make the assumption, following Lorentz, that the macroscopic
equations we have been using

V-E=4mp (1.1.36)
and

VXE=0 (1.1.17)

hold microscopically, that is, at the atomic level. Thus, our basic equations
are

V-e=4mp,, (1.6.1)
and

Vxe=0 (1.6.2)

where we use lowercase letters to denote microscopic fields. The symbol
.. stands for microscopic charge density. Evidently, e and p,,, will fluctuate
over atomic scale distances. We eliminate these fluctuations by considering
average fields and charge densities, where we average over a region con-
taining many atoms. We then try to obtain equations for the averaged
fields.

A subtle issue ariscs here: Can a description of the interaction of
fields and matter that does not make use of quantum mechanics be correct?
The answer is yes and no. No. obviously, because ordinary matter and
its atomic constituents cannat be accounted for by the laws of classical
mechanics. Yes, because in many cases, once the basic structure of the
system has been determined by quantum mechanics, interactions with
electric fields can be characterized by a few parameters, in addition to
macroscopic currents and charges. Examples are the dipole moment per
unit volume P and the dielectric constant e, which we discuss in the
following; the magnetic dipole moment per unit volume M and magnetic
permeability u, which we discuss in Section 2.4; and in addition all of the
above as functions of frequency, which we discuss in Chapter 3 on time-
dependent fields and currents.

A subtler issue has to do with the validity of classical equations for
the electric field. Discussion of this question of course requires the use of
quantum field theory. The emission of a single photon by a single atom
can not in general be described clasically. However. the multiple photon
emission by many atoms, cach emitting one photon at a time, and their
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subsequent absorption, can in many cases be described classically, even
though the radiation itself is not in a classical state. This is largely a
consequence of the linearity of the field equations. The source of the
radiation, the charge and current densities of the radiating system, must
be correctly described, classically or quantum mechanically as appropriate.
The quantum behavior of matter may be taken into account, either by
cautious phenomenology (the nineteenth century method) or by correct
theory (current condensed matter physics). We will stick mostly to the
nineteen century way, with the exception of the case of a dilute gas, where
simple quantum mechanical calculations of the dielectric properties can
be carried out.

We proceed by averaging (1.6.1) and (1.6.2) over a region that
contains a large number of atoms, but that is small compared to the scale
of spatial variation of the fields. We average with a smooth function f(x)
such that

[dxf(x) =1

and such that the characteristic size A of f has the two properties

A< A (1.6.3)
where A is the scale of distance variation we hope to describe, and

nd* > 1 (1.6.4)

where #n is the number of atoms per unit volume. A might be defined,
for example, by

A% = l(dxf(x)xz.

We, of course, choose f(x) to be isotropic, that is, a function of x°.
A simple model might be [ = 3/47R> for r < R and f = 0 for r > R, with
some smoothing at the boundary. This model evidently gives A* = (3/5)R*.
The averages are calculated as

Ei(x) = de’f(x —x')ei(x'), (1.6.5)

etc. This way of averaging has the advantage that it commutes with differ-
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entiation. That is,

LA de,ﬂ;x_')e,(x.)

ax; ax;
a — 1
— _del_f(x X )ei(x’)
ax;
= de’f(x _ xy) aei(x )
ax;
=% (1.6.6)
an
Thus we find, from (1.6.1) and (1.6.2), for E; = ¢é;:
VXE=0 (1.6.7)
and
V-E=4wp (1.6.8)

where p is the average charge density.
In order to determine p , we divide the charge density into two classes:

Pr= Prree and Pr = Phound -

One may think of py as the charge density of charged atomic scale bodies,
such as electrons or ions on the surface of a conductor. However, the
division is not unique. For example, the induced “bound” surface charge
on a dielectric sphere placed in an external field is, for a large dielectric
constant, almost identical to the “‘true” (or “free’’) surface charge induced
on a conducting sphere. (See Problem 1.27).

Our problem is to find a useful way of expressing the space averages
of prand p,. We call

the macroscopic charge density, which we presume to be independent of
the applied field (except for its distribution on the surface of a conductor).
There remains p,. Evidently, different material systems will behave quite
differently, and a separate analysis is really required for each one. In
order to fix our ideas, it is convenient to consider the w.mplest possible
system: a set of spherically symmetric atoms whose separations from each
other are large compared to their common radius, that is, a dilute gas.
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We consider an applied field E, that is small compared to the internal
fields of the atoms, that is,

e 26Volts
E() << _2 -~
ap dg

~5 x 10° Volts/cm (1.6.10)

where e is the electron’s charge and az the Bohr radius:

1 s
ag=—>5~-%x10""cm. (1.6.11)
me~ 2

Here, £ is Planck’s constant divided by 27 and m is the electron mass.

In view of (1.6.10), the effect of the applied field on the matter will
be small, and we can confine ourselves to the linear approximation in an
expansion in powers of the field. There are, of course, systems where the
required inequality fails to apply, for example, in molecules with large
permanent dipole moments as discussed in Section 2.4, or in highly excited
atoms. Since the atoms in our model are far apart, the interaction between
them will be largely governed by the multipole moments produced by the
applied field.

Since the atoms are neutral, the largest effect will come from the
induced electric dipole moment. This moment will be proportional to the
local electric field E, at the position of the atom. For our model of widely
separated atoms, we will have approximately E, = E, the average electric
field, so that

p,=aE,f’£aEi. (1612)
The polarizability a has the dimensions of a volume; the atomic unit of

volume is a3, so that we expect @ to be of order a}. The field produced
by the polarized atoms will then be of order

8E~aE02‘r_1rl|3 (1.6.13)
so that
5
-EE~ %’ (1.6.14)
0

where N is the number of atoms in the sample creating the ficld §E, and
R is a mean separation of the atoms. Thus, very crudely,

5 ic vol
S6E  total atomic volume (1.6.15)

E, total occupied volume’
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for a gas, this ratio is ~d/d,, where d is the gas density and d, the liquid
or solid density of the same atom. For air at normal temperature and
pressure, the ratio (1.6.15) is about 107, so the vacuum field is not
appreciably perturbed by the presence of the gas, and the effect of atoms
on each other will be small. The local field E, that polarizes the individual
atom will be approximately equal to the average field E. We will return
to the question of atomic polarizability in Chapter 3. (See also Problem
1.36.)

A quadrupole moment can also be present; in an isotropic atom,
however, the tensor quadrupole @, can only be induced by a tensor field:

JE, aE,->
+—).

Ox, Bx,«

Q'—ag( (1.6.16)

The quadrupole polarizability @, in (1.6.16) has the dimensionality L°
so we expect ap for an atom to be ~ay. The field generated by the
induced moment, in analogy with (1.6.13), will be

SEo~ aE"E

1.6.17
|r -l ( )
or
En NG'Q
so that
8E, _ total atomic volume ap (16.19)

E, total occupied volume R?

This is smaller than the dipole effect by about 10 '* and is thus completely
negligible. Higher moments clearly make even smaller contributions.

If we modify our model by bringing the atoms closer together, for
example as a dense gas, or a solid or liquid, it will no longer be possible
to ignore the interatomic interactions. It will still be true that the effective
field 8 E generated by the atomic dipoles will be of the order of magnitude
given by (1.6.15); however, the ratio in (1.6.15) can now be of the order
of unity, so that the effect of the atomic polarization will be not only large
but also not simply calculable. (For a quite successful way of estimating
E, for a denser system, see Problem 1.36.) We still expect the atomic
polarization to be a linear function of the average field in the neighborhood
of the atom, and we still expect the higher multipole moments to make
negligible contributions. However, in addition to the density dependence,
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a significant change will be that the relation between p and E may, in
general, be tensorial:

pi=a;kE; (1.6.20)

where the tensor «; would depend on the symmetry of the material. A
locally isotropic material, or a crystal with cubic symmetry, would revert
to the scalar relation with a; = ad,,

Before proceeding, we observe that material not locally isotropic can
also possess clectric moments even in the absence of an applied field. A
crystal without reflection symmetry, for example, can have a permanent
electric moment. Such a material is called ferroelectric or pyroelectric. We
can obtain an order-of-magnitude estimate of the field produced outside a
material whose atoms are permanently polarized with a dipole moment
po. 1t will be

an
R3

EIJU -~

where N is the number of atoms in the sample and R a mean distance to
the field point. Following the reasoning used to arrive at (1.6.15), we find

Po
El’a =
ag

With p, ~ eagé, where € is a number of very rough order-of-magnitude
unity, we have

¢ Volts
Em e 5 26§ )
! ‘f a;; A

which is a very large macroscopic field. This field is reduced by two effects.
First, the parameter ¢ turns out to be quite small since the energetics of
the quantum states mitigates against a large dipole moment. Second, since
the conductivity of the material is never exactly zero, the dipole moment
of the sample tends to be canceled by a migration of electrons to the
surface. Similar reasoning shows that permanent quadrupole moments can
generate macroscopic fields of rough order, Volts/cm. Although these
permanent fields are of considerable interest, they do not require further
discussion here, since they play the role of fixed applied fields in our
discussion of electrostatics.

The final result: Only the dipole field is important in most macroscopic
clectrostatics. For it, the average potential will be given by the average
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dipole moment per unit volume [which we call P(r)] by the dipole formula

i
r=r'|

¢ =- Jdr' P(r’) -V (1.6.21)

To see this unambiguously, we calculate the averaged value of the poten-
tial ¢, arising from the atomic dipole moments:

r—r
]l‘—r,—l

- (1.6.22)

b,(R) = J drf(R-1) 2 p,:

where we have legitimately used the formula for the field of a point dipole,
since in the averaging process, most of the range of r will be far from the
dipole r,.

Now let r —r;= R — R’ with R’ the new integration variable. Then
(1.6.22) becomes

' R-R’
J(R) = dR'(Z R -1, ,.) e 1.6.23
8@ = [ar(Ss(R = 1.)p w6
We see that 2; f(R' — r;)p; essentially counts all dipoles inside the averag-

ing distance of f, so that Z; f(R’ — r;)p, = P, the dipole moment per unit
volume. Returning to (1.6.21), we see that it can be rewritten

¢ = Jdr’[V’ ( P(r’) )~ v P(r’)J. (1.6.24)

r=r'|/ r-r|

We now have a choice. We clearly will use Gauss’ theorem, but we
may either treat the dielectric boundary as a continuous (but rapid) change
from finite P to 0, in which case we would have no surface term, and a
potential

¢:J (v (). (1.6.25)

r—r|
corresponding to an average bound charge density
pr,=-V-P, (1.6.26)

or, we could treat the integral as confined to the dielectric with a sharp
surface S, in which case we would have
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, dr'(=V' - P(r'))
P(r') - dS
¢ = J vt f T (1.6.27)

corresponding to a p, = —V-P and a surface charge &, = Puorma ON the
surface. Obviously, if there is a sharp boundary, (1.6.25) must produce
(1.6.27) in the limit. This clearly comes about because V - P approximates
a delta function on the surface.

We can now return to our original averaged equations. We call p,=
p.p»,=—V_-P, and find, from (1.6.26), (1.6.8), and (1.6.7),

VXE=0 (1.6.7)
and

V-E=4nmp — 47V -P. {1.6.28)
We are moved to define an electric displacement
D=E+47P (1.6.29)
which satisfies the equation
V-D=4dmwp. (1.6.30)

Equations (1.6.7) and (1.6.30) determine how we should treat a sharp
boundary. From (1.6.7) we find, using Stokes’ theorem on the rectangle
shown in Figure 1.24, and Ax/Al— 0, that E,.ngentiar Must be continuous
across the surface. For the D boundary condition, we use Gauss’ theorem
and the pillbox as shown in Figure 1.2b, with Ax/VAS -0, to find AD, =
47, where o is the free surface charge density.

Equations (1.6.7) and (1.6.30) require a relation between E and D to

Axm =
ot boundary
o Ax o
BREWN Ay /
. "
bounde
(@) |-—— boundary )

Figure 1.2
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determine the configuration. Since the system is linear, the earlier argu-
ments of this section show that P must be proportional to E, that is,

P = x,E; (remember the summation convention)  (1.6.31)

where for a dilute gas x,; = na,;, with n the number of dipoles per unit
volume. Therefore,

D,': (5,]+47TX,])E/= e,-j-Ej, (1632)
where a symmetric «; will produce a symmetric €;. €; is called the

dielectric tensor. An isotropic material as will be the case here would
require €; = € - §; and D = €E. € is called the dielectric constant.

1.7. ENERGY IN A DIELECTRIC MEDIUM

From the basic equations (1.6.7) and (1.6.30). we learn that there exists
a potential ¢ such that E = —~V¢. Therefore, the work done in bringing
an infinitesimal charge §¢q to a point r is

W = 8qa(r), (1.7.1)

where we have set ¢ (=) = 0, as usual. For a distributed charge,
W = J drép(r)¢(r)

=—1—fdr6(V-D)¢(r)

4
]
= ———Jdr5D-Vd), (1.7.2)
4
or
8W=LJ'dr6D'E. (1.7.3)
T

In the integration by parts, we have ignored surface terms on
conducting surfaces. These are implicitly included in (1.7.2); if made
explicit, the surface term in the Gauss' theorem integration by parts
would have canceled the § Q¢ surface contribution to 8 W, so that (1.7.3)
continues to hold in the presence of conductors.

We consider here only linear media, for which



1.7. Energy in a Dielectric Medium 33

D,‘ - e,’,’E]‘.
Then
{
SW = ——Jdreij(ﬁE,)Ei (174)
4
1 .

where €} = (€, + €;,)/2 is the symmetric part of €,; €; = (&, — €;,)/2 is
the antisymmetric part.
The first term in (1.7.5) can be integrated since

€,6(LE;)

€8EE = (1.7.6)

However, the integral of 3W* = €;! 6 E,E, depends on the path of integra-
tion. In particular, a closed path in E space will not, in general, integrate
to zero. Take a path in the E_,E,-plane. Then by Stokes’ theorem

SW = e?}j{j (E:dE, ~ E, dE.)/8

e (area enclosed by the path) . (1.7.7)
47
Thus, a static, antisymmetric component in the dielectric tensor indi-
cates a medium that absorbs or produces energy.’® An energy-conserving
system must therefore have a symmetric dielectric tensor, €; = €, to
which case we restrict ourselves here. The work done in charging the
system is then

W:—I—JdrE-D (1.7.8)

8w

and may be identified with the electrostatic contribution to the free energy
of the system.

Equation (1.7.8) has a remarkable property. It appears to express the
electrostatic energy

Wln = _.L J dl‘ ez (1.7.9)
8

“We will discuss absorption for time-dependent fields in Chapter 3.
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(where the subscript m indicates that W, is calculated from the micro-
scopic field strength) as a quadratic functional of the averaged field
strength and polarization, E and P = (D — E)/47; that is, it appears to
ignore fluctuations of the microscopic field.

Actually, in the absence of conductors, the quadratic dependence is
only apparent. We can see this by writing the field E as

E=E,+E, (1.7.10)

where E, is the field produced by the macroscopic charge density p and
E, the field produced by the polarization charge density p, = —V - P. The
clectrostatic energy change produced by introducing the dielectric medium
is

AW:-—LJdr(E'D—Eﬁ) (1.7.11)
8

=L f dr[(E+ E)- (D - E)) ~47P-E,|,  (1.7.12)
&

where P is the polarization density. In the absence of conductors, the first
term in (1.7.12) vanishes after an integration by parts, since V- (D — Eg) =
0 and (E + Ey) = ~V(o& + ¢,). There remains

AW=—%JdrP-En (1.7.13)

which is a linear functional of the microscopic polarization and bilinear
only in the applied field.

Equation (1.7.13) also holds in the presence of conductors, although
the proof is more complicated.

It should be noted that following (1.7.8), we referred to W as the
electrostatic contribution to the free energy (as opposed to internal en-
ergy) of the system. This is because in calculating the work done in
electrifying our system, we kept the dielectric constant, and hence the
matter density and temperature, fixed.

The change in free energy F is defined by

8F=8(U - TS) (1.7.14)

where U is the internal energy, T the absolute temperature, and § the
entropy. Therefore,
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8F=8U— T8S — S8T
= 6W - S8T (1.7.15)

where 8W is the work done on the system.
The work 8§ W includes mechanical work, such as the familiar mechan-
ical work done on a gas:

SW,, = —P6V (1.7.16)
and the electrical work done on a dielectric medium:

5WL,=4inr(E~an—E0- SEq). (1.7.17)
™

As before, E is the applied field, that is, the field that would be present
in the absence of the dielectric sample. We see thus that at constant T
and V, 6F = 6W,.

The arguments leading to (1.7.13) also lead to

SW, = —JdrP- SE,, (1.7.18)

showing that the independent variables in the free energy should be vol-
ume (or density), temperature, and E.
We then learn, from (1.7.15), that

oF
= - — 1.7.19
o7 p.Eo ( )
and, from (1.7.18), that
P(r) = - of , (1.7.20)
6E0(r)

where (1.7.20) and (1.7.18), in fact, define 8 F/[8Eq(r)] as the functional
derivative of F with respect to Ey(r). Here p is the matter density of the
material.

The internal energy is given by

U=F+TS

=F- T(E> . (1.7.21)
(iT p.Ey
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The electrical contribution to the internal energy is therefore, from
(1.7.13) for AW and AW = AU in (1.7.21),

U, = - % f dr Eo(r) - [P(r) _ 2P0

: 1.7.22
o ( )

Forces and stresses may be obtained by calculating the change in F
resulting from appropriate displacements. For example, the total force or
torque F, on a dielectric would be calculated as

aF
Fi=-~— (1.7.23)
0€;

where £, is the appropriate conjugate variable: for force, a fixed coordinate
in the dielectric, for example, the center of mass, for torque an infinitesi-
mal angle of rotation about a coordinate axis. If there are conductors
present, the arguments of Section 1.5 show that the total charge on each
conductor must be held fixed in (1.7.23).

The calculation of internal stresses in a dielectric is harder, but can
be carried out by considering internal displacements. A straightforward
treatment of stresses in a fluid dielectric is given in Panofsky and Phillips.’

CHAPTER 1 PROBLEMS

Application of Gauss’ and Coulomb’s law to simple systems

1.1. Consider a spherically symmetric charge distribution, p = p(r). As-
suming the resultant electric field E to be radial, E = 7E,(r), show
that E,(r) is given by

E,(r) = :;Q(r)

where Q(r) is the charge inside r.

1.2. Consider a cylindrically symmetric charge distribution, that is, d =
d(p), where z, p, and ¢ are cylindrical coordinates, and d is now
the charge density. Assuming the field to be radial, E = ¢,E,(p),
show that £, (p) is given by

"W. K. H. Panofsky and M. Phillips, Classical Eleciricity and Magnetism, Reading,
MA: Addison-Wesley, Chap. 6.



1.3.

1.4.

1.5.
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2
E.(p) = ” Q(p)

where Q(p) is the total charge per unit length inside the radius p.

Consider a large, rectangular charged plane, with uniform surface
charge density o, lying at z = 0. Near the center of the plane and
near z = @, assume by symmetry that the field is in the z direction,
E = ¢. £_(z). Then show that

E.=270e(2)

where €(z) =1,z2>0, e(z) = -1, z <0
Now let the charged plane at z = 0 extend from x = —/, to x =1,
and from y = ~[to y = |. Investigate the assumption thatatx =y =

0, the fields E, and E, are zero, and E. is independent of x and y.
Give the conditions on /I, />, [, and z under which the result of
Problem 1.3 is approximately correct.

Do the same for the situation of Problem 1.2, where the cylindrical
distribution runs from z = —[, to z = I,. Hint: The final azimuthal
integral can be done by going to the complex plane. Let z = ¢'%.

Prove that a conductor is an electrostatic shield. That is, show that
the (static) field inside an empty hollow conductor is zero.

From Problem 1.6 it follows that a conductor inside a charged
conducting shield will not become charged even if put in electrical
contact with the outer conductor. This is independent of the shape
of either conductor, but depends, via Gauss’ law, etc., on the inverse
square law. For a slightly different force law, the inner conductor
will normally become charged when connected to a charged outer
conductor. The calculation of that charge is difficult except for
specially shaped conductors. Consider now that both conductors are
thin spheres. concentric, with radii b and a, with b > a. The outer
conductor b carries a charge Q and is electrically connected to the
inner conductor.

(a) Calculate the charge 8Q induced on the inner conductor if the

force law is derived from a potential

_4 o

r

where [ >»>b. Note that this form of potential would result
from a theory with massive photons.
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(b) Same as (a) but with

with |e] << 1.
(¢) Same as (a) and (b) but with

N
v=9(1e2))
r r
with Je]<<land -1 < B8 < 1.

Problems with images

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

Two conducting plates make an angle of 90° with each other. Let
one plate be in the yz-plane, with y > 0; the other in the xz-plane,
with x > 0; and place a point charge Q at x =x, >0, y = y, >0,
z = 0. This configuration can be solved with images. Where and
what are they?

Two conducting planes make an angle of 45° with each other. A
point Q is placed at a distance R from the vertex, half-way between
the plates. This configuration can be solved with images. Where and
what are they?

A point charge Q is placed at a distance L from the center of a
grounded conducting sphere of radius R << L. Show that the con-
figuration s solved with an image charge Q' placed at a distance
R' = R*/L from the center of the sphere. Of course, R' <R.
Determine Q' as a function of Q, R, and L.

The same as Problem 1.10, except with a neutral isolated conducting
circular cylinder, radius R, and a line charge A a distance L from
the center of the cylinder.

A point dipole is at a distance L and pointing away from the center
of a grounded sphere of radius R. Using the method of images, find

(a) The charge induced on the sphere.

(b) The electric dipole moment (with respect to the center of the
sphere) induced on the sphere.

Two isolated conducting spheres of radii R, and R, are placed a
distance L apart, with L >> R, and L >> R,. A charge Q is placed
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on sphere 1. This configuration can be solved by successive approxi-
mations involving images, images of images, etc.

(a) Calculate the lowest order (in R, ., »/L) contribution to the force
between the spheres. Carry the calculation one step farther,
sufficient to identify the power of R, .. /L of the next
correction.

(b) If you calculated the force by setting it equal to the force
between the image charges, your calculation was correct. Can
you justify this statement? Although the answer “‘no” may be
correct (i.e., you cannot justify this statement), it is not accept-
able.

Problems involving spherical harmonics

1.14.

1.15.

1.16.

1.17.

An isolated conducting sphere is placed in a uniform electric field
E, in the z direction, so that the applied potential is

bo=—Eqz = —Egrcos 6§ = —Eyr Pi(cos 6).

Find the potential §¢ generated by the induced charge distribution
on the surface of the sphere. From it, find the charge distribution
itself and the dipole moment of the sphere. Assume that the sources
of E, are far enough away so that they are unaffected by the
introduction of the sphere.

(a) Suppose the applied field vanishes at the center of the sphere,
with

E.=E% E=-5% p--f¥
L 2L

2L g
Find the potential ¢q(r) that corresponds to this field, the poten-
tial 8¢ generated by the induced charge distribution on the
sphere, the induced charge distribution itself, and the total
charge, dipole moment, and quadrupole moment of the sphere.
(b) How would you arrange a charge distribution to create this
applied field near the sphere?

A nonconducting, very thin shell of radius b carries a surface charge
distribution
1
o = agy(cos 6 + ism 8 cos ¢).
Find the electrostatic potential for r > b and r << b, assuming the
field to be finite everywhere and no other charge to be present.

Solve the problem of a point charge and a grounded conducting
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sphere by expanding the Coulomb potential of the point charge in
spherical harmonics with respect to the center of the sphere, solving
for the potential for cach / and resumming.

Show that a single Maxwell quadrupole, characterized by two unit
vectors Ay, A, and a magnitude Q, can produce the correct
asymptotic potential of an arbitrarily confined I = 2 charge distribu-
tion. Clearly, the plane of 2, and /1> must contain two of the principle
axes of the quadrupole. However, you must choose the right two.

Problems in two dimensions involving the use of analytic functions

(Prerequisite: Some knowledge of complex function theory.)

1.19,

1.20.

When the potential is independent of one rectangular coordinate,
the Laplace equation for the potential ¢ becomes

i‘-’%@:o.

ax? dy
The real and imaginary parts of any analytic function satisty this
equation, as we now show.
(a) An analytic function of a complex variable z

w= f(z).
has a derivative
dw _ [f(z +42) -~ f(2)
Az :
which is independent of the path by which Az —0. With z =

x+iy and w=u+iv, show that this path independence
implies the Cauchy-Riemann equations

dz a0

f)ll _ v du v

nd —= -,
dx Ay ay ox
(b) Show that the Cauchy-Riemann equations imply that v and v
are harmonic.
(¢) It is conventional to choose the imaginary part of w, v to be
the potential.” With this choice. show that the lines of force
are lines of constant u.

Given one or more two-dimensional conductors (i.c., three-dimen-
stonal cylinders), one looks for a function w = f(z) such that the

“One could equally well choose w. the real part of w. as the potential.



1.21.

Chapter 1 Problems 41

cylinders are lines of constant v. The potential problem is thus
automatically solved. Show then that the charge density on the
conductor is 1/47 du/al, where dl is the length variable along the
conductor. To illustrate this technique, consider the function

. z +17
u+w:w=¢o\/l;:\/xby¢o

defined to be the positive square root for x > 0 when y approaches
zero from above and analytic in the cut plane (cut from y =0, x =
Otoy=0,x=x)

{(a) Find the equation for equipotential surfaces.

(b) The equipotential v = ( is obtained by letting y — 0 from above.
For 0 < y << x, give v as a function of x and y and find the charge
density on the upper surface of the conductor as a function of
X.

(¢) The value of w for y <0 is found by analytically continuing
around the singularity. Use this procedure to calculate the
charge density under the plate.

Note that although the charge density is singular as x — 0, the
integrated charge in a finite region of x is finite. Also, since the
total charge is infinite (in three dimensions), there is no uniqueness
here. In practice, the conditions that determine ¢, and b will come
from boundary conditions at =. (See Problems 1.22 and 1.23.)

The potential of a line charge A is 2A log p, where p is the cylindrical
radius. If the line charge is at position p’, the potential at p is

b(p) =21 loglp —p'|.

If the charge is distributed with a density o(p’), the resultant poten-
tial will be

+

$(p) =2 J dp' a(p')log|p —p’

where thc area element dp' =p'dp’'dp’, and |p—p'|=
(p>+p'? = 2pp' cos(¢ — ¢"))'*. Show that the two-dimensional
potential has a “multipole” expansion, for p outside of the charge
distribution,

¢ |1 _
d(p) = 2A log £ 23 = — ¢, cosme + d,, sin me]
Po m=1mp”
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where p, is an arbitrary length scale, A the total line charge,
2= [ dor oo,
and
n= [ do' (01" cosme’ o). = [ dot ()" sin e’ (e,

You should make use of the identity

|Z _ Zrl — IpZ + p/2 _ 2pp! COS((p - (P/)II/Z
where z is the complex variable z = pe'*, and Re log(z — z') =
loglz — z'|.

Consider the function

- o=

defined to be real and positive for |x| < b and y — 0 from above,
and analytic in the cut plane fromy =0, x = —btoy =0, x = b.

(a) Find the valueof wforx=b+e,y=0andx=—-b—¢€,y=0.

(b) Find the value of w as x —» * «. From this, find the physical
system represented here.

Consider the analytic function w(z) given implicitly by
1 -2mw
z=wn+§(—l+e ™)

{clearly, dimensional coordinates would scale z by a length unit and
w by a potential unit). Let w = u + jv, with v as the potential.

(a) What is the line v = 0 in the x, y plane?

(b) What is the line v =1 in the x, y plane?

(c) What is the electrostatic problem solved by this function?

(d) Sketch the equipotential lines withv=1—¢€ and v = €, when €
is very small.

(e) Give the potential and charge densities on both sides of the
conducting surfaces as x —» %.

(f) Near x = y = 0, the relation betweenwand z isw = « \/2, where
o is a constant. Relate the constant « to the potential ditference
and distance between the plates of this capacitor.
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Problems involving dielectrics

1.24.

1.25.

1.26.

1.27.

1.28.

Formulate and prove the uniqueness theorem for conductors and
dielectrics with e(x) > 0.

Formulate and prove a variational principle for dielectrics and con-
ductors analogous to (1.4.8).

A point charge g in vacuum is a distance x =/ from the plane
surface of a dielectric extending to x = «. The dielectric constant is a
constant, €. The fields for this configuration of charges can be found
using the method of images: The potential outside the dielectric is
given by the Coulomb potential of the charge g plus the Coulomb
potential of an image charge g’ in the dielectric. The potential in
the dielectric is given by the Coulomb potential of an image charge
q" outside of the dielectric. Find the location and values of the two
image charges. Calculate the force on the dielectric as the Coulomb
force between g and g'; then verify that this is correct by integrating
the stress tensor over an appropriate surface. Is there another reason
for believing the result?

A dielectric sphere with dielectric constant € is placed in a uniform
electric field E, (whose source is far enough away to be unaffected
by the sphere). Find the electric field outside the sphere and the
induced electric dipole moment of the sphere. Compare the result
for large e to that for a conducting sphere.

The problem of a point charge ¢ a vector distance b from a neutral
dielectric sphere of radius a cannot be solved with images; however,
an integral for the correct potential at radius r can be obtained using
the method of Problem 1.21. The answer for the potential outside
the sphere (r > a) is

q
= + 6
¢ i b] ¢
where
ae~-1)
6¢p = —g———"1
¢ b e+1
with
;- 1 B 1 v (y!)l/‘y'*l
(1+ 2_2 0 172 iy y 2 ' 172
y ycos ) vy (1+y 2y’ cos 6)

0
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where y = 1 + € and y = a*/br. Show that this answer is correct and
give a similar answer for the potential inside the sphere (r < a).

Miscellaneous problems

1.29,

1.30.

1.31.

1.32.

1.33.

1.34.

1.35.

Prove that the mean value of the electrostatic potential in vacuum
averaged over the surface of a sphere is equal to the potential at
the center of the sphere, provided there is no charge inside the
sphere.

Find the equation for the lines of force in the xy plane around an

electric dipole lying along the x-axis. The line of force points in the
direction of the electric field, so its differential equation is

dy _Ey
dx E.

Hint: Use polar coordinates in the planc to obtain an equation r =
rof{6). Sketch a few lines.

Repeat Problem 1.30 for a quadrupole with a potential

1 —3cos’ 6
o=
,
The answer is straightforward in the first quadrant (0 < ¢ < 7/2).
What happens in the second quadrant (w/2 < 8 < 7)?

(a) Calculate, from first principles and the definition of electric
dipole moment, the forcc between two dipoles p; and p,. Is
Foy = =F}?

(b) Calculate the torque 7> exerted by p, on p>. Is 712 = —7,,7 If
so, fine. If not, explain what happened.

Prove directly, using a Green's type theorem, that the coefficicnts
of potential are symmetric: p; = p,;.

(a) Find the Green’s function for a conducting insulated sphere.

(b) Find the Green’s function for a conducting sphere heid at fixed
potential.

(¢) Verify the symmetry G(r,r,) = G(r,.r) for both cases.

The simplest clectrostatic variational calculation is quite com-
plicated. Consider, for example. the problem of finding the field
produced by a constant charge density

P = Po. r<<a

and
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p=0, r>a.
Try a variational function

(b:é r>a

n?

y
v =Br"+C, r<a.

From the boundary condition at r = a, find C as a function of A,
B, and a. Calculate the variational integral / and minimize with
respect to A and B. There remains a dimensionless function of »
and m. Show that the minimum of { occurs for n =1 and m = 2,
the correct values.

There is a very successful model that takes into account the interac-
tion of atomic dipoles with each other in calculating the dielectric
constant. This model leads to a formula known as the Clausius—
Mossotti relation. The argument starts by noting [as shown in
(1.6.23)] that the macroscopic (i.¢., average) field E is generated by
external sources and by the average dipole moment per unit volume
P of the dielectric. Thus,

'

r—r
3

E(r) = E (from external sources) — V J de'P(r') | |
r—r

Presumably, the part of the above dr’ integration coming from large
values of {r — r’| gives a good approximation to the contribution of
distant dipoles to the local field at an atom. However, the contribu-
tion of nearby dipoles must be explicitly summed. A remarkable
slight of hand follows: the integral over dr’ coming from a very
small, but macroscopic, sphere surrounding the atom at r is sub-
tracted from the above formula and replaced by the sum of the
fields of the point dipoles in that neighborhood. Thus,

r—r . Tr—T;
B =E+9 [ arpe)- U758 ¢ 3 g TN
)l'_r’)‘ iinside }r—r,»)
inside sphere
sphere

Now comes the slight of hand: For the two extremes of a crystal
with cubic symmetry, on the one hand, and for randomly placed
dipoles, on the other, the sum over { vanishes. Also, for a small
enough sphere, P(r) will be approximately constant over the sphere.
With these assumptions, show

(a) Eh)cnl = E +

and from this
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(b) Ll S L
€+ 2 3

where « is the atomic polarizability and n the number of atoms per
unit volume. This formula predicts that the measurable quantity

(e +2)n
e—1
for a given substance should be approximately independent of

external parameters, such as pressure and temperature. Note that
weak coupling between the atoms corresponds to small na, so that

e —l=4mno.

*1.37. For an interesting problem employing standard electrostatic
methods, see Problem 2.14 (magnetic levitation of a super-
conducting sphere).
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CHAPTER 2

Steady Currents and
Magnetostatics

2.1. STEADY CURRENTS

We describe the flow of currents in a medium by a vector current density
j(x), where j(x) - dS is the charge crossing the surface element 48 in unit
time, that is, the current through dS. Total charge is conserved. Thus,
with p(x, t) the charge density, the decrease of charge in a volume V must
equal the flow of current through the boundary surface S:

d
-~ S |drp=|ds-j
AR
v

S

or
ap .
—fdr—=fdrv-.], (2.1.1)
ot
Vv 1%
for any volume V; hence,
Piv.j=o. (2.1.2)
at

Equation (2.1.2) is called the continuity equation. The conservation of
total charge is the global reflection of the local law. [Almost all the known
conserved quantities in physics have local densities that satisfy a local
equation like (2.1.2). We shall see many of them.] For a static situation
dpldr=0 and V- j=0. That is the case we will be considering in this
section.

47
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For a large class of media and sufficiently small electric fields, macro-
scopic currents are generated according to Ohm’s law:
j=oE (2.1.3)

or more generally,
ji=o,E;. (2.1.4)

The tensor o is called the conductivity. The rate at which work is done
on currents, producing heat, is

dw
——-it—:jdrEij,‘:JAdrE,‘U,'lEj (215)
4

so that the symmetric part of o; must be positive. The antisymmetric part
of o; does not contribute to dW/d:t. An example of an antisymmetric
conductivity tensor can be found in the Hall effect. where o, has an
antisymmetric component

o = constant €, B, (2.1.6)

with B; the magnetic field. (See Problem 3.5.)
The equations that govern the conducting medium are, with (2.1.4),

VxE=0, (2.1.7
./.«':UijEjs

and
V-j=0, (2.1.8)

identical to the equations for a diclectric medium, with the conductivity
replacing the dielectric constant and j replacing D. Equations (2.1.3),
(2.1.7), and (2.1.8) imply Ohm’s law for the relation betwecen the potential
difference A¢ along a conductor and the current I flowing through it:

Ad = RI (2.1.9)

where R is called the resistance of the conductor. R is simply related to
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the conductivity for a cylindrical conductor:

L
R=-"". 2.1.10
o ( )

where L is the length and A the cross-sectional area of the cylinder.

A current in conductors can be generated by electromagnetic induc-
tion (to be discussed later in this section) or by a chemical or thermal
source of energy (for example a voltaic cell). We give a brief discussion
of the latter here.

A voltaic cell is usually an arrangement of two electrodes of different
material immersed in an ionized fluid, or electrolyte, such that it is ener-
getically profitable to transport positive ions to one electrode (the positive
terminal) and negative ions to the other electrode (the negative terminal).
The electrochemical energy per unit charge transferred is called the elec-
tromotive force € of the cell. Charge will build up on the electrodes until
the opposing potential difference of the electrodes A¢ = €. Thus, the
open circuit voltage of a cell is equal to .

When the external circuit is closed, positive charge will flow in the
external circuit from + to —. and inside the cell from — to +. What
happens to the external potential A¢? At 1=0, A¢ = €. It is reasonable
to expand A¢ about € in a power series in [ and to keep the first two
terms:

We call r the internal resistance of the cell. r must be positive since when
current [ flows, the electrochemical power produced is €/I. This power
cannot be smaller than the power A¢I transformed into heat in the exter-
nal resistance. Thus,

&1 = Apl (2.1.12)
or

r=0. (2.1.13)

For the equality to hold, there would have to be no dissipation in the cell
itself, and the cell would be a perfect conductor. Normally, r > 0 and

€
R+

7 (2.1.14)
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2.2. MAGNETIC FIELDS

Units

We work in mixed Gaussian units: e.s.u. for electric field and charge,
e.m.u. for magnetic fields (gauss or oersted). Current is fixed by units of
charge and time: / is in e.s.u/sec. Note that 1 Ampere = 1 Coulomb/sec =
3 x 10° e.s.u./sec. Magnetic units start with the force between magnets,
treated as dipoles. Thus, as in electrostatics, two unit magnetic poles
situated 1 cm apart exert a force of 1 dyne on each other. Since magnetic
poles do not appear in nature, one calculates (in principle) the force
between two small, widely separated magnetic dipoles:

Flonz = (M- V) B(ry) = (m; - V) (— v, PL—(';—_"—‘)) (2.2.1)

ri2

or, withrj,=r;, —ry,

_Jrp 3[mom,; ‘r;; + mm, - rp,)
Fron2=—7"m;-m, + 3
Y ri2
! m; - ¥y T
= 15rp =5 (2.2.2)

iz

With F in dynes and ry, in centimeters, (2.2.2) determines magnetic mo-
ment in e.m.u. The magnetic field B produced by a moment m is then
given in gauss by

m-r m 3r(m-r
B=-V 3 =—;§+—(;5—2. (2.2.3)

The magnetostatics of permanent magnets had been clarified by the
end of the eighteenth century. However, there was at that time no known
connection between magnetic and electric phenomena. Then, in 1820,
Oersted discovered the magnetic field surrounding a wire carrying a steady
current. Within 12 years, Ampére, Biot, Savart, Faraday, and others had
worked out the physics of magnetic fields and steady currents, culminating
in Faraday’s discovery of electromagnetic induction.

In working through this subject, we start from the discovery by Biot
and Savart that the magnetic field at a point r due to a circuit carrying a
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current [ could be calculated from the formula

B(r) = {jf;dl’ x &=r) (2.2.4)

¢ e —r' P’
A

where f;dl’ signifies a line integral around the circuit and r' is the
position vector of dI'. The constant ¢ has the dimension of velocity,
c =23 x 10" cm/sec.

Equation (2.2.4) contains a strong hint as to the force of a magnetic
field on a circuit. Let us use (2.2.4) to calculate the force of B on a
hypothetical magnetic pole p. It is

Fconp=pB = — Ijédr wp =0 ’)3. 2.2.5)
c |r—r'|
We recognize
"0 B, (2.2.6)
Ir—r|

where B,(r') is the magnetic field that would be produced at r’ by the
hypothetical pole at r. Thus,

Feonp = — gjgdl’ X B,(r'), (2.2.7)

and if we assume that action is equal and opposite to reaction (a treach-
erous assumption here, as we shall see later, but correct for circuits
carrying steady currents), we find that the force on a circuit is suggested
to be

F= £§dl’ x B(r'). (2.2.8)
c

The artificiality of the use of poles could be avoided—we could arrive at
the same result (2.2.8) by considering a real dipole instead of a hypothet-
ical pole. More important, the formula (2.2.8) is experimentally correct.
Thus, one can calculate the magnetic field due to a current in a wire as if
it were due to a sum of contributions from each circuit element d1’, with

an ="1ar (L_r—{ (2.2.9)
e Ir—r'}

and the force on a circuit as if it were the sum of forces on each circuit
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element 41’ of

aF =Lar xB. (2.2.10)
C

We might try to guess the field of a single moving charge from (2.2.9)
and the magnetic force on a single moving charge from (2.2.10). To do
this, we note that with n charges per unit volume, each of magnitude g
and velocity v,

I = nquA (2.2.11)

where A is the cross-sectional area of the wire. Multiplying by dl/dl
converts v to v, and multiplying A by dl produces the volume of the
current element dl. Thus, Idl = Ngv, where N is the number of charges
in dl. With one charge, we would guess from (2.2.9)

B o R (2.2.12)
c |r=r'}
and from (2.2.10)
v ,
F,=q-xB, (2.2.13)
¢

the Lorentz force law.

Remarkably, it turns out that (2.2.13) is exactly right (if F is properly
interpreted) and (2.2.12) is approximately right for low frequencies and
velocities < ¢,

One disconcerting discovery is that (2.2.12) and (2.2.13) do nor satisfy
Newton’s third law. Thus,

A\
F2nnl = (11 ?l X B2(rl)

=g, x [qr—x - (2.2.14)
¢ ¢ rp—rf
or
Foonr = BBy, % (va % (1) = 12)) (2.2.15)
Cris
and
Fions = 240y, x (v % (1 — 1)), (2.2.16)
"N
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But
Vi X (Vo X F) =V, TVs — V[ - VoI (2.2.17)

and

vy X (vl X (—r)) =~V TV, + V|- V,r; (2.2.18)

the two expressions are only opposite when
vViervo —voerv =0 or rx(vaxv)=0

that is, either v, | v,, or r 1 to the plane of v, and v,. We shall see later
that in spite of this inequality of action and reaction, momentum can still
be defined for electromagnetic systems and is conserved; however, one
must add to the particle momentum a field momentum that gives overall
balance.

We should, however, check for action and reaction in the case of
circuits carrying steady currents. Thus, for the force of circuit 2 on circuit
1, we have

I
Foon1 = “ § dly X By(ry)
¢

112%6”I i{;(dlzx(rr ’2)) (2.2.19)

"12

or
1,1 r—r dl, - dl
onn1=‘—j[j€dlz§f>dll-(‘——2~>§~fj = z(rl—rz)} (2.2.20)
¢ LT Y Fi2
&) ) Ly
The first integral is zero, since (r, —ry)/ri,=—V,l/r;, and

J dl, - V,1/r;; = 0 for every r,. Thus,
L1 dl, - dl
FZunl = 122 § %'—1—3—2(1'1 - rz) (2221)
c iz
Cy C2

which evidently satisfies the law of action and reaction. We can also read
off the sign of the force for I, and I, in the same sense: It is attractive.
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We turn now to different ways of expressing the basic formula (2.2.4),
As we pointed out earlier, Id1 = ngvd’r, or

ldl = pvd’r = jd°r (2.2.22)

where d’r is the volume element of the wire, p the charge density of the
moving charge, v its velocity, and j the current density. More directly,

ldl = jAd! = jd°r. (2.2.23)

Therefore, a continuous distribution of current—imagine many wires lined
up together—generates a field

B(r) =Jdr’j(—:—2 X #:__:'3, (2.2.24)

and a field B exerts a volume force on a current j of

r=1xB8. (2.2.25)
C

“Volume force” f means that the actual force on an element of current
occupying a volume V is

F= J drf. (2.2.26)

v

The formulae we have derived are sufficient to calculate the magnetic
field B of a given steady current distribution. Since the current is steady,
we must have, in the absence of an indefinite piling up of charge density,
V-j=0.

We note that (2.2.24) is

B(r) = - Jdr‘j(r—') gL _ (2.2.27)
c Ir—r'|
or
B(r) =V x IJ v AT (2.2.28)
c lr—r’|

From (2.2.28) we can derive the differential equations satisfied by B
[analogous to (1.1.17) and (1.1.36) for the electric field].
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First,
V-B=0 (2.2.29)

since B is a curl. Second,

V><B=1V><(V><fdr’—Lr’)~)

c |r—r’|

=lvv-fdw—ﬁﬂlv—lvzjdw—ﬂﬂl~ (2.2.30)

c [r—r'| ¢ [r—r']
The first term vanishes, since V- j = 0. To see this, note that

V-fdﬂ4m2—=JdﬂV LI
r—r] r—r]

—J'dr'V’ ! — - j(r’)
|r—r|

i

Jdr’ ! V' -j(r')=0.
r— x|

The second term in (2.2.30) is (4#/¢)j(r). The source equation for B is
therefore

yxp=3m (2.2.31)
C

Ampere’s circuital law follows directly from (2.2.31) by integration over
any open surface bounded by a curve C:

JVwam=i3 ds -j (2.2.32)
c
S S

or by Stokes’ theorem,

fn‘m=§34me, (2.2.33)
C

&

where I qasea 18 the current flowing through the surface S.
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Finally, (2.2.28) invites us to define a vector potential

A= 1Jdr’ ) (2.2.34)
¢ Ir—r’|
with
B=VxA. (2.2.35)

Note that (2.2.29) implies the possibility of introducing a vector potential,
for which (2.2.34) supplied an explicit formula.

The notion of gauge invariance makes its first appearance here. We
can always add the gradient of a scalar Vi) to any A without changing the
field B, since V x (Vi) = 0. The choice of A among all these possibilities
is called the choice of gauge. The transformation

ASA+ VY (2.2.36)

is called a gauge transformation, and B is said to be gauge invariant. The
gauge choice in (2.2.34) is evidently V- A = (0. Note that (2.2.36) informs
us that we can always find a ¢ to make V-A = 0. Suppose V- A, #0.
Thenlet A, = Ay + Vib. Wecanmake V- A, = V- A, + V¥4 = 0 by salving
the equation V¢ = —V - A, which is always possible.

The underlying theories that physicists work with today are all theories
with gauge invariance under transformations similar to (2.2.36). Not
surprisingly, they are called gauge thcories. In particular, the so-called
standard model of the strong, weak, and electromagnetic interactions has
all interactions mediated by gauge fields: eight colored gluon fields for the
strong interactions, the W= and Z, fields for the weak interactions, and
of course the electromagnetic field.

2.3. MAGNETIC MULTIPOLES

Starting from (2.2.34) for the vector potential

A(r) = lj dar A (2.2.34)
¢ Ir —r'|

with V- j =0, we can expand A(r) in a power scrics in r'/r (convergent
for r’ <r):

!

A(r) = 12 il J' dr'j(r) (r' - V)
¢l

1
i ® (2.3.1)
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We consider first the terms /=0 and /=1, and then go on to the
general term. First, /= 0:

AO(r) = ijdr’j(r'). (2.3.2)

A“Y(r) can be seen to be zero from the identity

O] :
0= Jdrx,»i= —Jdr%jk(r) = —fdrj,-(r). (2.3.3)
X

an

Thus, there is no vector potential of order 1/r for large r and, hence, no
magnetic field of order 1/r*. This conclusion has nothing to do with the
nonexistence of magnetic poles. If magnetic poles existed, there, of course,
would be magnetostatic fields going like 1/r°, where r would be the
distance from the pole. There still would be no 1/r* field generated by
steady electric currents. Note that a single moving point charge does not
constitute a steady current and, hence, will give rise to a 1/r* field.
The term /= 1:

AY(r) = —lfdr’j(r’)r’ Vl (2.3.4)
c r
It is useful here to change to tensor notation:

AW(r) = —1fdr'j,-(r')x;5‘?~1. (2.3.5)

C X ¥

We proceed by decomposing the term j.x; into symmetric and antisym-
metric parts:

Coye ! 1. ’ T 1. ’ st
.]ixkzi(]iXk +]kx‘i)+§(j;xk~]kx,). (2.3.6)
The first term in (2.3.6) integrates to zero, as in (2.3.3):

0= fdrx,x,\jij,: - J’dr(j,xk Fjexs). (2.3.7)
oxX;
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The second term in (2.3.6), inserted into (2.3.5), gives

AO() = - 1fdr'(f‘(")x"‘ ~ k(') "") 2L sy
C

2 X, 1
We define the magnetic moment density M by

M(r) = 220 (2.3.9)
2c

so that, since

e xpxv=t-rj veje vy,
2 2
AV(r) = - Jdr’ M(r') x Vl (2.3.10)
¥
1
=-mXxV- (2.3.11)
r
where m is the magnetic moment,
m= JM(r’)dr’. (2.3.12)

The magnetic field of the moment m is

B“)=V><A(”=—-V><<mXV1) (2.3.13)
r
or, since V*(1/r) = 0 for r #+ 0,

BY = (m-V) V1
.

=V(m~V)l
r

= -V (2.3.14)

corresponding to a magnetic ‘‘potential”
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m-r
r3

d*(r) = (2.3.15)

In general, of course, one cannot express B as the gradient of a
potential, since V X B # 0. However, in a region where V X B = 0, that
is, outside of a current-carrying region, one can define a potential ¢*,
called the magnetic pseudopotential, such that

B=-V¢*. (2.3.16)

We discuss the magnetic dipole further by considering two special
cases:

1. A circuit carrying current [

mzifdrrxj:if'rxdl (2.3.17)
2c 2c
c c

where dl is in the direction of the current, or by Stokes’ theorem,

m="A, (2.3.18)
C

where A is the ‘‘area” of any surface bounded by the circuit C:

AEde,

with the direction of dS determined by the right-hand rule applied
to the circuit C.
2. A point particle of charge g and velocity v in orbit, radius vector

I,

m=-1—Jdl‘(er):ijdrqa(r—rp)rxvl’
2¢ 2¢

or

_qr, Xv, gl,

2.3.19
2c 2mc ( )

where 1, is the angular momentum of the particle. The factor g/2mc
is called the gyromagnetic ratio of the particle. Note that in this
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example j(r,z) = gqv,8(r —r,(r)) is not a constant. Nevertheless,
the formula for the magnetic moment turns out to be correct if one
first time-averages m over the fast orbital motion.

The general term, (2.3.1), can be rewritten in tensor form:

A’_(r)_—gl),i dr' ey x xS 20
{ Ji\r )x11 X i ) . ( o 20)
¢ I ax,  ox,r

The above expression for A{(r) permits the construction of a pscudo-
potential that we give without proof (but see Problem 2.12 for the case
[=2):

2
(I + 1)

d¥(r) = — (—1)’Jdr’ (r'- V)’*‘Mir—;)—'—r . (232D
r

Recall the analogous electrostatic formula

(-1

I}

d'(r) = Jdr’ p(r’) (r'- V)'%, (1.3.1)

which showed that the potential of an arbitrary charge distribution can be
written as a sum of multipoles of order /, each multipole itself being an
integral over r’ of Maxwell multipoles with the tensor structure

electric _ A Ay
Q/i,...i, =Ty r
and magnitude

1y
leleclriL‘(rl) =dr rrlp(r!) LT}l (2322)

Similarly, ¢*(r) is given as a sum of multipoles of order /, each
multipole itself being an integral over r' of a Maxwell multipoie of the
tensor structure

Q;‘nl;\%,nclic — l‘,‘l/: L ;l,l Mi[ (23.23)
and magnitude
GV
Q;nagn::\lc — __((;:_i_)_’_ r// 1 M(r’)- (2324)

As usual, only the symmetric, trace-free part of Q*¢"' contributes to
y y p
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the integral (2.3.21) for ¢*. Since there is no magnetic monopole, the
Maxwell multipoles can be thought of as coming from successive displace-
ment of a dipole, rather than a charge.

2.4. MAGNETIC FIELDS IN MATTER

We deal only briefly here with the averaging process since the essential
issues are very similar to the electrostatic case. As in that case, we define
an average field

B= fdr’f(r - r')b(r") 24.1)

where b is the microscopic field. The differential equations for b,

Vxb= 4—7Tj,,, (2.2.31)
c
and
V-b=0 (2.2.29)
become, on averaging,
V-B=0 (24.2)
and
Vx B = ‘ﬁj,,,. (2.4.3)
c

It remains to calculate j,,. An applied magnetic field will induce a
magnetic dipole density, the dipole moment per unit volume M. The
vector potential due to M will be given by (2.3.10)

1
r—r|

:J gy, (2.4.5)
[r—r'|

Ay = Jdr’ \ X M(r') (2.4.4)

Evidently, V' x M(r’) plays the same role with respect to j/c as =V « P
does with respect to p,. In integrating (2.4.4) by parts to arrive at (2.4.5),
we have as usual dropped surface terms, understanding that they will
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emerge from the behavior of V X M at an (approximate) discontinuity.
Thus, we see that

Jm =V XM+ j; (2.4.6)

where j, is the conduction current of moving charges. Calling jr=1i. we
have from (2.4.2), (2.4.3), and (2.4.6), the field equations

V-B=0 (2.4.2)

and

VxB=2T | 4nv M, (2.4.7)
C

Analogous to our definition of D in electrostatics, we define
H=B - 4mM, (2.4.8)
leading to the final form for (2.4.7):

vxmp=4m (2.4.9)

c

Together with the relation between B and H, (2.4.9) and (2.4.2) determine
the magnetic field.

A word on nomenclature: Before the electrical origin of magnetic
fields was known, the electrical analogue to B seemed to be D, and the
analogue to H seemed to be E, the differences in the right-hand sides
reflecting the absence of magnetic poles and currents. Consequently, the
historic name given to the vector H is magnetic field, that given to B is
magnetic induction, one conventionally measured in oersteds, the other
in gauss. We do not differentiate these units from each other.

The boundary conditions on B and H at a material discontinuity follow
as usual from (2.4.2) and (2.4.9). A Gaussian pillbox applied to (2.4.2)
tells us that B, oma is continuous; a Stokesian rectangle applied to (2.4.9)
tells us that

41
AHtangcminl =—K
C

where K is the surface current, that is, the current going through the
infinitesimal Stokesian rectangle per unit length along the tangent under
consideration. A surface current requires an infinite current density and
hence infinite conductivity. For finite conductivity, we shall see that the
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“surface” current is finite near the surface, and hence there is no
AH ngential» €ven for a sharply bounded surface.

If B is a linear function of H, B; = u;;H;, where the tensor u is called
the permeability. As usual, the isotropic case has p; = 6, u.

We discuss briefly the relation between B and H. First, let us consider
permanent magnets. These are endowed with a fixed dipole moment M(r)
per unit volume, giving rise to an effective pole volume density —V-M
and pole surface density Myorma. (We do not discuss the atomic physics
of permanent magnetization.) The equations determining the field con-
figuration are

VxH=§’:—j=0 2.4.9)
and
V-B=0. (2.4.2)
Thus, since j =0,
H= —-V¢* (2.4.10)
V-H=~4#V - M, (2.4.11)
and so
Vip* =47V -M (2.412)

plus boundary conditions determines ¢* and, hence, H and B.

Second, let us consider paramagnetic substances: u > 1. These consist
of atoms possessing permanent magnetic dipole moments, which in the
normal state are randomly oriented, cancel out, and average to zero. The
presence of a magnetic field will polarize the moments and tend to align
them with itself. A simple classical calculation shows this effect. Consider
a gas of atoms, each having a permanent magnetic moment ., in an
externally applied field By. The energy of the magnetic moment in the
field is

W= — [T B()
and the Boltzmann distribution function for p is

P Bu/kT

Fe—— (2.4.13)
fepvll“/deQ

The mean value of p will be in the direction of By, so p = uBy/Bg
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and

[ anumyemer
B() . . i
By By

= (2.4.14)

J’ dﬂ e."“(!/k T

To obtain some notion of the order of magnitude of uBy/kT, we take
u to be one electron Bohr magneton (efi/2m.c) and measure B, in tesla
(10* gauss) and T in degrees absolute. We then find

ilo LB (2.4.15)
kT 2T

so that even for high fields and low temperatures uBu/kT is quite small.
The calculation of w is very simple for uBy/kT << 1. From (2.2.14)

! 3

M j we" *Bk Ty w* dw
2 2
— —1 KBo ©"By
= =~ : = 2.4.16

K ] &7 1 KT ( )

Jr ew;LB“/k'l‘dw J dw

—1 ~1

and the atomic paramagnetic polarizability is'
'uz
ap= WT (2.4.17)

Let us see what this volume is. With u = efi/2mc, where e and m are the
charge and mass, respectively, of an electron,

e’ ( h >2
ap=——-|—"
3kT\2mce

2 3, 2,2
__¢ .”_1*(1) (2.4.18)
3axkT 4 \kc
1
x;aﬁ; (2.4.19)

'The formula (2.4.17) is calied the Langevin-Debye equation. It evidently holds cqually
well for a collection of freely rotating electric dipoles.
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with T in degrees absolute. Here, a, is the Bohr radius, ap E%X 1078
cm.

Thus, except for very low temperatures, the paramagnetic suscepti-
bilities are small compared to the electric ones. Note that the high 7 limit
calculated here is necessary for the classical calculation to be valid; that
is, kT must be larger than the alignment energy u By, since otherwise the
integral over angles, d(}, would have to be replaced by a sum over discrete
levels.

Third, we consider diamagnetic materials. Diamagnetism is present in
all matter; however, it is dominated by paramagnetism when the latter is
present.

Diamagnetism comes from a basic property of magnetic interactions
(called Lenz's law): They oppose any change in the magnetic field. The
mechanism used is electromagnetic induction, which will be addressed in
Section 2.7.> A careful calculation of the polarizability of an electron orbit
must wait until then. However, we can make a rough estimate of the
order of magnitude. The magnetic moment p of an orbiting electron in
an atom, we have seen in (2.3.19), is

= _E’L’ (2.4.20)
2mc

where L is the angular momentum of the electron. L, in turn, will have
a component that is proportional to B and will not average to zero over
many orbits. Dimensionally,

Lxmrie (2.4.21)

where r is the radius of the orbit and w a frequency of rotation caused
by the magnetic field. This characteristic frequency” associated with the
magnetic field is

w, ~ B (2.4.22)

mce

*In fact, one is treading on dangerous ground in aitempting a quantitative classical
calculation of diamagnetism, since it is a famous theorem of classical statistical mechanics
that a temporally constant magnetic field can have no effect on a thermodynamic system at
cquilibrium: Paramagnctic and diamagnetic effects cancel. Therefore, some consequences of
quantum mechanics must be added to the calculation. For example, the derivation given
above of (2.4.17) assumes the existence of a permanent unique magnetic moment—not
possible in classical mechanics. The derivation to be given in Section 2.7 assumes the
existence of unique orbits and time scales for the ficld free motion of the system, which is
again not possible in classical mechanics.

*Think of the equation mi = F + (e/c)¥ X B, and note the characteristic frequency w,
contained in ¥/i. F in this equation stands for the sum of the eclectric forces on the electron.
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giving

w2 B op. (2.4.23)

ap~—dg, (2.4.24)

which is smaller than the electric polarizability by a factor
(€’/mc®)ag = (1/137)%. It is also smaller than the paramagnetic polariz-
ability by a factor 7/(137)%, so that diamagnetism is normally observed
only in materials for which the paramagnetic susceptibility vanishes. This
occurs when the intrinsic atomic or molecular moment u [as in (2.4.17)]
vanishes identically for reasons of symmetry.

2.5. MOTIONAL ELECTROMOTIVE FORCE AND
ELECTROMAGNETIC INDUCTION

If we move a conductor through a magnetic field, the ev/c X B force will
act on electrons, giving an effective electric field E.,= v/c X B. Thus, in
general, if a circuit in a magnetic field is displaced, we can expect an
effective electric field to be generated in the conducting wire, and we will
find an effective electromotive force

, \
€;=¢E, dl=¢-xB-dl
/ %-’ %C (2.5.1)
(& (&
Note here that v is the velocity of displacement of the circuit element dl.
We define the magnetic flux through the circuit

¢:wam, (2.5.2)

N

where § is any surface bounded by C, and the normal 48 and the direction
of circulation dl are connected by the right-hand rule. Note that since
V-B =0, ® is independent of the surface §.

As we displace and deform the circuit, the flux ® will normally change.
We now show that that rate of change determines the effective electro-
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motive force via the equation

1dd
Eyp=— ——. 2.5.3
1 v ( )

Note that (2.5.3) is not Faraday's law, since the magnetic field is not
changing with time.
With B given by a vector potential A, the flux & is

d>=JB-dS=ng-dl, (2.5.4)
S C
and, as we change from contour C,; to contour C,, we have
5®=j€A-dl—§A-dl. (2.5.5)
(&) (&

We parametrize the path of the contour with a parameter 7 such that

x=x(r), O=r=1, x(1)=x(0). (2.5.6)
Then

L

8 = f drA(x + 6x) <@ + d%> - JdTA,-(X) dx; 2.5.7)

dr dr dr

0
1

- f dr[Ai(x) g% Mg, i’ﬁ] . (2.5.8)

dr  ox; dr

o]

We integrate the first term in (2.5.8) by parts; the integrated term is
zero, because dx and x have the same values at 7 = 1 and at + = 0. There
results

1

50 = J d{% - 9—43] s, (2.5.9)
an ax,' dr

[¢]

We recognize that {dx,/d7)d7 = dx; (i.e., the d; of a line integral) and

<%~%>dx,6x,=8-8x x dl.
Bx}- ax,»
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Equation (2.5.9) then becomes

8¢>=—J5XXB-dI (2.5.10)
and
1dd )
“—‘—=J!XB'(“=‘&_;; (2.5.11)
¢ di c

which is the equation we set out to prove.

Faraday’s law of induction was, of course, a great experimental discov-
cry. Nevertheless, it is interesting to observe that it follows from (2.5.11)
and the assumption of Galilean (or of Lorentz) invariance. Imagine a
magnet and a circuit. Consider two operations. First, move the circuit
between the pole pieces of the magnet. An electromotive force 4, given
by (2.5.11) will appear in the circuit, a corresponding current [ = &.,/R
will flow, and the total charge transferred (e.g., deposited from an clectro-
lyte or measured by a ballistic galvanometer) will be

1 ) 1
=|dtl=—=1)dté&,=——Ab, S,
© f RJ / Re (2.5.12)

all this no matter how slowly the circuit is moved. Second, move the
magnet past the circuit with equal and opposite velocity. (In the rest frame
of the magnet, this operation looks the same as the first one.) If we are
not to be able to tell one reference system from another, the second
opcration must induce an electromotive force in the circuit having the
same value as &.. In this case, howevcr, the electromotive force is
genuinely induced, as discovered by Faraday. The law is the same as
(2.5.11), of course:

1dd
€ = ——d—. (2.5.13)
c dt

where now € is a true electromotive force and d ®/dr the rate of change
of flux through the circuit. Obviously, we could have a third operation,
where both the circuit and magnet move in opposite directions. The result
is again the same equation (2.5.13), now with & = total elcctromotive
force—true and motional—and d®/dr the total change of flux through C,
whether from the motion of C, or a change of magnetic field, or both.

We deduce the differential equation corresponding to the integral
relation (2.5.13) by holding the circuit fixed. Then (2.5.13) is equivalent
to
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d
—1JdS B _ %EwilzJa’S-VXE (2.5.14)
¢ 0t
Y C N
for any surface §: hence,
1oB
VXE=—--—, (2.5.15)
¢ at

This is the differential form of Faraday’s law. Note that E has now acquired
a curl.

2.6. MAGNETIC ENERGY AND FORCE

Analogously to our procedure in electrostatics, we calculate the rate at
which the induced electric field acting on the current causes a loss of
magnetic field energy. It is

~ = = | drE-j. (2.6.1)

We transform this expression as follows:

_dW_ ¢ fdrE V xH
dr  4m
=—C—JdrE><V~H (2.6.2)
4

and, after dropping a surface term that vanishes, provided E x H goes to
zero faster than 1/r°, we obtain

_dW C  rEXT.h, (2.6.2)
dt 477

where the symbol V means the gradient differentiates E, but is algebraic-
ally to the right of E. We remedy this position by putting V algebraically
to the left of E and changing the sign. Equation (2.6.2) then becomes

JB

_AW_ < [ v xE- H—~—Jdﬂa— (2.6.3)
t

dt 4=
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for the loss of energy by the field. As in the electric case, we can integrate
(2.6.3), provided the medium is linear and the permeability tensor sym-
metric. We find

W=~LfdrH-B. (2.6.4)

8

We can discuss systems of current circuits, analogous to conductors
in the electric case. We limit ourselves here to nonmagnetic media. The
analogues to charge and potential are flux and current. To see this, we
introduce the vector potential A:

W=—1—JdrB'H
87

=-l— drVx A-H
8w

=—1*JdrA-VxH
RYs

1
=— |l drA-j
ZCJ .

which for a system of circuits becomes

1
W=—2 IiigA - dl; (2.6.5)
C i
Ci

or, by Stokes’ theorem,

1
W=—21®d, (2.6.6)
2¢ i

where [, is the current in and @, the flux through the ith circuit.

As with charge and potential, the fluxes and currents are linear
functions of each other:

® =cX Ly, (2.6.7)
i

The L,’s are called coefficients of induction. Note that L, is defined so
that the electromotive force in C; induced by a changing current in C; is
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di;
&=-L; ;t] (no sum). (2.6.8)

We list several sometimes useful expressions for the energy W of a
system of current carrying circuits:

= lE[iq’i

C i

1
=2 LL,l, (2.6.9)
2 oy
and defining a matrix G; which is the inverse of the matrix L;, we have

1
=— 2 ®,G;P;. (2.6.10)
2C [N}

For an extended current j(r), in the absence of a magnetic medium
(n=1),

W=ifdrA-j
2c

= —%Jdrdr’j (r')- ! J(@). (2.6.11)
2¢ |r —r'|

The contribution to W in (2.6.11) from two separated circuits, 1 and

2, is
%%dh dl, 1112
|l'1 'r2| C
so that
1 dl, - dl
2 =—23€rjf> Lo (2.6.12)
C ‘l’l “rz‘

The idealization of line currents in (2.6.12) cannot be made for the
diagonal element of the inductance matrix. (See Problem 2.16.)
The generalized force on a circuit is given, with §£, a generalized
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displacement of the circuit, by

sW
Fo=—2—

17"

- W

constant ¢ 8§k

constant §

(as we have seen in the electrostatic case). So

Fk:

5L,
190k (2.6.13)
2¢” ij 6&;

in agreement with (2.2.21).

As in the electric case, the calculation of forces on material bodies is
difficult. As in the electric case, however, we can find the total force on
all the current (free or bound) in a region surrounded by vacuum as
follows. The total force on currents inside the volume V is

C
Vv

F—lfdrjXB, (2.6.14)

which we transform into

F=Lfdr(VxB)><B.
4

In tensor notation,
1
- J dr(Bedy Bi ~ BeoiBy): (2.6.15)
o

since d, B, = 0, we rewrite (2.6.15) as

1 Bix
F=— f dr ak(Bk B, ——% BZ), (2.6.16)
47 2
leading to a magnetic stress tensor
1 B’
T =— (Bk B, — 8, —) (2.6.17)
4 2

and a total force on the currents inside V



2.7. Diamagnetism 73

F.= dek TR (2.6.18)

S

where S is the surface enclosing V. dS, is, of course, the outward normal.
Since the surface S in (2.6.18) is in vacuum, the microscopic and macro-
scopic B are equal.

2.7. DIAMAGNETISM

We return now to the question of diamagnetism, which was discussed
qualitatively in Section 2.4.

We consider an isolated atom, containing n electrons and a heavy
nucleus. Imagine applying a constant magnetic field By to the atom. A
famous result, due to Larmor, is that, to first order in By, the system looks
just like the same system with B, = 0, but rotating gently with a rotational
angular velocity (called Larmor precession)

By (2.7.1)

w; = = s
2m.c

where e is the charge of the electron (negative!) and m, its mass. We
prove the result by considering the equation of motion for each electron
e

d°r, _ V.

=F,+e—<XxB 2.7.2
dr ¢ c 0 ( )

me

where F, is the total remaining force on the eth electron, assumed velocity-
independent and angular-momentum conserving, thus, for example, elec-
trostatic.

What happens when we rotate the system about a point with a fixed
angular velocity w? We specify a vector A as

A=1iA, +jA, + kA, (2.7.3)

where A,, A,, A, are the components of A along the rotating axes. The
rotation of the coordinate axes is described as

- - R R
L . F L Y (2.7.4)
dt dt dt
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so that
—=w XA+ — (2.7.5)

where

A _dAL | GdA, | pdAs (2.7.6)
d[t] dt dt dt

That is, dA/d]t] is the rate of change of A seen by an observer in the
rotating coordinate system. Applying (2.7.5) to (2.7.2), we have

2
mg(d—rez-f—zmxﬁi&'}‘wX(le‘e)):Fe'{‘_["*ﬂ'wal‘g:lXB().
df1] d[t] cud(]

If we set w = w,; = —eBy/2m.c and neglect quadratic terms in w or B, we
return to the B-less equation

d’r,

o F., (2.7.8)

€

as stated earlier. Thus, the solution of (2.7.8) for the components of the
r's are as if there were no field and no rotation. The neglect of quadratic
terms is justified if w.r <dr/d[t] and o, dr/d{t] <d*r/d[t]*, which for
ordinary atoms and magnetic fields is true.

The velocity of each electron is now

dr. _ dr.
dr d{i]

+ w; XTI,, (2.79)
the angular momentum of each electron is

l. = m,r, X e _ m.r, X dre + mr, X (w, Xr,) (2.7.10)
dr dft]

and the magnetic moment of each electron orbit is

me=— 1= x e €0y (w, xT). (2.7.11)
2m.c 2c dlr] 2c

Of course, we have taken the origin of r (i.e., the center of rotation) at
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the center of the atom. Adding up all the electrons in the atom and
averaging over atoms [assuming that the first term on the right-hand side
of (2.7.11) averages to zero], we have for the average dipole moment per
atom m

e
M= 2 (r2Bo — (r. - Bo)r, 2.7.12
4meC2 e (r 0 (r 0) ) ( )
2 —_—

___¢ 2(2 rg);;o 2.7.13)

6mec e

for a diamagnetic polarizability
2 E—

ap=-—— 2P (2.7.14)

6meC e

in agreement with our earlier estimate.

It remains to be shown that as the magnetic field is turned on, starting
from zero, the induced electric field converts the original motion of the
system to the Larmor precessing motion.

We proceed by deriving a differential equation for the time depen-
dence of the magnetic moment of an atom, averaged over many atoms
and many cycles of the fast atomic motion.

The equation governing the motion of the electrons in an atom is

2
mLe = F, 4 e(ve « Be E) (2.7.15)
dt c

where F, is the force of the nucleus and other electrons on e, B, the
magnetic field acting on e, and E, the induced electric field acting on e.
We neglect nuclear motion and take r, to be the radius vector from the
nucleus to e.

We take the cross product of r, with (2.7.15) and sum over e. Since
the force F, is angular-momentum conserving, it drops out and we have
the equation

2
d—L=m2rexdZ‘f=2rexe<EXBe+Ee> (2.7.16)
dt e dt e c

where L is the total angular momentum of the electrons about the nucleus.
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The triple vector product r, X (v, X B,) is

r.x{v.,xB,)=r.-B.v,—r,-v.B,

_r.-Bwv.+B, vr, + r. -B.v.—B. v.r,

i W VeB
5 2
SBex(exr) 1d o g _em,)
2 2dt
_ 1<r(,r(, B _ r; dBc) G710
7 At dt

so that

ex=f 2 B, x ( r£.> + 552 (r.r.-B.-r2B,)

dt cdt .

+ (,’2 (rc X E, — 1 (r(,r(, . 48, - r? fz—Bﬁ)) (2.7.18)
e 2C dt df

We simplify (2.7.18) by assuming that the spatial variation of B is
small over the atom, so that B, can be replaced by B, and dB./dt by 3B/a1.
We cannot do the same for E,, since the coefficient Tr, will average 1o
zero over many cycles of the fast motion and over many atoms. We
therefore expand E, about the nucleus of the atom:

1 aB
Eu = Enucleus +— r.x —+ SoE (2719)
2¢ at

where SE is linear in r,, but such that

>, x 8E

averages to zero (see Problem 2.17). The result is

dt 2mc

+62<QX—{nXQED—"LGJfQE—r¥E> (2.7.20)
e 2c at 2¢ at at

L _ e |« +——Em¢ B-rB)+ >r, x 8F

or
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dM d ¢
e, xM+= Y(rr.-B-rB)+eXr, x 5E. 2.7.21
dt t dt 4mc? e ( ) ; ( )

We average over atoms and find

dM d( e —
e xM-2 > 3)3, 2.7.22
dt . di\6mc® - f ( )

where M = 2,.m, is the total magnetic dipole moment, M = eL/2mc.
We can solve (2.7.22) easily for a field B in one direction, say, z. In
that case, starting with M, and B that are both zero, we find

M, = - > B, (2.7.23)

confirming our earlier guess, (2.7.14). Evidently, the component of M in
the x,y plane precesses around the field with the precession frequency
w, , as expected.

CHAPTER 2 PROBLEMS

2.1. Show that the functions p(x,1) = gf(x —x,(z)) and j(x,t) =
gl{dx,/dt) f(x — x,(1)) with x,(7) an arbitrary function of ¢ satisfy the
continuity equation

]
Piv.j=0
at
and are therefore possible candidates for charge and current density.

For a point particle, the function f(x — x,(f)) would go over to
83 (x — x,(1)).

2.2. Two closed metal surfaces are immersed in a conducting fluid. Con-
struct and prove a uniqueness theorem for the current and field.

2.3. Two metal spheres, one very small, the other of radius b, are
immersed in a conducting medium of conductivity o. The centers
of the spheres are separated by a distance L. The small sphere has
a current I, flowing out of it; the sphere of radius b is maintained
at a potential V with respect to a very large conductor containing
the system. What is the total current / flowing into the large sphere?

2.4, Current I, enters an “‘infinite” thin conducting plane (of conductivity
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2.11.
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o) at a point and departs at infinity. Assuming the flow is uniform
across the width A of the thin plane, give a formula for the electro-
static potential at a point p, ¢ in the plane.

A circular hole of radius a is cut from the plane of Problem 2.4.
Its center is a distance b > a from the entrance point of the current.
Using the method of Problem 1.21, find a formula for the electro-
static potential at p, ¢.

A current [ of uniform current density flows down a circular cylindri-
cal wire of radius b. Using Ampere’s circuital law, find the magnetic
field at a distance p from the center of the wire, for p < b and
p > b.

Imagine a uniform current [, flowing in the z direction for
Ip—p:i|<b and in the —z direction for |p— p2|<b, where
|p1 — p2| < b. Draw a picture of the resultant current distribution
and give a formula for the (uniform) magnetic field in the overlap
area. Now let |p; — p2| = 0 and I, — « so that Iy|p, — p.| remains
finite. Give a formula for the resultant current distribution as a
function of p and ¢.

Calculate the field B inside and outside of a perfect solenoid, that
is, an infinite thin cylinder of radius a carrying a uniform circulating
current density j = K x pJd(p — p.), where p is the unit radial vector
from the axis of the cylinder to the point p. £ is a unit vector parallel
to the axis of the cylinder. Check that your answer is consistent with
Ampere’s circuital law (2.2.33).

Calculate the B and H fields of a magnetized spherical shell of radius
b with a constant dipole moment per unit volume M.

Calculate the B and H fields on the axis of a circular cylindrical
magnet of radius @ and length s with a constant dipole moment per
unit volume M. Give the fields both inside and outside the magnet.

A spherical shell of radius R carries a uniform charge distribution
of surface charge density o. The shell is rotated about an axis with
constant angular velocity w. Find the magnetic field B inside and
outside the sphere.

Suppose you wish to wind a current-carrying wire around a
sphere in such a way that the field inside the sphere is uniform.
How should the wire be wound?

Study the next approximation in r'/r to the magnetic field of a
confined current. That is, from the general formula

A(r) = 1J ar AT
C

r—r'|
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find the term following the dipole field. In particular, find the
magnetic scalar potential and show that it is a quadrupole field.

A current distribution J(r) exists in vacuum in the space z >0, all

x and y. The space z < O s filled with a medium of permeability .
Show that a B field satisfying the field equation and boundary

conditions is given by the following:

(a) For z > 0, the unperturbed B field of the current J(r), to which
must be added the B field of an image current L(r) with

Lx(x’ Y, Z) = (/‘L - 1)/(/"‘ + 1)Jx(x’ ys —Z)!

Ly(x’ ¥, Z) = (/J' - 1)/(/~L + 1)Jy(x’ Y, _2)9

and

Lz(x’ Y, Z) = —(l“' - 1)/(“ + 1)Jz(x’ B ) —Z)'

(b) The B field for z <0 is given by the unperturbed field of an
image current 2u/(1 + w)J (r).

(¢) The equations do not appear at first sight to lead to a unique
solution. What makes the solution unique?

A superconductor behaves like a perfect diamagnet, that is, a
material with #=0. An interesting property of a superconducting
sphere is that it is repelled by a magnetic field and, therefore, can
be balanced above a magnet.

(a) Simulate the magnetic field as resulting from a very long circu-
lar cylindrical magnet of radius b and uniform magnetization
M, with the —M pole far enough away to neglect. The super-
conducting sphere, with radius a, is placed at a vertical height
h above the center of the positive face of the magnet. Calculate
the force on the sphere. Take a << h and carry out a multipole
expansion of the B field generated by the superconducting
sphere in the presence of the magnet. Then integrate the stress
tensor around the sphere to get the force. You will have to
keep the dipole and quadrupole terms to obtain a nonvanishing
magnetic force.

(b) Study the vertical stability of the suspension.

(¢) Study the horizontal stability of the suspension. (Answer:
Stable for b/h > V24.)

Assume that force F is invariant (up to and including terms of order
v/c) to a change of coordinate system going from one observer to
another (the primed observer) with relative velocity v. From this,
assuming E’' = E + 0(v/c), B' = B + 0(v/c), and the Lorentz force
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2.16.

2.17.

2.18.

Steady Currents and Magnetostatics

law, show that

2
v v
E’=E+—XB+0(~2),
¢ C
A current is carried by a wire of radius r. The wire is in the form
of a circular loop, of radius a, with a = r.

(a) Calculate the self-inductance L of the loop accurate to order
1/log(alr).

(b) From this result, estimate the tension in the wire when carrying
a current /. Make sure your answer is a tension.

Complete the argument leading from (2.7.18) to (2.7.20) by showing
that £ r. X SE, where SE is linear in r,, averages to zero over many
cycles of fast motion and over many atoms.

Solve Eq. (2.7.21) for the M, , the components of M perpendicular
t0 w,, given the initial value of M;. Assume ®, is in a fixed
direction, but has arbitrary time dependence.
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CHAPTER 3

Time-Dependent Fields
and Currents

3.1. MAXWELL’S EQUATIONS

T'he static and quasistatic (including electromagnetic induction) equations
for E are

1 6B

V><E=—E—87 (3.1.1)
and
V-E=4mp, (3.1.2)
for B they are
vV-B=0 3.1.3)
and
V><B=4—Wj. (3.1.4)

Equations (3.1.3) and (3.1.1) are clearly consistent; however, if g is
time-dependent, the continuity equation, (2.1.2), tells us that V - j will not
vanish, and (3.1.4) will be inconsistent. We repair this inconsistency in
the simplest possible way. We add a term 4j/c to the right-hand side of

81
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(3.1.4):
47 .
VXxB=—(j+]j). (3.1.5)
c

Consistency requires
V-(+i)=0

or, from the continuity equation,

(3.1.6)

o L9
] 41 ot
=V-i@ 3.1.7)
4 at
from which
1 oE
j=— —+ VX 3.1.8
! 4 ot Q ( )

where Q can be any vector. Again, the simplest assumption is Q = 0. This
yields a new, consistent equation to replace (3.1.4):

10E 4mj
= - — 4 —,
c ot c

vV xB (3.1.9)

Maxwell called the new current j' the displacement current. Together with
j, the “total” current is “‘conserved,” in the sense that no flux of j + j'
emerges from a closed surface, that is, V- (j + j') = 0.

Maxwell’s full equations require us to look in a new way at the causal
relationships between the fields.

First, observe that two of the equations involve time derivatives:

dE
;ZCVXB—‘47Tj (3.1.10)
¢

and
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9B _ — ¢V xE. (3.1.11)
at
It follows that the right-hand sides of (3.1.10) and (3.1.11) tell us how E
and B change. This is not the way the static equations led us to think:
Current was viewed as causing a magnetic field and changing magnetic
field as causing an electromotive force. When we come to the study of
radiation, we will see how our normal way of thinking about causality
can be restored. Nevertheless, as a mathematical physics boundary value
problem, one must think of (3.1.10) and (3.1.11) as calculating dB/at and
dE/a¢, given B, E, and j as functions of position at an initial time.
Second, observe that taking the divergence of (3.1.10) and (3.1.11)
leads to the time derivatives of the divergence equations (3.1.2) and
(3.1.3). Thus, from (3.1.10),

0 0 0
v v.j=4n?® o L(V-E-4mp) =0, (3.1.12)
at at at

and from (3.1.11),
Vi—=0=-V-B (3.1.13)

so that provided the divergence equations hold at one time, the equations
for 9E/dt and dB/9t will guarantee that they hold for all time. Clearly,
therefore, the divergence equations should be viewed as enforcing certain
boundary conditions on the E and B fields, whereas the time derivative
equations are the dynamical equations. Just as in most physical theories,
one formulates the time-dependent problem as the prediction of the future
(or past) state from the present. For example, in mechanics, we specify r
and dr/dt, and then predict the future course of r and dr/dt via Newton’s
second law. Similarly, in quantum theory, we give the wave function at
one time and use the Schrodinger equation to predict its value at another
time. We see that the analogous problem in electrodynamics is to give E
and B at one time, subject to the constraints V-E =4mp and V-B = 0.
Maxwell’s equations then predict the future (or past) values of E and B.

This assumes, of course, that p and j are given functions of space
and time, satisfying the continuity equation V - j + (dp/dt) = 0. When we
consider the interaction of particles and fields as complete dynamical
systems, p and j can no longer be considered as given functions. Their
time dependence must be calculated as well. We will, of course, come
back to this. For the moment, however, we suppose that the sources p
and j are composed of heavy objects (magnets, large capacitors, atomic
nuclei, etc.) on which the reaction of the fields can be ignored.
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3.2. ELECTROMAGNETIC FIELDS IN MATTER

In order to obtain equations for the macroscopic fields, we proceed to
average the microscopic fields e and b, as we did in Sections 1.6 and 2.4,
In our carlier discussions of electric and magnetic fields in matter, we
relied heavily on the explicit form of the integrals giving the static fields
as functions of the charge and current densities. Since those integrals no
longer hold in the time-dependent regime we are now considering, we
must proceed differently. Instead of working with the solutions, we work
directly with the differential equations for the microscopic fields. These
are first the homogeneous equations

V:b=0 (3.2.1)
and
Vxe=—l@. (3.2.2)
c ot

The spatially averaged fields B and E clearly satisfy the same
equations:

V-B=0 (3.2.3)
and
V><E=—18—B~. (3.2.4)
¢ ot

Note that we average our ficlds over space, but not time. The space
average is necessary to smooth the fluctuations of the microscopic fields
in going from atom to atom. Therefore, the averaging function must
extend over a volume that contains many atoms. On the other hand, we
need the time resolution to be fine enough to describe light emitted by
atoms—that is, to be finer than a characteristic atomic time. In dealing
with normal atomic phenomena, there is, therefore, no need for, and
nothing to be gained by, a time average. As emphasized in Section 1.6,
it is necessary that the averaging volume, although large enough to contain
many atoms, must be small enough to resolve the distances we wish to
study. These requirements are easily compatible for visible light and a gas
at normal temperature and pressure, as we show below, following (3.2.34).

The inhomogeneous microscopic equations
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V-e=4dmp,, (3.2.5)
and
1o
Vxp=12, 47, (3.2.6)
c at c
are averaged to give
V-E=4np,, 3.2.7)
and
10E -
vxB=12E, 45 (3.2.8)
c Bt ¢

In order to carry out the required averages, we again separate p,, and
J» into bound and free components:

Pm = pPr+ po (3.2.9)
and

jm :j/' +j1,5 (3210)

p s and j, will be the macroscopically observed charge and current den-
sities:

pr=p (3.2.11)
and

ir=J (3.2.12)

We continue with our model of Section 1.6 in which p, and j, are assumed
to come from neutral atoms or molecules. Therefore, we can write

Py =2 pa(F = Tp. 1) (3.2.13)

n

where r, is the location of the nth neutral atom or molecule. p,(x) falls
rapidly to zero for x larger than ag, an atomic radius, and [ dxp,(x) = 0.
Similarly,

Jo =2 ju(r = £, 1). (3.2.14)

However, here, as we shall see, we cannot [as we did in (2.3.3)] require
F§(x) dx = 0.
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We now average:
pr=2 | dr'f(r=r)p,(r' - 1)
or, withr' —r, =x,
ﬁ=; dxf(r —r, — x)p,(x). (3.2.19)

Since x is restricted by p, to be < ay, and f, the averaging function,
varies on a scale that includes many atoms, we expand f in powers of x,
up to and including the linear term. The first term vanishes by the assumed
neutrality of p,,. The second term gives

=2 fdx xpa(x) -V, f(r — 1) (3.2.16)
or
o =—V-P(r) (3.2.17)
where
P(l‘) = 2 f(l' - rn)pn- (3218)

p. is the dipole moment of the nth atom and P the average dipole moment
per unit volume.

We may neglect the next term in the expansion, since we will be
considering electric and magnetic fields that are weak enough that a linear
theory suffices. Thus, the next term has a contribution that is independent
of the electric field and does not contribute to our linear equation, plus a
contribution which is linear in the electric field and does but is negligible
compared to (3.2.16) for the reasons given in Section 1.6.

For _]—',,, we carry out a similar expansion:

=2 J dx F(r =1, = X)jn(%) (3.2.19)
=2 fr-r,) J dx j.(x) — fdx XV, 2 f(r = r,)jn(x). (3.2.20)

The first term in (3.2.20) involves
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dej,,(x) == IdxxV “Jn = de n y - ap. (3.2.21)
at dt

so that the first term becomes

_ d 0
o = 2 flr— r'n P-_’p
1o n A ) dr ot

(3.2.22)

The second term we write using a tensorial notation. Its ith component
is

Toa="— ka 50— 2 F(r = £) juilX) dx. (3.2.23)

Ve n

We decompose x,j,; into a symmetric and antisymmetric part. We neglect
the symmetric part for the same reasons as those given above following
(3.2.18). The antisymmetric part will, of course, give our usual magnetic
dipole density. Thus, (3.2.23), antisymmetrized, becomes

I b2 =

1 ]
- "E ‘_f(l' - rn) J' dx(xkjni - ij,,k) (3224)
2 n 6rk

jbz == %g f dX[j,,(X ’ Vrf) - x(jn : Vrf)] dx

R AAY f dx(x X j) (3.2.25)
2 n
or

Joo=c2 V. f(r~r1,) xm, (3.2.26)

where m, is the magnetic moment of the nth atom. Equation (3.2.26)
then leads to

Jo =V x 2 fr —r,)m, =cV XM (3.2.27)

where M is the magnetic moment per unit volume. Thus, we have

- oP
pp=-V-P and j,,=(a—+cV><M. (3.2.28)
t
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The averaged inhomogeneous equations are therefore

V-E=4mp —47V-P (3.2.29)
and
VXB21@+§EQ—P+47TVXM+4_’7T_J (3230)
¢ at c or ¢

so, introducing the D and H fields, we have

V.-D=4dmp (3.2.31)
and
vxH=LD, 4m (3.2.32)
c at c

Equations (3.2.31) and (3.2.32), together with the homogeneous
equations (3.2.3) and (3.2.4), determine the boundary conditions to be
imposed at a material discontinuity:

ADormat = 470 (U' = surface Charge)

ABn(mnul =0
AE!ungeminl = () (3233)
and
AH angential = AmK (K = surface current).
C

Together with the constitutive relations between E and D on the one
hand, and H and B on the other, these equations and boundary conditions
determine the time dependence of the fields. However, unlike the matter-
free case, the fields at one time in the presence of matter do not determine
the ficlds at all later times. This is because there is a finite time and space
lag between the imposition of an electric field and the appearance of a
nonvanishing polarization. Consequently, the relation between the macro-
scopic electric field and the polarization will be

!

Pi(r,1) = J dt' x (e, t —1") Ey(r, 1), (3.2.34)

-%

where y;,; is the susceptibility tensor at position r. The relationship between
E and P will be linear, as indicated, for fields that are weak compared
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with the internal fields in matter (e/a% ~ S x 10° V/cm). The space lag
whose scale would be set by atomic sizes, ~107% cm, is left out of (3.2.34),
because our fields are averaged over a volume containing many atoms, so
that whatever space lag existed would be washed out.

That x depends only on ¢ — ¢ assumes that the affect of the field E
at time ¢’ on the polarization at time ¢ only depends on the difference
t — t', in a way that is independent of the time ¢'. We say (3.2.34) is time-
translation-invariant. Equation (3.2.34) shows that specifying E at one
time is not, in general, enough information to determine E at later times,
since the integral over ' requires E to be known at all previous times.
There are still physically obvious sets of consistent initial conditions, but
they depend explicitly on the geometry under consideration. In addition,
they require specifying the entire previous history of the system. A simple
example is discussed in Section 3.5 and Problem 3.14.

The ¢ — ¢’ dependence of x is governed by the characteristic frequenc-
ies of atomic motion. Since these are the same frequencies that atoms
radiate, it is necessary to keep track of the temporal nonlocality of x.
Note that if we wish to describe the spatial variation of the fields, consis-
tency requires that our averaging process allow us to resolve the length
scale of wavelengths, which, in turn, must be much larger than atomic
lengths to justify our assumption of spatial locality. This is the case for
atomic radiation. With f the radiation frequency and A its wavelength,
we have, very approximately, A ~ ¢/f ~ 4arc/(e*lagh) =~ 1000 A. On the
other hand, a 1000 A cube of gas contains about 10° atoms at normal
temperature and pressure.

Equation (3.2.34) invites a Fourier transform. With

] —iwt
E;(t)= E J dwe "“Ej(w) (3.2.35)
and
1 —iwt D
Pi(1)= W J dwe "™ P(w) (3.2.36)
k18
we have
Pir, w) = %;(r, 0) E(r, w) (3.2.37)
where

Xi(r, ) = f de xi(r, 1) e (3.2.38)
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It follows that

Di(r, w) = €;(r, 0) E(r, w) (3.2.39)
where €;;, the dielectric tensor, is given by
€, = 8; T 4mx; (3.2.40)
and, of course,
D(r,t) = E(r,t) + 47P(r,1).

Since the boundary conditions (3.2.33) must hold at all times, they must
also hold for the Fourier transformed fields.

The rules for complex conjugation of the Fourier transformed fields
and dielectric constants follow directly from the reality of the fields them-
selves:

E(w)* = E(-w), etc. (3.2.41)

and
€(w)*=¢€,;(—w). (3.2.42)
An important property of the dielectric constant follows from the
presumption that if the field E is zero before ¢ = 0, the polarization P and

displacement D(t) should also be zero before t = 0. If E(r) = 0 for + <0,
then

E(w) = % J dr' e "E)’) (3.2.43)
0

and so E(w) is analytic in the upper half @ plane.' Conversely, if fﬂ(m) is
analytic in the upper half o plane, then

¥

~ 1 o~
E() == | doe "E(w) 3.2.44
NG ( )
vanishes for ¢ < (). This can be seen from (3.2.44) by closing the » contour
'Strictly speaking, E(w) for real w is the boundary as w approaches the real axis of a

function that is analytic in the upper half « planc. We see here for the first time the
importance of analytic functions to notions of causality.
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in the upper half-plane, presuming ﬁ(w) to go to zero sufficiently rapidly
as w — .
Similarly,

~ 1 _
D(w)=—= | dt' e"'D(' 3.2.
()= = [ dr ey (32.49)
0
so that l~)(w) must also be analytic in the upper half w plane. Finally, since

Di(w) = €;/(w) E;(w), (3.2.46)

€,;(w) must also be analytic in the upper half-plane. One can rule out
upper half-plane poles of €, since they would have to be compensated by
zeroes of E. However, E(w) is essentially arbitrary (except for its ana-
lyticity properties) and cannot be required to have zeroes at a predeter-
mined value of . Remarkably, the upper half-plane analyticity of e(w)
is almost sufficient to guarantee causal propagation in a material medium
(i.e., signal propagation with velocity limited by light velocity c). It must
be supplemented only by the requirement that field energy can be lost,
but not gained from the medium. This is shown in Problems 3.13 and
3.14. We turn in the next section to a discussion of field energy in a
dielectric.

3.3. MOMENTUM AND ENERGY

We consider the force on charges and currents in the absence of dielectric
matter. The total force on charges and currents inside a volume V is

F,= Jdr[pEi + %(j x B),-]. (3.3.1)

We substitute V- (E/47) for p and ¢(V X B/4w) — 1/47 0E/at for j to
obtain

F= Jfﬁ [E,akEk - 1(§E x B){ - f;[n x (V X B)],-]. (3.3.2)

™ c \ dt

We follow a by now familiar path:

E,a,,.Ek - Gk(E,-E,() - E,\.(a,\.E, - a,'E/\.) - Eka,'Ek N (333)
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2

[B X (V X B)], - Bk(:)in -B- VB, = 6,%- - a/\'(BkBi)a (334)

and

EdocE - a0 = ~[Bx xR = H(Bx D) @as)

Putting it all together, we obtain

Fi = J dl' < XB+EXx @> + Jdl' (‘)kTik (336)
4are \ ot at /i

Vv

where T, is the sum of the familiar electric and magnetic stress tensors
(1.3.19) and (2.6.17). The new term on the right of (3.3.6) is the time
derivative of a vector

“Pem = Jdr Ex B (3.3.7)

dme

Transpose —dp.n./dt to the left-hand side of (3.3.6) and recognize that
F = dp,/dt, where p,, is the material momentum of the charges and
currents acted on by the fields.” Thus, we have

d
d_[ (Pm,» + Pem,) = J‘ dSi Tix (3.3.8)

N

which clearly identifies p.., as the electromagnetic momentum contained
in the volume V.

We turn next to energy. In this case, we prefer to keep the possibility
of describing dielectric media. The dynamical equations are then

V><E:~1(lli (3.3.9)
¢ ot

and

*We know that this statement holds for nonrelativistic systems. For relativistic systems,
the final equation (3.3.8) is correct, although the force defined as dp,,/dr does not have
simple relativistic properties. We will come back to this issue when we discuss relativity in
Chapter 6.
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16D 47j
=-—+—,
c ot c

VxH (3.3.10)

Now dot H into (3.3.9), E into (3.3.10), and subtract. There results

= 47 E+(E-VXxH-H VXE) (3.3.11)

1/ 4D @g)
C

—<E-—+H
o at dt

or, if we integrate over a volume V,

L dr(E'a—D'+H-a—B—>=Jdrj'E+LfdrV-(E><H) (3.3.12)
4 ot ar 4
Vv v
=fdrj'E+J9’-dS (3.3.13)
v s

where P, the Poynting vector, is

?="ExH (3.3.14)
4

Equation (3.3.13) clearly is an energy balance equation: On the left is the
rate at which field energy is lost, on the right the two loss mechanisms,
doing work on charges and escaping through the surface surrounding V.
The increase in electrical field energy (including possible absorption by
matter) is

6W=—1—fdrE~ 8D (3.3.15)
45

with an analogous term for magnetic energy. For a material with a
symmetric, time-independent susceptibility tensor

8D; = €,;8E, (3.3.16)
and
E,‘E,’f,‘j

T

4m
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so that (3.3.15) can be integrated to give
W= éj dr E;E €. (3.3.18)

To study the general case, we consider a situation in which the field
is cycled from zero to zero, and integrate 8W to see if energy is absorbed
in the process. The total absorption will be

=

AW=iJ ledrE-@ (3.3.19)
T ar

-x

and, for passive matter, must be nonnegative. We evaluate (3.3.19) by
inserting Fourier transforms for E and D:

=*

1 do = o @ [ do' ~ iy
AW =— dtJ’er——Ew e“"'—J————~D- w)e ™!
41 J vaz B o) vam 1 )
(3.3.20)
or
1 ~ ~
AW = rJdr J dwiwE(w) €.(—w) Ei(—w). (3.3.21)
T
We introduce the real and imaginary parts of E; and €;:
FE{w) = R(0) + il (w) (3.3.22)
and
€ix = Eﬁ‘ + iéll'k . (3323)

It follows from (3.2.41) and (3.2.42) that R, and €}; are even functions of
w and I; and €/, are odd functions of w. Thus,

1
T

4]

We see that absorption comes {for w > 0) from the anti-hermitian part of
€jj:
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€~ GT) €k~ €k
€k = = 3.3.25
T ( 2% I 2 ( )

which must be a nonnegative matrix, that is,

(ff(€)ufr) = 0 (3.3.26)

for any vector f.
For the special case of a scalar dielectric constant €, (3.3.26) becomes

Im e(w) >0 (3.3.27)

for > 0.

Upper half-plane analyticity and imaginary part positivity on the real
axis further restrict the properties of €.

First, they imply that e(w) has no zeros in the upper half w plane.
Second, they relate the signs of the real part and the imaginary part of
Ve on the real axis: They must be equal. (See Problems 3.13 and 3.14.)

We shall see in the next section an example in which the upper half-
plane analyticity of e€(w) is closely related to the positivity of €,. This is
not surprising since both these properties are related to the passivity of
matter. Clearly, if there is power being put into matter, then the absorp-
tion AW can be negative, and the polarization density in the medium can
precede the application of the electric field.

3.4. POLARIZABILITY AND ABSORPTION
BY ATOMIC SYSTEMS

We consider an atom in a uniform but time-dependent electric field, and
calculate the Schrodinger wave function (r,,...,r,,?) for the atom,
where r;, ..., r, are the coordinates of the electrons in the atom. The
neglect of the motion of the nucleus is a very good approximation and
does not affect the conclusions we shall draw.

The applied field is

E(t) = e " E(w)

)
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and the Hamiltonian is
H:H()+H| (3.4.1)
where H,; = —E - X and X is the electric dipole operator of the atom:

X=eXr,. (3.4.2)

We try to solve the Schrodinger equation

—igﬁq:Hd/ (3.4.3)
1 ot

in the presence of E. Since we are looking for linear effects, we will use
first-order perturbation theory to calculate ¢ and then use ¢ to calculate
the expected value of the dipole operator X:

<X> = J ([1*(!‘1, e ,l‘,,)Xl,b(l‘h N ’rn) drlv cee dr"' (344)

We solve (3.4.3) by assuming’® ¢=y+¢,, where ¢, is first-order in
E. y, satisfies the equation

Hopo = — ﬁ Bk (3.4.5)
[ ot

and will be taken here as the ground state wave function, uge "o"*, for
which

H()llo = W()M(). (346)
Of course, this is appropriate only for a system at a temperature 7 such

that no significant excitation is present.
We rewrite (3.4.3) as

_7;‘?;-_‘(110‘*‘]"11)(1//0‘*'%). (3.4.7)

The zeroth-order term is satisfied by (3.4.5); the first-order equation

is

*We take the ground state to be nondegenerate.
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fh oo
; (_;d'lt_l" = H()l,lf] + Hldj()' (348)
e

To solve (3.4.8), we expand ¢, in the complete set of eigenfunctions of
H():

'«//J = ECn(t) Uy (349)

Since Hou,, = W,u,,, our equation (3.4.8) becomes

hac ) J' do _..=~ iy
E N AR & e TR (w) wo e Wl
n ( V2 ( ) ¢

i ot
(3.4.10)
We look for solutions
P J' dweﬂiwt—i(W(,/ﬁ)ldn(w) (3411)
from which
E
S (Wo= W, + ho)dy(@) iy = =X+ Ui (3.412)
n m
and hence
{ E(v)
d, = | druXXu,  —=
@ == Tw + th *" Vam
and
o E(w)
=— | doe ™ "W["“’E—*i"———fdru:’:Xu ©—=—=,(3.4.13
dll J 1 W() - W,, + fl(ﬂ 0 \Y% 2’”' ( )

—_x

where fdr stands for fdrl dr, . ..dr,. Note that we have calculated the
driven part of ¢,. One can always add to ¢, a solution of the homogeneous
equation, ¢, = ¢,(0) e """, with ¢,(0) completely arbitrary. However,
in the real world such an added term with n # 0 would damp out rapidly
by radiation. An added term with n = 0 is simply a change of normalization
that must be canceled in the integral (3.4.4).
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Continuing from (3.4.13), we calculate the electric dipole moment:
X0 = [ W5+ 4D X o+ ) (3.4.14

The zeroth-order term is zero, since reflection invariance of Hy, requires
a nondegenerate u, to be either even or odd under the transformation
r — —r. The first-order term is

X) = J Y3 Xy, dr + complex conjugate (3.4.15)
or
dw —; X()nxn() ’ jE(a))
X)= — —_— E ——ee 2t 4+ € C. 34.16
X V2w n Wo— W, +ho ( :

where X, is the electric dipole matrix element from u, to u,,:
X0 = J u Xuy dr. (3.4.17)

We explicitly add the complex conjugate to obtain
dw e iw,E X(),,X,,() . ﬁ((l))

X)= -~ | &£
X V2mr n Wo=W, +ho

®

d(l) eiw1 2 x;)an:O ) E*((D)

- . 3.4.18
V2n n W() - W,, +hw ( )

Next, change w to ~w In the second term of (3.4.18):
== |

where we have used the hermiticity of the operator X, that is,
X = X,0, and the reflection property of E, that is, E*(—w) = E(w). We
then have a final formula for polarizability by an applied field:

et E/(ﬂ') 2

dw e { XiOnX/'n() + XinOX]Un }
V2 ‘ n hw

W(l - Wn + hw W() - Wn -
(3.4.19)
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{ Xi()anH() + )(jOnXinO }
Wa )

[s SO =_2
l( ) _W,1+ﬁ(l) W()_Wn_

n

(3.4.20)

There are some important properties of a;; to be noted. First, the
numerators for each n are Hermitian matrices in i, j space. That is,

(Xi(Jn Xjn())T = (Aij()nXinOY'< = XiOannO - (342])

Therefore, any anti-Hermitian part must come in some way from the
denominators.

Second, the numerator matrices in (3.4.20) are nonnegative. That is,
since (X)on(X)no = (X:)ou(X;)$., any vector V; will make

* A * . s« 2
VEXionXjnoV; = VX0, X0,V = |V¥Xion| = 0.

Third, if the Hamiltonian H, is real--not only self-adjoint, but real—
then the wave functions u,, can also be chosen to be real, and X0, = X;n0,
so that «;; is automatically symmetric. The Hamiltonian H, can always be
made real if time reversal holds. Thus, time reversal invariance produces a
symmetric a;;.* Note that a fixed magnetic field B, will violate time reversal
invariance since the v X B/c¢ force depends on the sign of the velocity,
which reverses under time reversal. (See Problem 3.5.)

Fourth, when #w is equal to W, — W, for some n, the first term of
(3.4.20) for a;;{w) becomes infinite. This comes about because we have
ignored the fact that the excited atoms can radiate. Classically, this radi-
ation limits the amplitude of oscillation that can be produced by the
applied field and therefore keeps (X,) finite. (See Problem 4.8 and Section
5.9.) Quantum mechanically, the possibility of radiation gives the energy
level W,, a width, which appears as a negative imaginary part

W, — W, — 1% (3.4.22)

and prevents the pole from appearing at real values of w, or, in this
approximation, anywhere in the upper half-plane.

Fifth, the polarizability a;(w) — 0 as @ — =, provided the sum
2, |X0,1|2 converges. This is presumably a general property of material
systems, where the convergence of the sum reflects the inability of matter
to follow an infinitely rapid oscillation. It then follows that the dielectric
tensor approaches 8,.: lim,, . €;,(w) = 8.

“Time reversal invariance is discussed briefly in Section 6.1.
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C C’
g g
original contour deformed contour
Figure 3.1.

Finally, we turn to the question of absorption. Recall that «;;(w)
will be causal if

x

d , -
X)) = J e ap() Balo) (3.4.23)

—

vanishes for t <0, provided E(r) vanishes for t < (O—that is, provided
E(w) is analytic in the upper half-plane. For that to be the case, we must
for t < 0 be able to close the contour in (3.4.23) in the upper half w plane.
We will be able to do so [since «;;(w) is an analytic function of w, except
on the real axis] if we define the integral (3.4.23) to be calculated with @
slightly above the real axis. This prescription guarantees that our causal
condition will hold. At the same time, it gives a finite definition to the
integral (3.4.23), as well as to the sum (3.4.20) for a;; in the case where
Wy + Aiw is in a continuum region of the W,’s.
Consider as an example the integral

f(0) = fe"'“”di’—é'ﬁ’—) (3.4.24)
Wy — @

where w, is real, g(w) is analytic in the upper half-plane and on the real
axis, and the contour C is above the real axis. Then for ¢ <0, we can
close the contour in the upper half w plane and find f(1) = 0. For 1 > 0,
we proceed by deforming the contour (as shown in Figure 3.1) onto the
real axis, except for a semicircle of radius y, which we will eventually let
shrink to zero. f(z) is then given by

Wy~ Y -
f(t)=1im[ f dowe-io 8@ f oo i 8@
y—0 Wy — @ wo - @
o wpty
wy — W

e
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The first two integrals in (3.4.25) define the Cauchy principle value

P. In the (' integral, since g is analytic on the real axis, we can expand
® about (37

w = Wgy + 'yeia (3.4-26)

and keep the only term that fails to vanish as y — O:

0

—iwr deeiﬁ -—iw')l

fim JM= yij——ele——g(a)o) (3.4.27)

y—0 wy— w —ye

[ m
so that

dwe " i

f(ty="P glw) + mie "'g(wy), (3.4.28)

Wy —

A suitable mnemonic for 1/(w, — w) is thus

lim ! P ins(w - ) (3.4.29)

Y0 g~ W — 1Y Wy~ @

where the first term is real, the second imaginary.
Note that if the Fourier transform of a differential equation (in our
case, the Schrodinger equation) leads to an algebraic equation

(wo— w)f =g, (3.4.30)

then the solution f can contain a term A8(w, — w) with arbitrary A, since
x8(x) = 0. The result for f(1), (3.4.28), shows that causality requires the
coefficient of 8(w, — w) to be img(wg).

Returning to (3.4.20), we see that for w > 0, a;, has an anti-Hermitian
part

<a ;.a ) = 2 X;Un an()é(Wn - W() - hw) s (3.431)
1 13 n

corresponding to absorption of energy from the external field by the
atomic target.
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3.5. FREE FIELDS IN ISOTROPIC MATERIALS

We look here for monochromatic free ficld solutions of Maxwell’s
equations in isotropic materials with scalar dielectric constant €(w), per-
meability u(w), and conductivity o(w). (We will take up anisotropic
media in Section 3.7.) The equations are, with all quantities depending

—iwt

on time like e™ ',

VXH= 1(—iwD + 47j) (3.5.1)
c
and
VxE=i2B. (3.5.2)
¢

The constraint (divergence) equations are automatically satisfied for
o #0.

Set

. B
j=0oE, D=€eE and H=—,

n

Equation (3.5.1) becomes
vV x B_ l(~iw¢5 + 470)E
n o
) dwio
= —-1~—<e +——>E. (35.3)
c w

We see that conductivity is equivalent to an imaginary part of €, with a
pole at @ = 0 representing finite static conductivity. We may therefore
assume that 4mio/w is included in €, giving the simpler equation

vxB_ _j9€g (3.5.4)
m ¢

We can eliminate either E or B, and find propagation equations for
E and B alone. Thus, from (3.5.2), B = (c¢/iw) V X E, substituted in
(3.5.4), gives



3.5. Free Fields in Isotropic Materials 103

VXE 2
v x ( )= “ ¢E. (3.5.5)
n c

whereas substituting E from (3.5.4) into (3.5.2) yields

g

2
v x 1<v x E) -“p. (3.5.6)
€ w/ c

N

Equations (3.5.5) and (3.5.6) are equivalent, in that if E is a solution of
(3.5.5), then B = const. V X E satisfies (3.5.6); if B satisfies (3.5.6), then
E = const. 1/e(V x (B/p)) satisfies (3.5.5). Thus, either equation
describes the propagation of a monochromatic electromagnetic signal in
a linear isotropic material medium.

Of course, there are many solutions for a given €, u, and w; the choice
between them requires a specification of spatial boundary conditions. We
will return to this point later. For now we confine ourselves to homogene-
ous media, so that € and p are spatial constants. In that case, (3.5.5) and
(3.5.6) become

2
~VE = = euE (3.5.7)
c
with
V-E=0
and
2
~VB="cuB (3.5.8)
C
with
V.B=0
and
B-“vxE, E=-SYXB (3.5.9)
iw v €p

The solutions of (3.5.9) with definite wave number k are, with o* =
c*k*lepm,

E=ee™* (3.5.10)
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and
B=be*™ (3.5.11)
with
b=C~k><e (3.5.12)
w
and
c
e=— k xXb. (3.5.13)
LW

Thus, the solution, for given k and o, with c*k¥ep = 0?, is
determined by the vector e, which must be transverse (e - k = 0). For each
k and w, there are two linearly independent directions of polarization,
e, . For example, with k in the z direction, these modes could be e,, = g,
and e, = €,.

The most general complex vector e, represents a state of elliptic
polarization. Recall that the real fields E, and B, are calculated by
taking the real part of the complex vectors E and B. With e, = e, + ie,,
orthogonal to k, we have, at any one point x, with ¢ =k - x,

E, = Re(e, + ie;)e ¢ or E,=e cos(wt— ¢)+ e;sin(wt — ¢)
(3.5.14)

which describes an ellipse in the e, e;-plane. There are two special cases:
e, parallel to e,, in which E, varies without changing direction. This is
called plane, or linearly polarized. Second, e, is equal in magnitude and
perpendicular to e,. This is circularly polarized: E, moves along a circle
of radius |e,| = |ez].

The handedness of the polarization is defined by the screw sense of
the rotation of the electric field with respect to the direction of propa-
gation. Let the direction of propagation be z, with x, y, z being a right-
handed system, and e = &, + ié, so that E, = €, cos wt + €, sin w!/ moves
like a right-handed screw. Thus, e. =8 * i€, is right/left circular
polarized.”

The most general solutions of the propagation equations in the iso-
tropic medium are, with €,, chosen once and for all for each k,

*There seems to be some disagreement in the literature on the definition of left and
right circular polarization. Our choice makes right circular polarization coincide with positive
photon helicity. See Section 3.8 for a discussion of helicity.
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E(r,t) = jdm j L dk 2 e, eV gk, w, 1) (3.5.15)
ki=epw’/c

Ai
and

B(r,1) = de J' L, dk e® X0 EF Kk < e, alk, w, A,). (3.5.16)
kZ:e;.Laz Ic

w A

Before continuing, we distinguish between two situations. First, a
signal that lasts for a finite time is described by a function f(r) with a
Fourier transform f(w) = f(f(t)/m)ei“” dt, such that integrated fluxes,
like [ f(t) g(r) dt, will be given by

®

f F() glt)dr = ff*(w)g(w)dw. (3.5.17)

—=

Second is the case of a monochromatic signal, or a sum of monochro-
matic signals for which

f() = Re(foe™™)

and

g(1) = Re(goe™™");

the time-integrated flux will, of course, be infinite; the item of interest
will usually be the time-averaged flux (or energy density). From

f = (Re fo) cos wt + (Im fo) sin wt

g = (Re go) cos ot + (Im go) sin wt (3.5.18)
we have
— 1
fg= 5 [Re fo Re go + Im fo Im go]
1 *
= ERe(fo o). (3.5.19)

We can now calculate the average energy density and energy flux of
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a polarized monochromatic plane wave (with real € and u):

E, = Ree, ¢®** " (3.5.20)
B, = Re L% e, e'xmen, (3.5.21)
w

The energy density is, from (3.3.13),

whose time average, from (3.5.19), is

u =

B | —

1 25,2
et S er e (3.5.22)
8 )

= ef-e,. (3.5.23)
8

Note that the magnetic and electric contributions to & are equal.
The time-averaged flux of energy is, from (3.3.14),

— 2
P ERH=1 Cer.e, X
4 2 47 wup
€ c’k c 2
=—ccf e, ——=10u - k 3524
g7~ EQLW Veu ( )

corresponding to a velocity c/Veu.
How do we take into account the imaginary part of e in the equation

2,2
2 _ k7,

€p

4]

(3.5.25)

We can understand most clearly what happens here by observing that for
Veu complex, either k or w (or both) must be complex. Therefore, our
considerations cannot apply to a medium occupying all of space for all
time, since complex w implics an exponentially growing field in time
(either future or past), complex k an exponentially growing field in space.
Imposing consistent initial conditions requires that the dielectric be of
limited spatial extent (including possibly semi-infinite). The incoming field
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may then be specified in free space outside the dielectric for all previous
times, with the field in the dielectric zero for all previous times.

We shall see next how a sensible formulation of boundary conditions
and time development presents itself naturally with a semi-infinite
medium. For this purpose, we consider the simplest possible situation: a
semi-infinite dielectric to the right of x = 0, and a plane polarized electro-
magnetic wave incident normally from the left.

The incident electric field is E = &, E;,,. with

%

Epne = J do f(w) ¢l @l (3.5.26)

—

where b < 0.

We chose f(w) to be analytic in the upper half @ plane. This ensures
that E =0 for (x/c) — ¢ — (b/c) > 0; in particular, at t =0, E and oE/ot
vanish for x > b. It also makes E independent of the path of the w integral
in the upper half-plane, provided f(w) — 0 sufficiently rapidly as @ — <.

The incident magnetic field is B = €_B;,. with

ac

Binc — f dew f(w) eiw[(.\‘/c)wr—-(b/c)] . (3527)

—

Maxwell’s equations become, for this simple geometry,

9E_ _19B (3.5.28)
ox c dt

and
Qﬁ: —1@ (3.5.29)
ax c ot

where

The divergence equations are satisfied identically.
The boundary conditions at x = 0 follow directly from (3.5.28) and
(3.5.29). They are E and B continuous.
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The appropriate solution of (3.5.28) and (3.5.29), with 4 = | and €
a function of w, is

E = ‘[dw e—iwl*(iwb/c) [eiw.x/v _ R(w) e~im,\'/('] f(ﬁ)) , x<0 (3530)
and

E= de Tt GObOT () ok f(), x>0  (3.5.31)

where R{w) is the reflected amplitude and T(w) the transmitted ampli-
tude. The wave number in the dielectric is k' = wVe/c. In order for E
not to grow exponentially, we must choose Im &’ > 0.

The magnetic field is given by

B — de e—iw!—(imb/(‘) [ei(uv/c+ R(a))e im)\'l(‘]f(a))1 X<0 (3532)
and

B = \/EJ dw e @ GOPIOT () ¢ flw), x>0,

The boundary conditions at x = 0 are

1-R=T (3.5.33)
and

1+R=VeT (3.5.34)
so that

y— (3.5.35)

1+ Ve

and

R= é ; i (3.5.36)

This solution gives E and B the desired properties: for t <0,

E = Eipe, (3.5.37)
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d aEinc
E _ 9Eins (3.5.38)
at ot
B = Bin (3.5.39)
and
9B _ 9B (3.5.40)
at ot

This follows from the known properties of e(w): e(w) is analytic and
nonzero in the upper half-plane, and Ve — 1 as w — « since we have
chosen Im k' > 0. Therefore, T, R, and &' are analytic in the upper half-
plane, k" — w/c as w — », and the reflected and transmitted waves vanish
for t < 0. Therefore, we have correctly incorporated the initial condition
E = E;,. and B = By, into our solution. Given these analytic properties,
one can also show that the wavefronts propagate causaly, that is, that no
transmitted or reflected wave shows up before transmission at velocity ¢
would permit it to do so. (See Problems 3.13 and 3.14.)

3.6. REFLECTION AND REFRACTION

We consider now a plane wave of polarization &, wave number k, and
frequency w = ck incident in the x-y plane from the left in air (or
vacuum) on the plane surface of a dielectric medium with an index
of refraction n = Ve extending from x =0 to the right. We take u = 1.
The angle of incidence is @, the angle of refraction 8'. We take the
polarization (which we define as the E direction) in the plane of incidence.
This is illustrated in Figure 3.2. (See also Problem 3.7.)

The boundary conditions at x = 0 must hold for all y and z, so that
k, and k, must be continuous across the boundary (taken here at x = 0).
Thus, with ©® = ¢*k* = c’k'?/e, we have k'? = k* - € or, since k, = 0,

K2+ k2= (K2 + K2)e. (3.6.1)
Consider first real ep. Then we have k% = k?sin’8 and k2 = k'*sin®@’, so

sing' k 1
== 3.6.2
sinf k' Ve ( )

which is Snell’s law.
For complex €, we return to (3.6.1). We consider first the case of
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Figure 3.2.

high conductivity, 47wo/w > 1, for which

_ 4ric
w k]
P k247ﬂ'a
X w b
and
1+ 4o
ki~ k- — 3.6.3
NG V - (3.6.3)

Vi

so that all fields in the conductor damp out like e **?™: beyond the

skin depth
1 w
6=—\/— (3.6.4)
kV2mo
the fields go rapidly to zero.

If € has only a small imaginary part, the real part of k. will be
determined, as usual, as Re k; = k' cos 6" with 8’ given by Snell's law.
The imaginary part, Im k;, will be given by the equation

(Re k. +ilmk)* + ki = ke (3.6.5)

and
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2
Re k;
_k_sinéd’
 2cos 6'sin @

Imk, = Ime

Ime, (3.6.6)

neglecting (Im k})*>. Thus to a good approximation (for small Im €), the
transmitted wave behaves as if e is real, except, as we move into the
medium, for a damping given by

| F(x, v, 2)] = e ™K £(0, y, 2)| (3.6.7)

with Im k. given by (3.6.6). The direction of energy flow is given by the
real part of the wave number, Re k'’ =&, Re k; + &, k,.

In going from (3.6.5) to (3.6.6), we have chosen the positive root of
(3.6.5) for k,. For a medium extending to o, this choice is evidently
required and, as we have seen in the previous section, is consistent with
the causality requirement that Ve(w)— 1 as w — . If the medium ex-
tends only a finite distance in the x-direction, there will be a second set
of boundary conditions at the second surface. In order to ensure that our
solution corresponds to the physical input (incident wave on left, reflected
wave on left, transmitted wave on right with no incident wave on right),
we will have to use both roots of (3.6.5) in our solution. However, if the
wave has substantially decayed by the time it hits the second boundary,
the numerical effect of this change is small. In the following we assume
that the second surface is far enough away to be neglected.

We return now to the first surface and construct the solution that
satisfies the boundary conditions.

The electric field is given, for x < 0, by

E= ei(kxx*-k.vy—wt) e — ei(*kx,\'+kyy4wl) er (3.6.8)
where eg is the reflected amplitude) and, for x > @, by
p
E = ek thomet o (3.6.9)

The minus sign preceding eg in (3.6.8) is chosen for convenience.
Thus, with

B=b ei(k*x-i—kyy—wr) ~ bg e"(‘k.xx'fkyy"‘") (3610)
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for x < 0, and

B - b’I‘ei(k'.x)kvyAmr) (361])
for x > (0, we must have
b="%xe, (3.6.12)
w
bre = B2 x e, (3.6.13)
w
and
kl
by =" x ey (3.6.14)
w

The condition V - E = 0 determines the vectors e, eg, and e4 to be

e, = —sin @ (3.6.15)
e, = cos 0 (3.6.16)
ery = Rsin @ (3.6.17)
er, = Rcos 6 (3.6.18)
ey =—Tsin ¢’ (3.6.19)
and
e,=Tcos 6’ (3.6.20)

where R and 7, the scalar reflection and transmission amplitudes, are to
be determined from the boundary conditions: AE, = 0 and AB, = 0. From
AE, =0, we find

cos (1 —R)=cos8'T, (3.6.21)

and from AB, = 0, we find

LI R) = LIS (3.6.22)
wc

wcC

The solution for R and T is
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:k'COSB—kCOSG’
k' cos 0 + kcos 8’

R

(3.6.23)

and

_ 2k cos 6
k'cos 8 + kcos @'

(3.6.24)

(See Problem 3.4 for a discussion of cnergy balance).

There are two interesting limiting cases to consider. First, high conduc-
tivity, where k' will dominate in (3.6.23) and make R =1. Second,
Im € = 0. Then k, and k'? are real, and (3.6.23) shows that R can vanish.
This happens at 8, (Brewster's angle) when

k'cos @ =kcos 6’
or, since k' = \/;k,
sin 26 = sin 26 ;. (3.6.25)

Equation (3.6.25), together with Snell’s law, has one root: 8 + 8’ =
7/2. Thus, at an angle of incidence 65 such that the reflected and refracted
rays are orthogonal, there will be no reflection of an incident field polar-
ized in the plane of incidence.

One can understand this phenomenon by remembering that reflection
consists of radiation by dipole moments of the dielectric. A dipole polariz-
ation with direction e’ cannot radiate in its direction of polarization (as
we shall learn later). Since e’ is perpendicular to k' and kg is also perpend-
icular to k', kg is in the direction of e’ and, hence, there is no reflection
at the Brewster angle. (See Figure 3.3.)

by A
|
|
[
|
]
i

1
I
|
i
1
|
|
I

Figure 3.3.
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3.7. PROPAGATION IN ANISOTROPIC MEDIA

We now consider a tensor dielectric constant, which we assume to be real
and symmetric. (We could as easily take €;; to be Hermitian; however, an
anti-Hermitian component—i.e., absorption—is a significant complication
that we do not discuss. It would normally be treated perturbatively, and/or
numerically.) We assume unit magnetic permeability. Note that a scalar
permeability would not be a significant complication, but a tensor perme-
ability would.
The relevant equations are as always (for a fixed wave number)

b=kxe (3.7.1)
C
kxb=-24d (3.7.2)
C
and
d,' = €;¢;. (3.7.3)

We see from (3.7,1-3.7.3) that there are two sets of right-handed
coordinate systems associated with these vectors: k, d, and b on the one
hand, and e, b, and @ = (c/4m)e X b on the other. Further, since k, e,
and d are all orthogonal to b, they are coplanar. In general, e X b and k
are not in the same direction. Therefore, the direction of energy flow and
that of k will be, in general, different. An exception that we shall see
below is the ordinary ray of a monoaxial crystal.

The controlling equation for e is obtained by substituting (3.7.1) into
(3.7.2) to yield

2 2

[k X (k X e)],- = - —(:“2" €€ or kze,' -k- ek,» = % €;;€;. (37.4)

Equation (3.7.4) has an orthogonality property between the solutions
with different eigenvalues of w?, say, ef with w2 and ef with w3, to wit

efeel =dref =0, wi # wh. (3.7.5)

This is derived in the usual way by multiplying (3.7.4) for e/ by e?, (3.7.4)
for ef by e, and subtracting. The left-hand side vanishes, leaving

2 2
(Cl)a — wﬁ) B o _
2 e; gef=0.
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Note, however, that in refraction it is w that is the same in both media,
not k; therefore, this orthogonality does not hold between the two modes
of propagation for given w.

To study (3.7.4), we choose coordinate axes x,, that diagonalize e;.
That is,

> €86 = €,€, (NOsSum) (3.7.6)
B

where €, are the eigenvalues of ¢, considered here to be known functions
of w. In the x, coordinate system, (3.7.4) becomes

2
k- ek, — k%, = — w—2 €n€, (nosum). 3.7.7)
¢

We expect there to be, for each k, three eigenvalues for w?, for which
we can solve (3.7.7).

The first eigenvalue is universal and uninteresting: e, = k,,which gives
@ = 0. There remain two eigenvalues. We first “solve” (3.7.7) for e,:

€u = 3 (3.7.8)
k* - 2. €0
C2
and, multiplying by k., and summing, we obtain
k2
k-e=2kyeo=k e —2— (3.7.9)
¢ -
C2 “
so that, fork-e # 0,
2
2——""—2 ~1 (3.7.10)
k-
C2 “
and, with 1 = 3 k2/k?,
2 2 2
Y[k K\ g o ZKEe o o
N -Ze k * k- @ €
C2 o (,‘2 @
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Multiplying (3.7.11) by

gives a quadratic equation for w® with two roots. Note that if it is
necessary to take dispersion in €, into account, so that e, itself is a
function of w, the eigenvalues of w are not obtained simply by solving
the quadratic equation (3.7.11). In the following we will assume that over
the width of the wave packet with which we are dealing the dispersion
can be ignored, that is, the €, may be taken as given positive constants.

Here, we again point out that we have solved the first of two obvious
problems. This is to find the propagating mode frequencies and polariza-
tions, given the wave number k in the medium. The converse is also
straightforward: Given a frequency w and a direction of propagation &,
find the wave number and polarizations of the two modes. The second,
and harder, problem arises in analyzing refraction in a biaxial crystal.
There one is given the incident frequency w and wave vector k, and
trivially determines the two components of the transmitted wave number
that lie in the boundary between the media and, hence, are continuous
across the boundary. The problem is then to find the third component of
the wave number and polarization of the propagating modes. (See Prob-
lem 3.11.)

We turn now to the simple example of a monoaxial crystal, that is,
one in which two of the eigenvalues, say, €, and €3, are equal. Then any
pair of orthogonal axes in the 1, 3-plane are eigenvectors of the e matrix,
and we can directly construct a solution of (3.7.1) and (3.7.2) by choosing
the 1-axis so that k lies in the 1, 2-plane, e along the 3-axis, and b perpen-
diculartok in the 1, 2-plane. Since e; is an eigenvector of €;; with eigenvalue
€, d is also along the 3-axis, with value d = ¢,e. This is illustrated in
Figure 3.4.

Figure 3.4.
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Since k - e = 0 for this mode, equation (3.7.4) yields

2k2
wd =55 (3.7.12)

€

where the subscript O stands for ordinary. Further, the direction of energy
flow for this ray (the ordinary ray) is in the direction of k, so that the
ordinary ray behaves as if it were propagating in an isotropic medium.

For given k, the second mode (the extraordinary ray) will have its d
vector d. perpendicular to k and to the e vector ey, of the ordinary ray.
Its frequency will be given by (3.7.11), that is,

2 2 2 2
k1€1 k2€2 _ 2 _ 2k1€1+k262
Tt >— =0 or W =t
w €] 2_—(1) € €1€Ep

c? c?

(3.7.13)
k* -

The vectorial nature of the extraordinary mode can be easily con-
structed. With k = (k,, k2), we have d. - k = 0, or, in an obvious notation,
e. = (ey, e7) is perpendicular to €;;k; = (€,k;, €:k>). So,

e, = (—€yk,, €1k;) X constant. (3.7.14)
The direction of energy flow is
Pxexbxex(kxe)=ek—e-ke
or
P x (3k3 + €1k3) (K1, ko) — (e2kok) — €1kak ) (€2ka, —€1k))
= (e,k} + €2k3)(€,ky, €2k5)
so that the direction of energy flow is

8 _ (€, ky, €2k3)
A PPN (3.7.15)
(e1ki + €3k3)

This is also the direction of the group velocity that follows from (3.7.13),
still neglecting dispersion:

CZ

(ki€ kze,). (3.7.16)

Vk(l) =
€1€7W

In general, an incident ray on a monoaxial crystal will require, at
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given w, both modes to satisfy the boundary conditions. Since the ordin-
ary mode frequency wave number relation is independent of angle, the
refracted light will contain both modes, the ordinary ray refracting accord-
ing to Snell’s law, with €= ¢,, the extraordinary ray refracting with a
different angular dependence. (See Problem 3.11.)

3.8. HELICITY AND ANGULAR MOMENTUM

We have seen that a polarization vector

e, = a 4 (3.81)

represents a right-handed circularly polarized wave advancing in the z
direction.

e = C (3.8.2)

is its left-handed counterpart.

The vectors (3.8.1) and (3.8.2) transform particularly simply under
rotations. We consider a primed coordinate system that is rotated clock-
wise by an angle 6 about the z-axis (where x, y, z form a right-handed
coordinate system). This is shown in Figure 3.5.

Evidently,

€. =8, cos@+¢&,sinf (3.8.3)
€, =€, cosf+¢€sinb (3.8.4)

so that

€. xie. =€, cos @+ & sinb) * (&, cos 0+ ¢€sinh)
= (€, +i,)cos 6 F isin O(&, = ie,) (3.8.5)
or

el =e¢ .. (3.8.6)

Vectors with the transformation property (3.8.6) are said to have helicity
=1. There is a corresponding property of the components. Thus, with
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> x
Figure 3.5.
e=¢€.e, +8e, =¢e, +8e, (3.8.7)
we have
e.=¢.-¢e +8,-8e, and e, =8, 86, +¢€, - 8, (3.8.8)
or, from (3.8.3) and (3.8.4),
e, = cos fe, + sin fe, (3.8.9)
e, = cos fe, — sin fe, (3.8.10)
and from
e=e,e, +e_e_=el e, +te el (3.8.11)
and (3.8.6), we find
el =e.e™ (3.8.12)

Note the opposite definition of e. from that of e...

There is an intimate connection between the helicity and the angular
momentum of a plane wave of wave number k and frequency w, propagat-
ing in empty space in the z direction. The relation, as we shall now show,
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is

A= (3.8.13)

where A is the helicity of the wave, L_ the z-component of the electromag-
netic angular momentum, and W the electromagnetic energy. For a single
photon, with W = Aw and A = =1, we would find, from (3.8.13),

L. = =*h, (3.8.14)

suggesting that the intrinsic spin angular momentum of a photon is % 1.

We calculate the angular momentum of an electromagnetic distur-
bance propagating with approximate wave number Kk, approximate fre-
quency wg, and approximate polarization &, * ié,. These parameters must
all be approximate, since for a wave of definite wave number both the
energy and angular momentum would be infinite; therefore, the wave
must be bounded in all three directions; the polarization must be modified
as well to maintain transversality.

We review first the angular momentum integral for charges and
currents in free space. We have for the force density on charges

f=pE+jxB, (3.8.15)
and from (3.3.6),

1 é
fi=— e (E X B); + 0, T (3.8.16)
47rc ot

(where T is the Maxwell stress tensor). From (3.3.6), we derived the
expression

EXB
Pern. = fdr yp (3.3.7)

1%

for the electromagnetic momentum p, ,,.
Similarly, the torque density is

=rxf or T = eijkxjfk (3817)

so that, with L,, the angular momentum of matter, we have
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dLm, 1 d
d[ = - ;T'g;t dl‘[r X (E X B)], + eijk f erja[Tk[ (3.818)
or, with
1
L., =— | r x (E x B) dr, (3.8.19)
4nc

(dLm dLe.n.
+ —

“Jt" di > = €k f drx,-f),Tk/. (3820)

v

Since €, T = 0 (€ is antisymmetric, T symmetric), we have from (3.8.20)
an angular momentum flux density

b= €1 X;Tw, (3.8.21)
and for fields that go to zero sufficiently rapidly, a field angular momentum

L, = Zd—r—r x (E x B). (3.8.22)

me

Our next task is to evaluate the integral for L, ,,,. for an approximate
monochromatic plane wave. We call w, and ko the approximate values of
the frequency and wave vector.

We start with the general expression (3.8.22). We express the fields
in terms of their Fourier transforms, automatically satisfying the free field
equations. Thus, with a convenient normalization,

E= dk a(k) wedx—e) 4 oo (3.8.23)
27)
and
B f dk ck x a(k) e ™0 4 c.c. (3.8.24)
@m)

with o = c|k| and k-a= 0.
The energy in the electromagnetic field is

W= jdrgg—li): fdklalzwz; (3.8.25)
m



122 Time-Dependent Fields and Currents

the momentum is

P= J dklal’kw; (3.8.26)

they have the approximate ratio

== = 20 (3.8.27)
C

The terms in the integrals for these conserved qualities that come from
products of a with a or a* with a* must be zero, since otherwise their
time dependence would violate the conservation law.

The angular momentum is a little harder. With L given by (3.8.19)
and E and B by (3.8.23) and (3.8.24), we have

1
dr 27)°

Jdr r X [fdk’a*(k’) w' e KT
X Jdkk X a(k) e"‘"‘_"“”} + c.c. (3.8.28)

Here again, we have dropped products of a with a and a* with a*.
To carry out the integral in (3.8.28), we replace re " by
iV, e ™" do the r integral, and find

L= Re J dk dk’ iV, 83 (k — k') % [a*(k') o X (k x a(k)] e ",
(3.8.29)

We integrate by parts, carry out the indicated derivatives, and then
set k = k', leaving

Ve .
L= jdk{wa,*(k) k x —~a,(k) + 1» a* x aw}. (3.8.30)
i i

Equation (3.8.30) decomposes the angular momentum into two terms.
The first depends in detail on the structure and location of the wave
packet; the second does not. We study a wave packet chosen to maintain
the monochromatic and planar nature of the field to the maximum extent
possible, consistent with the requirement that the total energy in the field
be finite. Thus, we let
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aVo =[@, £ i8,) k. — (k. £ ik,)8.)e ™™b(k);  (3.8.31)

b(k) is a real function of k — ko, with widths Ak,, Ak,, and Ak, much
smaller than ky. The vectorial coefficient in (3.8.31) is chosen to ensure
the transversality of a. The wave vector Kk is in the z direction.

Evidently, the explicit phase —ik - rp displaces the wave packet by a
vector ro and adds an orbital angular momentum L, =1rg X P to the
angular momentum. We can now easily calculate the energy, momentum,
and angular momentum carried by the wave function (3.8.31), neglecting
the spread in wave numbers Ak compared with k,. We find

W= 2ck8Jdklbl2, (3.8.32)
P = 2kdk, J dk|b[?, (3.8.33)

and
L= rg X P x 2k0k0 J' dk'b‘z; (3.8.34)

corrections are of order (Ak)*/k§. The second term in (3.8.34) corresponds
in quantum theory to a spin angular momentum. Our result states that
the wave with helicity *+1 carries an angular momentum

L.=*

<

w (3.8.35)
wqo

Note that setting W = fiwg leads to L, = *#.

CHAPTER 3 PROBLEMS

3.1 At =0, a charge density po(r) is found to exist in a medium with
constant real dielectric constant € and conductivity o. Assume that
J drp(r) = Q, is finite.
{(a) Show that the charge density decays according to

p(r’ l) - p()(r) e~(41r(r/e)t

(b) Where does the charge go? Show explicitly that the outgoing
current correctly accounts for the disappearance of the charge
for the special case of a spherically symmetric pu.
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3.2 One could try to construct a model of a finite size charged particle

by postulating a charge density p(r,t) = gf(r — y(t)), where y(¢) is
the trajectory of a fixed point in the charge distribution and r the
point in space at which one is specifying the charge density. If g is
the total charge, we must have

ff(r - y(£) d’r=1.

A point charge would then have f(x) = §(x).
We have seen in Problem 2.1 that a suitable current density to
go with p above would be

dy(t)

(e, 1) = o DO
J(r)th

flr—y(@).

The limit of a point charge is singular, since the electric field at
the position of a point particle is infinite. This singularity does not
occur for a finite size charged particle, such as suggested above. The
field equations would be, as usual,

VXE=—1Q
c ot
V-E=4mwp
vxp=10E, 4m
c ot [

and V-B =0, with p and j as given above. The particle motion
(nonrelativistic) would be given, following Newton and Lorentz, by
the equation

nig= [ drasty =) Bw.n + L ne 0|

(a) Suppose there are n charges, each with charge g,, mass m,, and
coordinate y;. Give the appropriate generalization of the Maxwell
and Newton—Lorentz equations.

(b) Show that there is a conserved energy in a volume V, consisting
of the sum of the electromagnetic energy and the kinetic energy
of the charged particles contained in V {as in (1.3.11)], provided
that the surface integral of the Poynting flux integrated over the
bounding surface of the volume vanishes, and that no particle is
close enough to the boundary for p(r, 1) to be different from zero
on it. For this purpose, assume that f(x) vanishes for |x| > b, a
particle radius.
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We can extend the volume to include all space, provided the
energy integral converges and the integrated Poynting flux goes
to zero as r — oo,

{c) Show that there is a conserved momentum in a volume V, again
consisting of the sum of the electromagnetic momentum (3.3.7)
and the momentum of the charged particles contained in V.
Formulate the conditions under which this holds.

*(d) Let f(x) be spherically symmetric, that is, f(x) = f(|x]). One
might expect in this case that there would be a similar conser-
vation law for angular momentum. Try it. Show that the usual
definition works only for a point particle, that is, for f(x) =
8*(x). There is, however, a way of constructing a conserved
angular momentum for this case, which we will take up when
we come to Lagrangians (Chapter 7).

Imagine a wave packet incident on a plane dielectric boundary. We
study the energy balance in the process for real €. Since E, and H,
are continuous, so is (E x H),,. Here, ¢ stands for tangential and »
for normal. More interesting is the time and area integral of the
Poynting flux, over an appropriate closed surface:

5}

1=JdtJ9’~dS
S

1
which equals
I = Wu(tz) - Wu(tl)

where W,(t) is the electromagnetic energy contained in the enclosed
volume V at time t. If #, and ¢, are, respectively, after the time of
departure and before the time of arrival of the wave packet at the
surface S, then I = 0.

Let W be the incident energy, W the reflected energy, and Wy
the transmitted energy. Show (using the example worked out in the
text) that the condition / = 0 is equivalent to W = Wg + Wy,

Calculate the dipole moment of a classical atom in a constant mag-
netic field B,. Let the electric field be given by E = Ege ", with Ey
constant in space and the atom modeled by an electron bound as an
isotropic harmonic oscillator to its center. Let wy be the resonant
frequency of the oscillator and m the mass of the electron.

(a) Write the Newton— Lorentz equation of motion for the electron
(charge —e) in the presence of the fields E and B,.

(b) Look for a solution r = roe ' and find the equation satisfied
by ro.
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(c) Solve for r, by expanding in powers of B, keeping terms linear
in By.

(d) Show that a gas of such atoms, »n per unit volume, would have
a tensor dielectric constant

€;j = 505,']' + iEIEijkB()k
where the coefficient €, the Faraday coetficient, is given by

0€g
Bye, = w;.
w

with w, = eBy/2mc, the Larmor frequency.

(e) Considering only the zeroth-order term €y, give an expression
for the dielectric constant €,(w); from it calculate the absorption
of energy by the dielectric from an applied field E(r) =
J do f(w) e ™", Remember that causality requires that the inte-
gral over w in the neighborhood of a singularity of €, be calcu-
lated by circling into the upper half w plane.

Rotation of light in a magnetic field: Consider a beam of light moving
through a medium whose diclectric constant is

€;; = €()5,-I- + i€l€j]‘3.
€y and €, are real numbers.

(a) Show that right and left circularly polarized beams propagate
in the 3 direction with no absorption, but different dielectric
constants.

(b) Calculate the angle of rotation per unit length of a plane polar-
ized beam propagating in the z direction.

A monochromatic plane polarized electromagnetic wave in vacuum
is normally incident on a flat surface bounding a medium of real
permeability w, real dielectric constant €, and conductivity o. The
circular frequency of the wave is w. Assume the wave incident
from the left. Then the incident wave is

E' — e‘ei(k.r~wl)
i i
and

Bi — ’é" X €; ei(k.\"* wr)

where k = w/c, the fixed vector e is in the y, z-plane, and it is
understood that the real part is to be taken. The reflected wave is
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Er — Re' e—i(k.\’+wl)
i

(R 1s the reflection coefficient) and

B, = —8 xegRe Ten,
The transmitted wave is
Et — eiTei(k'x—'wt)

and

B, =8¢, x eTe ke
T is the transmission coefficient.

(a) Calculate the real and imaginary parts of &’ for all positive values
of u, €, and o.

(b) Calculate the reflection coefficient R and transmission coefficient
T for small values of w/o.

(¢) In the same approximation, calculate the flux of energy into the
medium. What happens to it?

(d) Still in the limiting case of small /0o, verify that the discontinuity
in H, from outside the conductor to well within the conductor
(where the field is zero) is correctly given by

S

4
A, =Y k=3 [ i)
c c
0
where K is the surface current and j the current density parallel

to the plane boundary.

3.7 Find the reflection and transmission coefficients corresponding to
(3.6.23) and (3.6.24) for the case of polarization normal to the plane
of incidence.

3.8 (a) Show that the boundary condition E,ngentiar cOntinuous between
two media guarantees the continuity of B, orma/9¢, provided E
and B satisfy Maxwell’s equations in both media.

(b) Consider next the boundary condition for the inhomogeneous
equations. For media of finite conductivity (i.e., finite j), show
that the continuity of Hyngentiar guarantees that 4/t ADyormar =
4maaldt (o is surface charge density), provided Maxwell’s
equations hold in both media.

3.9 Consider cylindrical wave guides in the TEM mode.

(a) Show that a cylindrical wave guide consisting of the space inside
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(b)

(c)

(d)

a single perfectly conducting cylindrical shell cannot support a
transverse electromagnetic wave, that is, a wave of the form

E(r,1) = Ege/*27"
and
B(l‘, t) = B() ei(szwt)

where z is the direction of the cylindrical axis, and the vectors
E, and B, are functions of x and y and lie in the x, y-plane.

Show that a wave guide consisting of the space between two
perfectly conducting cylinders can support such a wave, the
functions E, and By are unique (up to a scale) for a given shape
of the confining cylinders, and the wave propagates with light
velocity. The wave is called a TEM (transverse electric and mag-
netic) mode.

Give these functions E and B for the special case of two coaxial
circular cylinders.

From your result in (c) above, calculate, in terms of your para-
meterization, the energy per unit time flowing down the wave
guide.

*(e) In the high conductivity (o/w > 1) and small skin depth limit

(Im k > curvature of the cylinders, where k is the wave number
inside the conducting medium), calculate the energy loss per unit
time and length by Poynting flow into the conductors. Treat the
conducting surface as planar and calculate the longitudinal elec-
tric field by continuity: Hiangential 18 continuous; so Hiangential
outside the conductor = Hyngentiar inside the conductor; then
calculate E inside the conductor from Maxwell’s equations and
E, just outside the conductor by continuity. From Hngenta and
E,, calculate thePoynting flow into the conductors.

3.10 Consider a cylindrical wave guide in the TE and TM modes.

We consider here a medium of constant permeability p and

dielectric constant €, bounded by a perfect conductor of un-
specified cross-sectional shape. It is obviously consistent to
separate the fields into longitudinal (z component) and transverse
(x,y components). Thus, we write

E=|E.(x.y) +&E.(x.y)] fz.1)

and

B=[B (x.y)+&B.(x, )] 2(z,1)
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Similarly, we write V=1¢,(8/dz) + V.. We take advantage of the
absence of z or  dependence in Maxwell’s equations to let f(z,¢) =
g(z, 1) = e"**“?, 50 that 3/8z becomes ik and /3t becomes —iew.

(a) Show that, by eliminating H, from one transverse equation and
substituting in the other (and vice-versa for E | ), one can solve
for E, and B as functions of £, B,, w, k, €, and u, and that
E. and B, each satisfy the equation

(V3 = k% + epw?) (Ez> =0.
B,
(b) Determine the boundary conditions on E, and B, at the
perfectly conducting boundary.
(c) Show that these boundary conditions allow solutions with E, =
0 (called TE, or transverse electric) and with H, = (} (called
TM, or transverse magnetic).

*(d) Now derive the correct boundary conditions on E, and H, when
both the inner and outer media have finite u and €, and show
that the separability into TM and TE modes no longer holds in
general.

*(e) Show that a circular geometry still permits TM and TE modes
for E, and H, independent of azimuthal angle (/n = 0 mode).

A monoaxial crystal with u =1 and real, symmetric ¢;; has a plane

boundary perpendicular to the optic axis. The characteristic values

of ¢; are €, and «;.

(a) Show that the ordinary ray refracts according to Snell’s law.

(b) Find the generalization of Snell’s law for the extraordinary ray.
That is, express sin 8’ as a function of €,, €, and sin 8. Remem-
ber that the direction of propagation of ¢’ is given by V, w.

Work out in detail the results (3.8.32), (3.8.33), and (3.8.34)
starting from (3.8.25), (3.8.26), (3.8.30), and (3.8.31).

Use Cauchy’s theorem and more to prove the following statements
about e(w). Given that e(w) is analytic in the upper half » plane,
e(w)—>1 as w—», €(w)=e(—w) on the real axis, and
Im e(w) > 0 for w on the real axis and positive, show:

(a) Im e(w) < 0 for w on the real axis and negative.

(b) €(w) has no zeros in the upper half w plane, so that Ve(w) is
analytic in the upper half o plane.

(¢) Choose the square root of € so that it has a positive imaginary
part for @ > 0 on the real axis. Then show that Ve has a negative
imaginary part for @ < 0 on the real axis.
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(d) Im Ve/Re Ve >0 for w >0 on the real axis, so that Ve also
approaches 1 as w — o,

Show that the E field defined in (3.5.30) and (3.5.31) propagates
causally.

A plasma is a neutral ionized gas. A simple model for a plasma is
a dilute gas of electrons in a uniform positive background (that
ensures overall neutrality). Call n the number of electrons per unit
volume. It is convenient to define a characteristic plasma frequency
, by the equation w} = 4wne’/m, where e is the electron charge
and m its mass.

(a) With this model, neglecting interparticle and magnetic interac-
tions and the space dependence of the wave ficld, find the
reaction of the electron gas to a passing electromagnetic wave
of circular frequency w by solving for the steady-state motion
of an isolated electron in the electric field of the wave.

(b) Now find the dielectric constant of the dilute gas by calculating
the steady-state polarization per unit volume P in the wave field
E and using the formula

D =¢eE=E + 47P.

(c) Find the conditions (in terms of e, m, n, w, and E) for the
approximations suggested in (a) above to be valid and compa-
tible with each other.

The systematic way to deal with a plasma (or for that matter any
low-density gas) is to introduce the Boltzmann function f(v, x),
where An(v, x) = f(v, x) AvAx is the number of gas particles (elec-
trons in a plasma, with the positive ions approximated as a positive
background) in the six-dimensional volume element AvAx.

(a) By considering the number of particles entering the volume
element AvAx through the surface AyAzAv at x and leaving
through the surface at x + Ax, and similarly the number entering
through the surface Av,Av Ax at v, and leaving through the
surface at v, + Av,, and continuing to the other eight surfaces,
derive the Boltzmann cquation:

¢

v v, ap=Y
ot ot eoll

where a(x, v) is the acceleration of a particle at x with velocity
v and af/8t|.on AXAv is the number of particles thrown into the
volume element AxAv through “collisions.” The distinction
between —V, -af and df/df|.ou is not absolute. We take a to
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respond to the average field acting on the particles; 9f/dt|con
describes the rest, whatever there may be.

In a rare, approximately collisionless plasma, a=
e(E + v/ic X B), and 9f/dt|..u is set equal to zero; this neglect
must be justified a posteriori following the calculation of the
collisionless motion.

Recover the result of Problem 3.15 by solving for the linear
response of the Boltzmann function to a weak applied field
E(w). Let f, be the Boltzmann function in the absence of the
applied field and f, + f, the Boltzmann function in the presence
of the field. Then, if we keep only linear terms and neglect
collisions, the Boltzmann equation becomes

d X E
—fl+v-Vj,+e—~V,,f0=0. 1)
ot m

Consider now long wavelengths (i.e., vk < w), so that the
v- V£, term can be dropped. In this approximation, solve Eq.
(1) for f, and from the solution calculate the induced current
j=efdvvf,. Remember that [ dvf,(v,x) = ny(x), the local
density, and that j = ¢P/o1, where P is the polarization per unit
volume.

From this, calculate the dielectric constant and recover the
result of the equivalent calculation carried out in Problem 3.15.

In order to include long-range electromagnetic interactions, one
must include the plasma as the source of electromagnetic fields
{the equations so arrived at are called the Boltzmann— Viasov
equations):

%‘t+v-Vf+VU~af=0
!

V><B=m+1@
c ¢ ot
and
V><E=~l@.
¢ at

Find the normal modes of these equations, for a given wave
number k, with the same approximation as in part (b) above,
that is, vk/w, but not ck/w, negligible and @ of the same order
of magnitude as w,,.

You should find propagating transverse modes with the
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3.17 (a)

dispersion law
w?= w,z, + ck*?
or, with

Wp
ck? = ew?, e=1—-2,

just as in part (b) above.

In addition, there is a discrete longitudinal mode, approxi-
mately independent of vk: w=w,.

A careful treatment taking the small vk dependence into
account shows that for a normal velocity distribution function
fo, this mode actually damps, transferring its energy to particie
motion.

Formulate a set of Maxwell’s equations that would take into
account the existence of a magnetic current and charge density
jn and p,,, corresponding to the familiar electric quantities j,
and p,. Clearly, j,, and p,, would go on the right-hand side of
the homogeneous equations:

V-B=4nap,,, V><E=-—l@~+ﬁjm,
c at

where a and B are to be determined. The volume force law

is
F = Jf" dr,

and

f,=pE+¥xB+p,B+y¥xE
¢ ¢

where v is to be determined. The positive sign of p,,B in the
force equation is a definition. The coefficients are to be
determined by the requirement of internal consistency and the
existence of conservation laws for energy, momentum, and
angular momentum. Thus, you must find for the change of
field energy:

JB+E) o cExB

i
© at 8w 41

- (jeE +jm B)7

and for the total force on matter inside the volume V:
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(i) [aep, -4 f By farar,

v Vv
where
_EE;+BB, (B*+E)5,

v 47 8

and
(iii) a field angular momentum

szdriigﬁﬂﬁ
4rc

satisfying an equation analogous to (ii) above.

(b) Finally, calculate the angular momentum of a stationary mag-
netic pole p at r; and electric charge ¢ at r;:

L=ngTx[qO*rﬂxpﬁ~rJ]

drrc Ir-r) Jr—r

(i) Show first that L is independent of the origin of r.
(ii) Now choose r; as the origin and recognize both fields as
gradiants. Thus,

- [artxCex )

d7c

Integrate appropriately by parts (i.e., Vé, or V¢,) and then
use the Legendre polynomial expansion to find the answer.
Note on dimensional grounds that L. must be proportional to

qp r, — I

¢ |r; —rs
(¢) From the formula for L and the quantization of angular momen-
tum follows the quantization of electric charge, which must hold

if a magnetic pole exists. This semiclassical result also holds in
quantum theory.

3.18 It is amusing that Maxwell’s equations take a particularly simple
form in terms of the vector Q = E + iB. For the free field equation,

lo=-ivxo.
C

Verify this and, following the work of 3.17, find the current that
goes on the right-hand side in the presence of magnetic poles.
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CHAPTER 4

Radiation by Prescribed
Sources

In this chapter we study the emission of radiation by a given source
(charge and current densities). The complete solution of a physics problem
will, in principle, require the simultaneous calculation of the effect of the
radiation on the source. In many cases, however, the radiation reaction
is relatively weak so that it can be taken into account in a series of
successive approximations. Those are the cases we will be dealing with in
this chapter. Chapter 5, on scattering, deals with the more general problem
of interacting fields and sources.

4.1. VECTOR AND SCALAR POTENTIALS

The equations for E and B can be solved most easily by introducing a
vector and scalar potential. Since V - B = (), there exists a vector potential
A, such that B =V x A. The homogeneous equation

V><E—_—_lﬁ or VX<E+1%)=0 (4.1.1)
c Jt c dt
implies that
1 0A
E+-—=-Vé, (4.1.2)
c ot

that is, that there exists a scalar potential ¢. Thus, E and B are given by
the equations

B=VxA 4.1.3)
134
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and

E=--2-vs. (4.1.4)

We have seen in the quasistatic case that E and B do not uniquely
determine A and ¢. That is still true here. The substitutions

A=A +Vy (4.1.5)
lox

'=¢-—= 4.1.6

¢ o (4.1.6)

evidently leave B and E unchanged and so correspond to the same physical
ficlds as A and ¢. This property is called gauge invariance. In classical
field theory the potentials are introduced as a calculational convenience,
and their gauge similarly chosen for convenience.’

The inhomogeneous equations are now

V-E:—lv-%é—vz¢=4np (4.1.7)
c t

and

2 .
VxB_l_a_]%:Vx(VXA)+1<18—%+V6—(¢1>=@. (4.1.8)
c ot c\c ot ot c

There are two especially useful gauges to work in. The first is called
the transverse, or Coulomb gauge. It is defined by

V-A=0 (4.1.9)
and can clearly be reached by the proper choice of y in (4.1.5), starting
from any A,, by solving the equation V- A, + V?x =0 for y. Equation
(4.1.7) then becomes

Vi = —dmp, (4.1.10)

the familiar Poisson equation, which produces a scalar potential

o(r, t)=Jdr’M (4.1.11)

r—r'|

'In quantum theory the potentials play an essential role.
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which is instantaneously connected to the charge density. This solution
appears to violate causality —the finite propagation velocity of electromag-
netic signals—but does not, since the potential ¢ is not a physical field.
The test of causality must come in the field strengths E and B, where the
vector potential must make a contribution that will cancel the acausal
contribution of V¢. This comes about from (4.1.8) for A:

L*A_dmj 1400

VX (VXA +—= 4.1.12
( ) c? af? c c ot ( )

with ¢ given by (4.1.11).
Note that (4.1.12) is purely transverse; that is, the divergence of both
sides is zero, since

2
V.(' Va¢>:v.'_‘9—v_£
ot 4
ap

d
== e ——— — = :0
ot at( 2

We see that (1/47)V(a¢/a1) is the longitudinal part of j, so that even with
j and p spatially confined, the longitudinal part of j falls off only like an
inverse power of r as r — ». (See Problem 4.1.) The contribution of this
term to A and 0A/dt at large r will have to cancel the unwanted contribu-
tion to E from —V¢. (See Problem 4.2.)

To show that this must happen, it is convenient to use the second
gauge, called the Lorentz gauge. To introduce the Lorentz gauge, we
rewrite (4.1.7) and (4.1.8) as

1azd> 13 ([ 1a¢
_yrg o L +__.(_—-——-V~A>=477 4.1.13
¢ c* ot ¢ ot ¢ ot g ( :
and
; .
_V2A+—-ﬁ+v<v A+16¢)=m. (4.1.14)
c? ar c ot c

The obvious choice of gauge now is

+184)
c ot

VA 0 (4.1.15)

which decouples the different vectors from each other and allows the three
components of A and the one component of ¢ to be calculated as if they
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were independent scalars. To see that this gauge can always be chosen,
start with Ag, ¢¢ and solve the equation

V-(A0+VX)+li<¢0—la—X>=O
c ot c dt
or
1 9% 1 3¢
Vz————> =—(V A +———> 4.1.16
( c? or? X 0 c ot ( )

Equation (4.1.16) can be solved, in general, by iteration, given y and
dx/ot at t = 0. Of course, the solution is not unique, since one can still

add any solution of
19°
2 —
<V - c28t2>x =0

to a particular sotution of (4.1.16).
We have now to solve the decoupled equations

18°A 4mj
V2 __EDA:—— 4.1.17
L7 : @117
and
2
C t

4.2. GREEN’S FUNCTIONS FOR THE RADIATION
EQUATION

We will want a solution of the equation
Y= —4mf(r, ) (4.2.1)

with f a given function of space and time. The Green’s function
G(r,t;r',t") that gives

Y= J' dr’ dt'G(r, ;' t") f(r', ") (4.2.2)
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must satisfy the equation

oG

It

2
<V2 - %%) G(r, 61", 1') = ~4m&(r — 1) 8(t - 1').
(4.2.3)

We look for a solution that is a function only of r — r’ and t — ¢', which
must satisfy the equation

OG(r,t) = —478(r) 8(1). (4.2.4)

Equation (4.2.4) invites a Fourier transform:

G(r,t) = Jdk dw 77 g(k, w), (4.2.5)
which, with
83(r) 8(1) = dk d‘:’ pitkr=wn
2m)
gives
w? 47
= - k2> =~ , 4.2.6
<c2 877 amy (4.2.6)
or
1 1
8= F 2 —, (427)
T (.()_ _ k2
C2
so that
C2 J‘ ; d(l) e*iw!
G(r,t)=— dk """J‘W. 4.2.8
(r ) 477_3 e w2 _ C2k2 ( )

We have seen denominators of this type before in connection with
the causality of atomic polarizability; see (3.4.24)-(3.4.30). Recall that
G(r, r) will vanish for negative ¢ if we take w in the denominator of (4.2.8)
to approach the real axis from above. That definition corresponds to a
retarded potential. That is, the source of (4.2.8) is a § function puise at
t =0 and r = 0. Requiring G to vanish for r < 0 is equivalent to requiring
that the radiation from the source pulse come after the pulse. Thus, we
have the retarded Green’s function
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c? ’ dw e "
Gr(r,t) = = lim — dk*'J (429
w(rs 1) es0 47> - (@ + i€)* = c&K* ( )

the advanced Green’s function (corresponding to a time-reversed world)
is

C2 . —iwt

Gs=—lim— | dke™" | —————.

—0 47> (0 — i€)? - ’K*

d
@’ (4.2.10)

To calculate G for ¢ > 0, we must close the o integral (4.2.9) in the

lower half @ plane, where there are poles at w = —ie + ck. The result is
. dee ' =27 i ckt t>0
Im | ————5— = ck
e—0 (w+le) ~-c’k 0 <0
and so
c dk ... .
Gr =2-7:5f—k—e“ sin ckt, (4.2.11)

always for > 0.
The integral over angles of k gives

ac

Gr = 2 dk sin krsin ckt (4.2.12)

mr
0

=4 f dk[cos k(r — ct) — cos k(r + ct)]
™

= dk[ ik(r—ct) __ eik(r+ct)]

—c

=S(5(r — ct) — 8(r + ct)). (4.2.13)
r
The second term is zero (both r and ¢ are positive) so the final result is
Gr(r, 1) =8(r ~ c1). (4.2.14)
r

Having found the solution, we can verify directly that (4.2.14) satisfies
(4.2.4). (See Problem 4.9.)
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Returning to the original equation (4.2.1), we find the retarded solu-
tion

w(r, 1) = Jlii—rjdﬁ 5(: - u)f(r’, )y (4.2.15)

C

or

w(r, 1) = f d"r,i £, tr) (4.2.16)

Ir -

where the retarded time tz =t — |(r — r')/c| is the time at which a signal
must be emitted at r’ to reach r at the time .

A useful way to picture the content of (4.2.16) is to imagine a
spherical wave converging at time ¢ on the point r. The retarded time g
is the time the wave crosses the point r’, picking up its contribution from
the source f(r', tz) as it does so.

The fields A and ¢ radiated by the current and charge density j and
p as described in (4.1.17) and (4.1.18) are now given by (4.2.16):

A=1J LAY (4.2.17)
C

Ir—r|

and

¢=f A ). (4.2.18)

e~

In this gauge, the absence of the instantaneous electric field encoun-
tered in (4.1.11) is obvious, since all the potentials and fields are retarded.

4.3. RADIATION FROM A FIXED FREQUENCY
SOURCE

We suppose j and p are given by

i(r, 1) = jo(r)e ™" (4.3.1)

and
p(r, 1) = po(r)e™™", (4.3.2)

with
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v ‘j()_' l(l)p() =0. (4.3.3)

We calculate the potentials as

Ar,1y =1 J A jo(r)e e (4.3.4)
¢t r—r|

and

dr’ iy
o(r,t) = J polr’)e "'k, (4.3.5)

r—r'|
The signature of radiation is that, for sufficiently large r, E and B go

like 1/r so that the energy radiated through a solid angle dQ:

dS-P=-SExB-dS
w

=S ExB-#:24Q,

417

goes like a constant (independent of r). The region where the 1/r behavior
dominates the fields is called the wave zone. The radiated power per unit
solid angle is given by the coefficient of 1/r? in the Poynting vector, so
that the calculation of radiation requires only the leading term in 1/r in
(4.3.4) and (4.3.5). Thus,

—
[ pet

and

A & 'm(f). (43.6)
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The last term is negligible in e7*'%, provided the wavelength A is such
that

2 12

=0 <1 (4.3.7)
rc rA

wr

Note that a macroscopic source could require kilometers to reach the
wave zone as defined above, Clearly, the method we are discussing here
does not apply to such a case.

There remain, as r — ®,

e —iw(t-ric)

A= —-————J dr’ exp(—igi‘ ‘ r’)jo(r’) (4.3.8)
c

cr
and
e*im(r"r/c)

n =——-——Jdr’ exp(—if"c—’r‘ -r’)po(r’). (4.3.9)

r

We recognize that k = w¥/c is the radiated wave number. In differenti-
ation, (8/dx;)t goes like 1/r, so that k can be treated as a constant. Thus,

ei(kr~wl)
A= Jx (4.3.10)
cr
and
ei(kl‘—(ul)
¢ = . Px (4.3.11)
where
jk = j dr' ew"k.r'j()(r,) (4.312)
and
P = f dr’ (,’—ik.r{ p(,(r’) . (43 13)
Equation (4.3.3) leads to

We find the fields from A and ¢. To leading order in 1/r,
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_(?A _ ei(kr—wl) [kx,

= T (4.3.15)
ox; cr r
and
3 i(kr—wl) k ;
8 e (4.3.16)
0x; r r
so that
¢ ot
— _l_‘;j i(kr—wr) _ l__lspkei(kr—'wt) (4.317)
cr r
and
i(kr—wt)

Jxe
cr

B=VxA=ikXx (4.3.18)

Observe that both B and E as given in (4.3.17) and (4.3.18) are transverse,

B obviously and E from (4.3.14). The second term in (4.3.17) serves

merely to cancel the longitudinal part of ji, leaving only the transverse

part,

kk - )k
kZ

, (4.3.19)

r=J—

which of course would have appeared more naturally in the transverse
gauge. Thus, the E and B fields have the properties of propagating fields
with polarization vector jyy, wave number k, and satisfying the correct
right-hand rule relating k, E, and B.

We calculate the radiated energy [averaged over a cycle as described
in (3.5.19)] as

W _ e (4.3.20)
dt d€}
=S EXB 2
41
¢ w, .
8mc
k .
= 25k r (4.3.22)
8mc

2
3 Kji7 - Jur

8¢
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and

. [, .
J¥r - jur = 3% 'Jk’;:z.ll’f'k.]k‘k- (4.3.23)

These formulas are very general and are correct to order 1/r. In the
next two sections, we will apply this general theory to specific cases.

4.4. RADIATION BY A SLOWLY MOVING POINT
PARTICLE

We consider the radiation from a slowly moving point particle, with
current density

jr, 1) = qv(t) &(r — r(t)) (4.4.1)

where r(t) and v(1) are the position and velocity of the particle at time ¢,
and q is the particle’s electric charge. Slow means v/c <1.
To find the vector potential produced by j, we Fourier transform

j(r,6) = f dowe ", (r) (4.4.2)

[j. here denotes the object corresponding to jo(r) in Section 4.3]. Equation
(4.3.8) then gives A in the radiation zone:

—iw(t—ric)
Alr, 1) = f dwe——;*— f dr' j(r')e ** (4.4.3)

where k = (w/c)f.

The exponential e " = ¢ #'(“W9 j5 approximately constant for a
slowly moving particle, since A(r'w/c) ~v/c. If we make the obvious
choice of origin, (4.4.3) becomes

iker

1 .
Alr, 1) = — f dw e~ r'O f A fu(r) = 1 J dr’j(r', ‘- 5) (4.4.4)
¥e rc c

which with (4.4.1) gives

A(r, 1) = iv(z - g) + @<l2)_ (4.4.5)

rc r
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Thus, A is given by the radiating particle’s velocity at its retarded time.
We immediately find

. q r 1)
=——"alt—~}) +0|—= 4.4.6
T rc? a( c)r (r2 ( )

ar=a—ftf-a (4.4.7)

where

is the transverse component of a, the acceleration at the retarded time.
Remember that £ is the direction of observation.
The magnetic field is

B=V><A=—‘7—2(—vr)xa=fxE+@<—15). (4.4.8)
148 r

The instantaneous Poynting vector P is

?=S"ExB
3
2 2
__49 ( r> a
= arlt——)| T
4! ¢

q2 2 2

= PR [a ~(a-f) ]r, (4.4.9)

where a is evaluated at the retarded time ¢ — r/c.
If we average over a time T (e.g., a cycle of simple harmonic motion),
we have for the average rate of radiation per unit area and time

P = g’ [a°-(a -] (4.4.10)

dgric?

in agreement with (4.3.22), recognizing that ¢°a* = w?|ji|*/2 for simple
harmonic motion and k =0. Equation (4.4.10) tells us that the time-
average power radiated per unit solid angle, dP/d(), is independent of r:

apP 512 —2 A 2
dQ—= dS - P =dQ —(a- . 4.4.11
d(} f 47'rc3(al (a-F) ) ( )

over df)

Note that in this approximation (called electric dipole}, plane polar-
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ized light is produced by a linear particle trajectory, the plane of polariz-
ation being the plane containing the particle motion r(¢) and the direction
of observation, 7 = k. With any other than a linear trajectory, the nature of
the polarization depends on the direction 7 of observation. Except for
special directions, the polarization is, in general, elliptic.

The dependence on the direction of observation of the intensity of
radiation is given by (4.4.10). For a linear trajectory, it is sin” §, where 8
is the angle between the trajectory direction and the direction of
observation. The total radiated energy per unit time (power) is given by
the integral of & over a distant surface

‘3
mc’ c

-2 2 2
M:st.g:[iq—dnsinzezgq a’. (4.4.12)
dt 3

Y

4.5. ELECTRIC AND MAGNETIC DIPOLE AND
ELECTRIC QUADRUPOLE RADIATION

The approximation made in (4.4.4), k-r' <1, can be applied to a more
general current distribution than the one given in (4.4.1). It forms the basis
of a multipole expansion analogous to the electrostatic and magnetostatic
multipole expansions discussed earlier in Chapters 1 and 2. For small kr’,
that is, for dimensions of the radiating system much smaller than the
radiated wavelength, the first few nonvanishing terms in the expansion
provide a good approximation to the radiation amplitude j, of (4.3.12).
For kr' not small, the multipole expansion can still be carried out, as we
shall see in Chapter 5, but is not equivalent to an expansion in kr’, and
may converge slowly. For the moment, we confine ourselves to the first
few terms, which we evaluate by expanding in kr’.

We consider, then, a given frequency w and wave number
k = F(w/c) and evaluate the radiated amplitude of (4.3.12)

jk = J dr’ e‘lk‘r’j()(r,) (4.312)

where from (4.3.3)

Vo) = iwpo(r'). (4.3.3)

We proceed by expanding the exponential
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e =1—-jk-r'+ -, (4.5.1)
The first term gives
= J dr'jo(r"). (4.5.2)
For a confined current,
=- Jdr’ r'v . jor) (4.5.3)
or
= —in dr’ po(x')r'. (4.5.4)

The question of origin of coordinates does not enter into (4.5.4), since
J p(r’) dr' is conserved and, hence, has no component with w different
from zero. The term ‘‘electric dipole” is now clear—the electric dipole
moment of the charge distribution pg is given by

P = Jdr’ Po(r) 1’ (4.5.5)

and so

W = ~iwpg (4.5.6)

independent of the direction of radiation.
The complex electric field vector is given by (4.3.17) and (4.3.19) as

m - e
cr

E ei(kr'*wr)(__l'w)(pb__?f-.pE)’ (457)

and the magnetic field as § x E:

B =% x ED, (4.5.8)

The angular distribution of the radiation is given by (4.3.22) and
{4.3.23) as

aw w*

16" gaaleel —pE-fps - F). (4.5.9)
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We make contact with the formula (4.4.11) for the radiating point
particle by recognizing that for motion described by

r(1) = Re(roe ") (4.5.10)

the acceleration a will be given by

a(t) = —w’ Re(ro e _i“")

and the complex electric dipole moment corresponding to (4.5.5) by
pE = qu‘ (4.5.11)

These connections lead back to (4.4.11). The apparent factor of two
difference comes about because |@ %] =3 w*|ro .

Concluding, we see that for a system with small £r’, radiation emission
will be largely determined by the system’s electric dipole moment pg. pg
is a complex vector, independent of the details of the charge distribution;
for example, as we have seen, it does not distinguish between a moving
point charge and an oscillating continuum charge distribution p.

We turn next to the second term in the expansion (4.5.1), giving for
the next approximation to jy,

i =i f dr' k-1’ jo(r'). (4.5.12)

Normally, ji2 will be smaller than j§ by kr’ ~ v/c; the exception is usually
when the electric dipole moment vanishes for reasons of symmetry. In
atomic and nuclear physics, for example, this happens for transitions with
AJ>1, or AJ =1 and no change of parity.

We manipulate (4.5.12) in a familiar way. We write

~ik ¥ foer’) = —ikixjo(r') = —ik,-[(x"”“ S Xiejor) | Xior x"""]

2

SO

(jg(z))[ = j —ik -1’ jo(r') = i[k X f ar’ r X Jolr) ;0(1' )J
v

ki
+ i;fdr’x{x}V' - Jo

or



4.4. Electric and Magnetic Dipole and Electric Quadrupole Radiation 149
. . wki Pt '
(Jﬁz))(? i(ck x pM)K—der X[xepo(r’). (4.5.13)
In (4.5.13), pu is the recognizable magnetic dipole moment

Par = fdr"——xz’—"(r—); (4.5.14)
C

the integral 3/ dr' x}xpo(r') can be replaced by the traceless quadrupole
tensor

1 1
Q.= Ef dr'po(x,’x’e 73 Smr'z) (4.5.15)

since 8, inserted into (4.5.13) will produce a longitudinal contribution to
j& and, hence, will not contribute to radiation.

We compare the form of magnetic dipole radiation with that of electric
dipole radiation.

The electric vectors (jr) are given for the two cases by

EP o« ji) = —jw(ps — pe - £1) (4.5.16)
and

ES «j2 = iof X pas. (4.5.17)
The corresponding magnetic vectors are given by B=F X E or

BY x —jwf X pg (4.5.18)
and
BS? o« —iw(py — FF - pur). (4.5.19)
Thus, the transformation from electric radiation to magnetic radiation
is

Equation (4.5.20) reflects a general symmetry: Maxwell’s equations for
propagating electric and magnetic fields in the absence of sources are
invariant under the transformation E — B, B— —E. Note the importance
of the minus sign. Without it, the Poynting vector would go in the wrong
direction!
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Finally, we consider the electric quadrupole radiation (magnetic quad-
rupole will come in the next order of kr'):

jEe = —wkiQ; (4.5.21)
and

]
ES:= ;—“’— e“k'_‘“'){k.-Qir - kar—x;} (4.5.22)
cr

The angular distribution of power radiated will be

dWio  xiQiex;Qje (x1Q5 %)) (Xk Quom¥r)
dt df} r r rt ’

(4.5.23)

Note that there is no general rule against interference of different
radiation multipoles, although in some quantum transitions it may be
forbidden. For example, in a J =1 to J = 0 transition, ED and MD will
not interfere, since ED requires a parity change and MD requires no
parity change in the system. However, in /=2 —J =1 with no parity
change, MD and EQ can and generally will interfere. In contrast, in
scattering problems at large kr’ there is usually interference between many
multipoles. We shall return to this question when we discuss general
multipole radiation in Chapter 5.

4.6. FIELDS OF A POINT CHARGE MOVING
AT CONSTANT HIGH VELOCITY v:
EQUIVALENT PHOTONS

We write equations in the Lorentz gauge

2 .
) 4
(v-——%‘%}n B R £, AN S P (4.6.1)
c”or c C
and

, 19° R

v ——,g'z“ ¢=—4mp=—-4mqéd (I‘—Vt). (4.6.2)
c” ot

We look for a solution A(r — vt), ¢(r — vt). With v and A in the z-
direction, these satisfy the equations
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0 8> 9 ( u2> (A. L
S+t 5 (1-5) (%) = —4mgSa - w 6.
[E)xz ay?  az? c? :' QS) mqo(r = vi) ;‘ (4.6.3)

Change variables to
,_z-—ut
7= =.
-
¢
Then
a9t 8 )(A ) o2\ [~
L 1 TR A s
<E)x2 ay* 8z /\ ¢ ave(p) c’ ‘1:
v
53 r/ el
= —4776}———( )2 C
1-=\1 (4.6.4)
c
wherep =€,x + €,y and r’ = p + €./, so that
_ 2, 172
r=[p’+ (z o) 0{2) (4.6.5)
v
1 S
C2

The solutions of (4.6.4) are immediately given by the Coulomb poten-
tial:

A, =g L 1 (4.6.6)
C uz r'
viTa
and
q 1
¢ = e (4.6.7)
ver
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The electric field is

- -~ _y
c ot
- - 1
-3 —1'@}.—3(2 ut2)u+qz vi_% 1 ’+gl£3 :
c crm v 1=L7 - r 1-2%
? c* c? c?
or
E:q___(_r_—L_ (4.6.8)

The magnetic field is

B=V><A=<6xi+6vi>x evg 1 1 _Vip (469
éox T dy c vir ¢
1=
c

Remarkably, the electric field at r points from the present position of the
charge (vt) to the field point, as shown by (4.6.8). Note also the first hint
we have seen that v > ¢ would cause major problems.>

The fields E and B look remarkably like a light wave if the particle
velocity v is very close to c¢. First, the field packet moves with a velocity
very close to ¢. Second, it is concentrated near z = vt, so that E, is small
compared with E ; thus, E is almost transverse, B is exactly transverse,
orthogonal to E, and almost equal to E in magnitude. This circumstance
can be exploited to relate a process induced by fast charged particles to
the same process induced by low-frequency photons.

To do this, we calculate the radiant energy incident per unit area,
time, and frequency by Fourier-transforming the electric and magnetic
fields (4.6.8) and (4.6.9) as

*The fields E and B can also be calculated by Lorentz-transforming the Coulomb field
of a charged particle at rest. (See Problem 6.4.)
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o

E(r, 0) = \7’_ R (r, f) (4.6.10)
and
B(r, w) = E x E(r, o). (4.6.11)

Since E is effectively transverse and v/c = 1, the integrated Poynting vector
will be, with E(r, w) = e’ “’“E(p, w) and B(r, ») = ¢"““'9B(p, w),

f dt P(p, t )——— J E*(p, 0) X B(p, ) dw (4.6.12)
Ei’\’f!E(p, 0)]? dw (4.6.13)

and the number of photons per unit frequency per charged particle
incident will be

2
dN _2c J 2o E@ O (4.6.14)
dw 4 hew

The factor of two comes from adding negative to positive frequencies.
How are we to interpret (4.6.14) in quantum theory? Since quantum
theory predicts probabilities the number of photons in the range

0 < w<w,, Or f (dN/dw) dw, must be interpreted, if small, as the

probability p(wz,wl) of ﬁndlng a photon in that range with a single
incident charge. That is, if N, is the (large) number of incident charged
particles, the number of photons emitted in the calculated frequency
interval will be

N'y = Nep(w29 (1)1),

thus giving the same effective answer as (4.6.14).

If the calculated probability p(w,, w,) turns out to be large, doubt is
cast on the calculation; the reaction of the target system on the charged
particle must be taken into account. This will be the case, for example, if
we consider very low frequencies, where the factor 1/ in (4.6.14)
becomes large.

We should comment here on the validity of using classical field theory
to calculate effects associated with the radiation of low-frequency quanta.
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We learn in quantum electrodynamics that classical field theory is valid
when the quantum state contains many photons per volume A> (with A
the wavelength). This is certainly not the case for the problem we are
dealing with here. Quite the contrary, we consider the radiation of one
photon at a time. There is, however, another regime in which the classical
equations are applicable. That is a régime where we can limit ourselves
to a linear approximation in the field strengths. In that case, since the
quantum equations of motion are the same as the classical ones, classical
solutions hold as well for the quantum field operators. Thus, here and in
Section 4.8, where we discuss low-frequency bremsstrahlung, the
specifically quantum properties of electromagnetic fields may be ignored.

Of course, we cannot expect this classical calculation to hold for all
frequencies w and radii p. The frequency must be small enough so that
the energy quantum #w is negligible compared to the energy of the inci-
dent particle; the radius p must be larger than the wavelength of the
particle, A = ii/p, since otherwise one cannot give classical meaning to the
location p. With those caveats, we go ahead and calculate

gp 1

1 fwt i
E(p, w) = Vie dte T (4.6.15)
(-5)
c
The appropriate change of variables in (4.6.15) is
t —
¢ =——, (4.6.16)
v
C2
leading, with v/c =1, to
2
gp e [ gz gie) I_E
E(r,w) = 4.6.17
( ) \/5‘7; ¢ f (p2 + Z/2)3/2 ( )

and with z' = pu,

%

v q p iw(z/v) dLl iw(p/cy 1~ iu
E(r,w)=——="¢ e ~— WPy M (4.6.18
) V27 cp’ (1 + u?)*? ot )

—%

The factor exp{iw(p/c)V1 — v2/c2u} produces a classical cut-off for p
in (4.6.14): For p(w/c)V1 — v?/c? > 1, the oscillating exponential will de-
crease the u integral from its value at w = 0. This comes about because
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at a transverse location p, the electromagnetic pulse has a characteristic
time of passage

N

[ %)

—
|
RS

AINP*_)

so that the characteristic classical frequency w,, in the Fourier transform
will be wy~ c/pV1 — v?/c.

For w < w., the approximation w ~ 0 can be made. For w > w,, or
p>c/wV1 - v?/c?, the Fourier transform will fall off, as shown explicitly
in (4.6.18). We thus have, for

p<pmax =

iw(z/c)
__4 pe du
E(z,p,w) = \/Z—EE ¢ f (1+ u2)3/2

iw(z/c)
= %%%. (4.6.19)

The equivalent photon spectrum is given by substituting (4.6.19) in
(4.6.14):

pmax
2
ﬂ = —2i—~ . QI_) (4.6.20)
dw Thoc p
Pmin
As discussed earlier,
Prmax = ..___._(‘.__. and Pmin ™ T

8]

g
!
1S
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with p the incident particle momentum. The final result is

2
aN_2q 1, @
do 7hc w V2

(4.6.21)

Note that since v is close to ¢ and Aw < ¢p (the particle energy), the
argument of the logarithm is very large, and therefore the log will be
insensitive to the precise value of these cut-offs. Thus, (4.6.21) makes
quantitative, not just qualitative, sense, since in addmon the factor g°/fic
(equal to 1/137 for electrons) allows the probability f dw(dN/dw) to be
small.

Equation (4.6.21) gives directly the relation of a fast charged particle
induced cross section do,, with energy loss fiw, to the photon induced
cross section do., at frequency w. If the particle is an electron, it is for a
range Aw of frequency

7rﬁc f —-log \/———zdcry(w) (4.6.22)
C2

This relation was discovered in the early days of quantum theory by C.
F. Weizsidcker and E. J. Williams.

4.7. A POINT CHARGE MOVING WITH
ARBITRARY VELOCITY LESS THAN c:
THE LIENARD-WIECHERT POTENTIALS

We return to the general form (4.2.17) and (4.2.18). This gives

At =1 M,—a(t—t' Ll |)j(r’,t’) (4.7.1)
C C

r—r'|

and

(1) = f dr'dt’ a(z—r'—"_—r">p(r',t'). 4.7.2)
[r—r'| c

The current and charge density are those of a point particle:
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1) = gv(e) 8(r — (")) (4.7.3)
and

p(r',t') = q8(r' - 1(t)) (4.7.4)

where r(t’) and v(¢') are the coordinate and velocity vectors of the particle
at time ¢'. We carry out the dr’ integral first. There results

_9q dr’ L e (8] ,
A(r, 1) CJ—_II' —r(t’)|6<t ! . >v(l) 4.7.5)

and

N Y SN SRR | ol (9]
é(r, 1) qJ[r-r(z’)|5<t t ) 4.7.6)

C

To carry out the dt’ integration, we are first required, given a field
point r and a time ¢, to find the retarded time ¢’ = tg, such that

tg=1-— I—r—_—r(tL)' (4.7.7)
C

Equation (4.7.7) has only one solution, provided the particle velocity is
less than c. To see this, imagine again a spherical light wave aimed to
converge on the point r at time ¢. It will cross every charged particle at
some time tg and only cross each particle once, since it is moving with
velocity ¢ > v. Clearly, the time the spherical wave crosses the particle
trajectory is the retarded time for that particle. In general, one cannot
solve for 1 analytically, but the argument just given shows that a numerical
calculation [given r(¢?), of course] can succeed. In the special case of
uniform motion, (4.7.7) leads to a quadratic equation for fg, which can
be solved algebraically. In fact, the procedure we are about to follow here
could be used as an alternative way of finding the fields of a particle
moving with constant velocity. Both the retarded and advanced fields of
a uniformly moving charge are equal to each other and to the convective
fields described in the last section.

Assuming we have found the solution of (4.7.7) for tg, we must do
the integrals in (4.7.5) and (4.7.6). To do that, we change variables to the
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argument of the & function, that is,

P Lt (D1} (4.7.8)
C
Then
dr = dt’(l _r—r(t’) dr(t ))
clr—r()| dr

or

a1 (4.7.9)

dr Ty

where 1 is the unit vector pointing from the retarded position® of the
particle r(tz) to the field point r, and v is the velocity dr(:')/dt' at
t' = tr.

The integrals (4.7.5) and (4.7.6) can now be done using the 7 variable:

=9 dr T e
A(r’t) CJ'|I"‘r(tR)|6()1_Y.(t_R).—-r—:~E—(@v

¢ |r—r(tr)]
or

=42 (4.7.10)

and

*A point to keep in mind for possible future reference is that the equivalent denominator
for the advanced solution is

dr’ 1

dT4 1 +i.*.!
c

where T and v are now calculated at the advanced time:

fr—r(ta)]
. .

a =1+
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) =§ (4.7.11)

where

s=]r—r(tR)l—(

r = 1(tg)) - v(tr)
. . (4.7.12)

4.8. LOW-FREQUENCY BREMSSTRAHLUNG"

Before taking up the E and B fields, we consider the radiation of low-
frequency photons in the course of a scattering event. As in our discussion
of equivalent photons in Section 4.6, we must confine our calculations to
low enough frequencies so that the quantum corrections will not be signi-
ficant. That means that #iw must as a matter of principle be small compared
to characteristic energies of the radiationless scattering process; for
example, we must have

o < W (4.8.1)

where W is the incident energy of the charged projectile.

As a matter of practice, we will consider w also smaller than the
characteristic classical frequencies of the motion, for example, the classical
frequency o, ~ v/b, where v is the incident particle velocity and b the
impact parameter (assuming that b is within the range of the force). This
is because a calculation of the frequency dependence of the process must
be specific to the system being considered; we are interested here in
general results, including the case of nonclassical particle motion.

What we will do therefore is to calculate the zero frequency limit of
radiation by a system that we imagine to be correctly described—either
by classical or by quantum equations, whichever is called for.

We imagine a scattering event (see Figure 4.1) in which the
observation of electromagnetic radiation is made at r, between times f,
and t,, where 1, and 1, are such that 1,5 is before the particle has entered
the force field of the scatterer and . is after the particle has left the force
field of the scatterer. (This can always be done: Choose t,x, 1y and f:5,
r, first; then find 1, and , by clocking rays from r; to r and fromr to r.)

We calculate the electric field as the transverse part of —1/c dA/at.

*Bremsstrahlung is German for braking radiation.
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I, tag

T, LR interaction region

Figure 4.1.

Then

E- - L1 (4.8.2)
c Jt

and the Fourier transform of E is

5}

E(r, o) = %J dte“‘”(— % g;AT). (4.8.3)

fn

We do not have to integrate before #, or after ¢, since there will be no
radiation field (i.e., no E ~ 1/r) at those times.

Given E(r, o), we know how to calculate the energy radiated per unit
area. It is

aw _ f P fdw (4.8.4)
ds

where 2 is the Poynting vector,
P(w) = —E*(r, w) X B(r, ) (4.8.5)

47
= = [E*(r, 0)['F, (4.8.6)

4

and where T is the unit vector pointing from the target. Remember that r
is asymptotic—that is, the unit vector
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r — rtr)
Ir = r(te)]

~
r=

is independent of t during the scattering.
We consider only w near zero, as discussed earlier. More precisely,
we calculate the energy spectrum at w = 0. It is

daw
dSdw

=2900) - k (4.8.7)

where the factor 2 takes into account both signs of the frequency. We
observe that E(r, @ = 0) can be calculated from (4.8.3). It is

1
Er,o=0)= - —\/Z—E[Ar(r, ) — Ar(r, 1,)] (4.8.8)

and from (4.7.10) and (4.7.12),

Alr, 1) = —2L2 (4.8.9)

rc(l - f)
C

and

Alr,n)=—" TN (4.8.10)

rc(l— vl,r)
c

where v, and v, are the velocities of the charged particle before and after
the scattering. Thus,

1 1 Vs vi
E(r,w =0)=—— - . (4.8.11
(e =0=" a1 - .| @81

vVo*Tr vVir
1_.__.__ —_

C C T

The total energy radiated per unit solid angle is

5‘(% = E%Zlﬁ ds - 9J do E*(r, w) E(r,0)  (4.8.12)

A 0
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and per unit solid angle and frequency is, for w near zero,

dW q° V2 vy

dQde (2m)Pc’ &
1

vy  f v, F
2" 1’
1

c c T

The number of photons in a frequency range’ dw is thus

V2 Vi

dN dw q° ¢ ¢

dQdo dQdeho @m)hcw - v - F
oYty

C C r
(4.8.13)

The meaning of (4.8.13) is the following: If the charged particle comes in
with velocity v; and is scattered with velocity v,, the number of photons
it will radiate in the frequency range Aw and solid angle Af} is

AN
Naosw = | a0 | d . 48.14
a0a J deﬂdw (4.8.14)
Aw

AN

The probability of that charged particle event is the cross section for
the event times the incident number of particles per unit area. Therefore,
the cross section for producing a photon in the frequency range Aw and
angular interval AQ is given by (4.8.13) in terms of the radiationless cross
section do/dt, where dr describes the final particle state; for example, in
a scattering, dr might be d} of the final particle. The relation is

2
v Vi
d 1 ’1 3
SRS N | (R 9 (48.15)
dQdwdr Q@m) hcw 1~v2-f' | v, - f dr

c ¢ T

Equation (4.8.15) can be generalized to several incoming and outgoing
charged particles. The squared bracket times g is simply replaced by

SRemember, as discussed in Section 4.6, that the quantum mechanical translation of
“number of photons in a range” is the *“*‘probability of radiating a photon in a range.”
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2

do, 1 e s T do

dQdowdt B 2 'rr)zﬁcw f

a i a dr
vt v, t
1- 22 1- L

c ¢ 'T

(4.8.16)

where f denotes final, i initial. The transverse component squared of a
vector j is, of course,

Gr)2=G-j 82 =57-(- 1> (4.8.17)

We see from (4.8.15) that the radiation of fast particles peaks strongly
near the direction of v, or v,. Thus, although

1] v—v 88 |° sin%8
| = 5 (4.8.18)
U1 .3
1~ Vitr (1—ﬁcos0>
¢ c

vanishes at § = 0, it peaks strongly at cos 6 = v,/c, where it has the value
1
E—
-
c

The low-frequency radiation thus comes out mainly in two sprays near
v, and v,. Integrated over solid angle, each of these sprays gives

(4.8.19)

1

0 —
J J sin” 8 d# sin o (1—-x )d)zc 7 log 1
v
(1—~cos 0> (1—””‘) 1-=
c c

for v/c close to 1.

An important consequence of the finiteness of E(r, @ = 0) is the diver-
gence of the cross section for photon emission at low frequencies, since
f do/w diverges at w = 0. The high « divergence in the mtegral is a
consequence of our low-frequency approximation. It turns out in quantum
theory that the meaning of the low-frequency divergence is that no charged
particles can interact without radiating—perhaps no big surprise. That
means that one cannot define an ‘“elastic” amplitude which includes

(4.8.20)
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charged particles in the initial or final state, since there is always ac-
companying radiation. One can however define and measure a cross
section for a charged particle to scatter with a finite energy resolution for
the scattered particle. The cross section will be a function of the incident
energy, the scattered angle, and the resolution AE. Because of the zero
rest mass of the photon, no matter how small AE, any number of low-
energy photons could be produced in the process. The low-frequency
divergence of the bremsstrahlung cross section is a signal that as AE — 0,
the ‘elastic’ cross section goes to zero. The meaning of ‘elastic’ is charged
particle energy loss less than AE.

The mathematical working out of the problem® makes use of the fact
that the total cross section for a finite resolution, including all radiation,
is finite. Thus,

AE

Telastic + j do

0

do,

dw

should be finite. But do,/dw, as we have seen, goes like lw, so
j o (do,/dw)dw diverges at w = 0. Therefore, 045 Must have a canceling
divergence:

s = a1 - If(w) o),

where oy is the lowest-order calculation (in g*/#c¢) and o, f(w) — do,/de
as @ — 0. This has the embarrassing problem of producing a negative
elastic cross section. The remedy is found in quantum electrodynamics,
where it is shown that an exact calculation would replace

1= [fwrdo by e~ [f@rde) =0,

since the integral is positive and divergent. This is the way the elastic cross
section is made to vanish. The measured cross section with a resolution AE
will be, in lowest order,

®This paragraph is impressionistic and must be read with that in mind. The formulas
given are not mathematics. However, the final result is correct and important for experiments
with charged particles.



4.9. Liénard-Wiechert Fields 165

AE

T measured = Oelastic + f dw ado.y/d(u .
0

or

Tmeasiea = o0 1 - }f(w) do) + oy Tf(w) do

o fros)

which depends logarithmically on AE, but is always finite. The exact
formula for small AE will be

i

o exp(—- If(w) dw).

The appearance in (4.8.15) of g°/hc ~ 1/137 keeps the correction from
being large except for very small AE’s.

4.9. LIENARD-WIECHERT FIELDS

We now use (4.7.10-4.7.12) for A and ¢ to caiculate the E and B fields
of a charged particle moving with arbitrary velocity v ({v| <1).” To do
so, we must be able to calculate space and time derivatives of 7g. First,
dtr/ot. Since tr =t — |x ~ y(tr)/|,

at A Ot
TR p4p.v=R
at at

"From now on we use X to designate the field point, y the particle coordinate, and r
to designate x — y(tg); thus, |r| = |x — y(tr)|, T = (x — y{(tr))/r, etc. The velocity and acceler-
ation of the radiating particle are always taken at the retarded time. In addition, we choose
units in which ¢ = 1. This saves a lot of writing and prevents a lot of trivial errors. The final
answer to any problem can always be expressed in conventional units by dimensional analysis.
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so that
bw 1T 4.9.1)
o 1_fp.y S

where all symbols stand for the retarded values. Next, Vig = —T+ 1 vVig,
)

A

Vig= - —— =", (4.9.2)

1-fF-v §

We can now proceed to E and B. From (4.7.10) and (4.7.11),

-V¢ = %Vs = %[?‘— v+ is—VIR], (4.9.3)
s S tr
and
oA <3 A (:)S)atR
- gl t - — 4.9.4
ot Ny~ ¢ atg/ ot ¢ )

9A
E=-V¢ ——
¢ ot
_1<A as( r)) <a vas)r
=L{t-v+—(—~]—ql-—5—1I- 4.9.5
s> g s 4 s 8 otr/ § ( )
which, with
B fvivi-r-oa, (4.9.6)
Otr
gives
3E 2
s—=(r—rv)(1~u)+r><[(r—rv)><a]. (4.9.7)
q

Notice that for large r the first contribution goes like 1/r”; the second goes
like 1/r and is transverse.
Turning to the magnetic field, we obtain
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B
-=Vxé=vX<1(@>, (4.9.8)
q q §
_Vigxa Vs
= —s—zx v; (4.9.9)
with
Vg -E, n_r
s o s
and

~ as
Vs=F—-v+—Vi,r
otg

we find, after some algebra,

B=%xE. (4.9.10)

An aid to memory in (4.9.7) is to define a ‘“virtual present radius,”
r, =r — vr, that appears twice in (4.9.7). Thus,

s°E

—=ru(1-—vz)+r>< (r, X a) (4.9.11)
q

and Bisstill T x E.

We call r, the virtual present radius because it is the value r would
have at time ¢ if the radiating particle kept on the course it was following
at time tx for the time ¢ — tg = r. This should be clear from Figure 4.2.

The radiation fields are thus given by

E =%rx[r, xa] (4.9.12)

s3

v(t—tp) = vr

Figure 4.2.
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Figure 4.3.

and

B, =t xE,. (4.9.13)

Of course, E, and B, are transverse to T and orthogonal to each other.

For small velocities, (4.9.12) and (4.9.13) reduce to our previous
results for electric dipole radiation, (4.4.6-4.4.8).

For v ~ 1, one sees that the factor 1/(1 — v - )’ peaks the radiation
sharply in the direction of v, even though the amplitude vanishes quite
close to 8 = 0. It follows from (4.9.12) that E, and B, vanish whenever a
and r, are parallel. That this always happens for two values of T can be
seen geometrically, as shown in Figure 4.3.

The two segments of the dotted line give two positions of T such that
r, is parallel to a and, hence, for which E and B vanish. There is no other
direction in which E vanishes. Note that as v — 1, the intersections Py, P,
and the vectors ¥, and £> move to the direction of v.

The fact that E vanishes near § = 0 does not prevent the radiation
from peaking forward (as we have already shown in our discussion of
bremsstrahlung in Section 4.8.) We will discuss this for the simple case of
a parallel to v, so that

E=ZLrx(rxa), (4.9.14)
N

very much like the low v electric dipole radiation, but with the factor
(1 — vcos 6)* in the denominator.
The intensity of radiation crossing the distant sphere is
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1 ,q9° .
LY g apa bl 2q sz 4.9.1
dtda | LA (4.9.15)

which vanishes exactly for 6 =0 and 7, but whose angular dependence
for small #and v~ 1 is

daw_ 6*
dtdQ) [ 62}
1-v+ —2‘

producing a sharp maximum at 6° = 2(1 — v)/5.
The calculation of the total radiated energy is elementary, but com-
plicated. The case of a parallel to v (4.9.15), however, is quite simple.
We choose to calculate the rate of radiation by the particle, that is,
dW/dtg d}, rather than the rate of radiation through the distant sphere,
dWldt dQ. These two rates are different, since dtg/dr = r/s. Of course,
integrated over time, they are equal, since

jd—vzdt= Jd—u—]dtk, 4.9.17)
dt dig

However, the rate of energy loss by the particle in its trajectory is generally
the more interesting question. We calculate, for a parallel to v,

dw, dw; o
JQ ||=f AWy

dtg df) drd) atg
Zazj dQ sin® 6 (4.9.18)
(1 — vcos )’ o
2

It is easy to see from (4.9.12) that the parallel and perpendicular
components of a do not interfere in the total energy radiation rate after
integration over the azimuthal angle ¢. The total radiation rate from the
perpendicular component of a is not so simple an integral as (4.9.18). We
give the result:

2.2
f‘m aw, 2 (aL)ZZ' (4.9.20)
digdQ 3(1-0?

We shall see later (see Problem 6.3) that (4.9.19) and (4.9.20) are



170  Radiation by Prescribed Sources

simple consequences of the relativistic transformation properties of accel-
eration.

We consider qualitatively one more topic in this section: radiation by
a fast particle in a circular orbit, as in a cyclotron. Strictly, the spectrum
is a line spectrum at the fundamental cyclotron frequency w, plus over-
tones nwy. Obviously, very high overtones will dominate, since the pulse
of forward radiation sweeps rapidly by the observer. We reason as follows:
As the radiation sweeps by the observer, it has an angular width [as we
have seen in (4.9.16)] of order A8 ~ V1 — u. It sweeps by in time

At ~—. 4.9.21
i (4.9.21)

dt

However, it is not d#/dt but df/dtg that is controlled at the accelerator.
Since d/dty = wq,

Ar= Ad = 1—U(l—vcos(i),
c')tR won
Wy
ar

and since 6 ~ 1, the observed frequency will be predominantly in the
range

@~ Wy - Wy
(1 . U)3/2 (1 . U2)3/2'

(4.9.22)

4.10. CERENKOYV RADIATION

A charged particle moving at constant velocity v in a medium in which
¢, the phase velocity of light, is smaller than v radiates energy.

That something peculiar happens under these circumstances can be
seen from the Liénard—Wiechart potentials, where the denominator
1~ Fvlcy is zero at an angle cos 0. = ca/v < 1, and the corresponding
potentials become infinite. Of course, the singularity is not really there;
it appears as a consequence of assuming a dielectric constant that is
independent of frequency, so that there is no high-frequency cut-off. In
practice, as w ~» %, the dielectric constant € — | and ¢a; — ¢ > v, leaving
the total radiation finite. This makes it clear that we must consider fre-
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quency-dependent dielectric constants e(w). We take u, the magnetic
permeability, equal to 1.

We consider a given frequency w. Maxwell’s equations for the wth
components are®

VxB=—iwl+4rd, D=c¢E (4.10.1)
C [
and
VxE="“p (4.10.2)
C

which for w # 0 impose the constraint equations

V.-D=4mp (4.10.3)
and

V.B=0. (4.10.4)

We introduce the potentials as usual:

B=VxA (4.10.5)
and
E=“A vy (4.10.6)
[

that, with (4.10.1) and (4.10.3), yield, for spatially constant e,

2 . :
va+Sea--ov(@y_va) @
c c c
and
5 * 47p iwfwel
c € c\c

The Lorentz gauge here is evidently achieved by setting the terms in
parentheses in (4.10.7) and (4.10.8) equal to zero.

SFor obvious reasons, we reinstate ¢ in our equations.
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The charge and current densities are given by

pu(r) =¢q f dt e 8(z — vt) 8(p) (4.10.9)

-

and

x

jo(r) = gé.v f dt e™'8(z — vt) 6*(p) (4.10.10)

—x

where p =8,y + &,x and g is the charge of the (point) particle. We have
deliberately omitted the conventional factors 1/V2w from (4.10.9) and
(4.10.10) to save writing. They are reinserted in (4.10.34). Please note
that p (the charge density) and p (the radius in the x, y-plane) are totally
disconnected entities. (We drop the  subscript from now on.)

Thus,

p= gexp<’i‘?> 5%(p) (4.10.11)
v v

and
j=%.q exp(ﬂ> 5(p). (4.10.12)
v

The vector and scalar potentials satisfy the equations

. :
(V2 + kDA = - 243, 5%(p) exp<‘—“ﬁ) (4.10.13)
C 1)
and
(V+ k) = — 179 52(p) exp<’—‘35> (4.10.14)
€V v
with
2 2
== (4.10.15)
C Cpm

The solution of the equation

(V2 + k*) = —dmp (4.10.16)
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corresponding to outgoing waves we have already seen by Fourier transfor-
mation of the retarded Green's function. It is

3 , eik|r—r'| ,
¢ = |dr = p(r’). (4.10.17)

Solving (4.10.13) and (4.10.14) via (4.10.17), we find

ikjr-—-r’| H ’
a=te [E—seren(“D)ar @01
c v — 1’| v
and ‘
q eiklr‘r'l , l‘wzl
¢ = _J 5(p") exp(———) dr'. (4.10.19)
vel |r—r'| v

We carry out the trivial p’ integral and change variables to z* — z =
pu. There results

A=% exp(l—w—z-> I (4.10.20)
C v
and
6= lexp(’—‘%) I (4.10.21)
V€ 13}
where

v
I= f du R . (4.10.22)

exp[ikp[(l + u:")”2 + M uﬂ

—%

Since we are looking for radiation, we go to large p and approximate
I by the method of stationary phase. That is, we look for the value of u,
ug, for which the phase of the exponential is stationary. If there is no such
point, then the integral goes like 1/p for large p, whereas with the cylindri-
cal geometry, fields must go like 1/p"? to radiate. The stationary point is
given by

1/2

P .
3;[(1+u2) +fvﬂu]

= (4.10.23)

“o
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p

fe
Zy Play Z
Figure 4.4.
or
Cm Ug
= (4.10.24)
v (1 + ud)'”?
Thus, to have a stationary point, we must have v > ¢y, and
_ Cm
U=~ 5 51, (4.10.25)

(92 _ wa)uz'

Evidently, u, corresponds to the Cerenkov cone. Recall that
z4 — 2 = puy, where z4 is the point from which radiation emerges to arrive
at p, z as shown in Figure 4.4.

Since
1
tan 0, = — —,
Uy
cos 0. = L = o] =
‘ IN? Vitus v
(1-5--5)
Ug

as expected.

We expand the phase about uo. Setting u = uy + s, we find for the
integral

2 _ 212 2 2 2\32
exp(ikp[g—)hcjﬁ- + 5—2—(—0*~—2—M)— + 067 + - D
v v

1= ds.
[1+ ud + 2ugs + - - -]”2

(4.10.26)

In the form (4.10.26), it is clear that only values of s of order of or less
than 1/Vp make significant contributions to I. Hence, we can drop the
extra terms in the denominator and the ps* terms in the exponent; these
give corrections of order 1/Vp. The final answer is then
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2 _ 25\ 2 25112 _ 372
I= exp(z‘kp(U ) ) (v = ) ds exp( kps ‘-—N(U g ) ),
v v 2 v
(4.10.27)
or
(1)2 — 2 )1/2 T 3 /2 (02— 22
1= ’——-‘—J‘i——(l + i) T s exp(tkpg-—-——}‘—l-)*) ,
v kp (V° = c4y) v
(4.10.28)
which is accurate to order 1/Vp.
The final expressions for the potentials are
A 2 2\12
= 4% (1’ %) exp(ikp(—e-——%> ' (4.10.29)
c v v
and
2 1/2
¢ = lexp(z -——) exp(ikp ( Ci) )]o (4.10.30)
ve
with
v 12
1+ — 4.10.31
- ‘)[kp v? cin”z} (41031
The fields are given in the p — = limit by
2 23\12
B=vxa=; 1 M s e
c
and
E=i"A-V¢
¢
or
E= (’—"’—}éz _wg, )1 et (4.10.32)
¢ v Ve
l‘fqz €.(v® = cir) loe™, (4.10.33)
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where

2 __ 2
I,/lzw—z‘l”kp@’—-CM-)’_
v v

The Poynting vector, integrated over time, is with our normalization
of Fourier components®

9’=ZC;JE*XB£21~:V;. (4.10.34)

The energy flux per unit length through a cylinder at radius p is then
independent of p and equal to

=

dWw q2J' < c?w) 1
— =" | dulw -—=1—=, 4.10.35
dz 2 ] v?/ ¢? ( )

— e

where the integration over w is limited to values of w for which
ci/v® < 1. The absolute value |w| comes about because the expression
for |Io|* has a term 1/k that must be interpreted as |k]|.

Integrating over positive frequencies only, we may drop the factor
of 1/2. The number of photons radiated per unit frequency and length is
obtained by dividing by &|w:

2 2
_@qu_<1_c_1t24>.l, ve
dzdw fc v c
=0, v <. (4.10.36)

CHAPTER 4 PROBLEMS

4.1. (a) Show that a function ¢ that satisfies V2 =0in a region can
have no maximum or minimum in the region.

(b) From this, show that a finite function that satisfies V2 =0
everywhere and approaches zero as r — « is zero everywhere.

*We carry out the calculation inside a dielectric cylinder. Since the tangential compo-
nents of E and B are continuous at the dielectric boundary, the E X B flux through any
cylinder correctly calculates the radiated energy. Remember that p = 1.
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(c¢) From this, show that a vector field whose divergence and curl
both vanish, and which approaches zero at «, is zero.

(d) From this, show that a vector field that vanishes sufficiently
rapidly and smoothly as r— e can be written as the sum of a
longitudinal field (with zero curl) and a transverse field with
zero divergence: V=V,.+ V,,

(e) For such a function, give a general integral formula for V, and
V, as functions of V-V and V X V, and show the limiting be-
havior of V., and V, as r— «. Give sufficient conditions on the
large r behavior for your results to hold.

Verify explicitly that the E and B fields calculated from A and ¢ in
the transverse gauge are equal (for all r) to those obtained from A
and ¢ in the Lorentz gauge.

Write an integral formula, analogous to (4.3.10-4.3.13) for the 1/r?
correction to A and ¢ at large r. If the characteristic radius of the
charge and current distribution is b, estimate the order of magnitude
of the correction compared to the 1/r term.

A unit point charge oscillates in one dimension with amplitude b
and frequency wp:

x = b cos wol.
The charge density is a periodic function of time:
p(x,t) =8(x — bcos wqt).
Expand p(x, t) in a Fourier series:

p(x, t) = 2 a"einmnt

n=x

and find a general formula for a,,. Check your algebra by calculating
the monopole, dipole, and quadrapole amplitudes:
b

M= deb‘(x~bcosw0t)=1,

—-b
b

D= J x 8(x — b cos wyt) = b cos wet,

—b
b

Q= f x? 8(x — b cos wot) = b* cos® wot.

b

4.5. A point charge g oscillates along the z-axis: z = bcos wot, y = 0,
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4.6.

4.7.

4.8.

4.9.

Radiation by Prescribed Sources

x = 0. Consider radiation in the direction 8, ¢ (the usual spherical
coordinates). Assuming wob/c <€ 1, give the angular distribution of
the radiated power:

(a) At frequency w.

(b) At frequency 2w,

A small magnetic dipole rotates in the x—y plane following the
formula

M =&, cos wot + € sin wot.

Give the electric field radiated in the direction k, or at angle 8, ¢.

(a) Give the polarization state of the electric field for k, = k, = 0,
k., #0.

(b) Do the same for k, =0, k., k, # 0.

(¢) Determine the angular distribution of power radiated.

Calculate the retarded potentials of a point charge moving with
uniform velocity v and show that the result is the same as obtained
in (4.6.6) and (4.6.7).

The rate of energy radiation by a slowly moving charged particle is
given by

d_vz_zcﬁ(d_v,)?
dr 33 \dt

This energy must show up as a loss of energy by the radiating
particle. Show that a radiation reaction force

_2q%d%

"33 ar?

inserted in the equation of motion of a confined particle will account
on the average for energy loss by the particle, as long as the velocity
and acceleration of the particle are bounded. Show however that f,
inserted into the free particle equation of motion has unacceptable
solutions. These are discussed in Section 5.9,

Show directly that

1d’f
rdr?

v? lf(r) = —47w8(r) f(r) +
r

and hence that
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e
—— = —4ws’w) ().

4.10. Consider the electromagnetic field in a vacuum inside of a perfectly
conducting cavity or wave guide. With the vector potential in the
transverse gauge, find the boundary conditions on the vector poten-
tial at the conducting wall. From this, find the normal modes of a
rectangular perfectly conducting cavity with sides &, b, and c.

4.11. A charge distribution oscillates according to the formula

3x? r2>
r,t)={———] F(r) cos wt,
ey = (-2 Fer
where F(r) -» 0 rapidly as r — . Give the angular distribution of
the emitted radiation to lowest nonvanishing order in wb/c, where
b is the length scale of the charge distribution.

4.12. A point electron of charge e moves in a given path r,(r) =
é.acos wt + €,bsin wt(é,, é, are orthogonal unit vectors).

(a) Write formulas for the charge and current densities p(r’, ¢t) and
', 0.
(b) Write an exact integral formula for j,.(r’), where

j(r’,t) - z jn(rl) e——inwt.
(¢) Each current j, now radiates a frequency w, = nw, with a corres-
ponding wave number k,, = n(w/c)r. The relevant amplitude jj,
will be

jkn - J' e’ik"‘r’j"(rl) dr’.

Evaluate the r’ integral to obtain j, expressed as a time integral
over one period of the motion.
(d) Do the final ¢ integral for n = 0, 1, and 2, in each case to lowest
nonvanishing order in ka and kb, where k = w/c.
From the n = 1 electric dipole vector potential,

ei(kr—mr)

Al = jk| 3
cr
calculate:
(e) The electric field (in terms of w, a, b, k, etc.).

(f) The same for the magnetic field.
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4.13.
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(g) The Poynting vector averaged over a cycle.

(h) The polarization of the radiated light is normally elliptic. Are
there one or more directions of observation k for which it is
plane-polarized? If so, what are they? For which is it circularly
polarized? If so, what are they?

Two electrons, each with charge e, move oppositely along the x-axis
with simple harmonic motion x, = a cos wt, x, = —a cos wt. Suppose
walc < 1. Calculate to lowest order in wa/c the radiated electric
and magnetic fields and the angular distribution of radiated power.
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CHAPTER 5

Scattering

Almost all physics experiments can be described as scattering processes:
We start with initial objects (fields or particles) approaching each other;
we end with final objects separating. Among the processes we took up in
Chapter 4 several can be thus described: For example, in bremsstrahlung,
an initial charged particle approaches a target; a final charged particle
emerges, accompanied by a radiated electromagnetic field. In Cerenkov
radiation the target is the dielectric. In most of the other topics, the
connection to scattering is less obvious, but it is still present. Therefore,
scattering is important in physics, and it makes sense to treat it as a
separate topic. This is true aithough no new principles are involved.
Indeed, the reader may omit this entire chapter without experiencing any
consequent difficulty in understanding the rest of the text.

The author’s recommendation to the interested, but not devoted,
reader is to compromise by omitting Sections 10-12. In the first six
sections, we study the general theory of scattering, illustrated by the case
of a scalar field (or in quantum theory a spin zero particle). Included is a
discussion of partial wave amplitudes that decouple when the system
being discussed has spherical symmetry. Sections 7-9 concern the general
formulation of scattering of the electromagnetic field, with two simple
applications to weak field scattering, by a harmonic oscillator and by a
dielectric with € — 1 < 1. The remaining three sections, Sections 10-12,
address the vector partial wave expansion and apply it to scattering by a
dielectric sphere. This method is very important for numerical work in
many cases where approximate methods are invalid. However, the discus-
sion given here involves much more detailed algebra than the rest of the
text and can be omitted easily in a first reading.

5.1. SCALAR FIELD

The electromagnetic field is most conveniently described by a vector po-
tential A and the accompanying scalar potential ¢. It is called a vector

181
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field. We consider here first a theory that depends on a single scalar
potential (x, t), which we call a scalar field. Although there is no such
field known in nature, the theory provides a simpie model in which the
mathematics and physics are more transparent than for the more realistic
vector and tensor fields. Nevertheless, many of the essential physics ele-
ments that characterize the vector and tensor fields are present. It is only a
minor complication to deal with a massive scalar field (quantum language;
classically, we would say a field with a finite Compton wavelength), so we
will do so.

The wave equation for the field away from sources and scatterers
(which we will always assume to be spatially confined) is taken to be

2
(v2 -pt - ;—tz> P(x, 1) =0, (5.1.1)

where 1/u is the Compton wavelength of the field. As before, ¢ = 1. The
form (5.1.1) is, of course, suggested by the corresponding equation for
the components of the electromagnetic potentials in the Lorentz gauge.
We inctude the term w2 since that permits the particles associated with
the quantum field to be massive, with mass po = fip/c. We will also see
in Chapter 7 that (5.1.1) is the simplest nontrivial Lorentz invariant
equation that we can write.

In the presence of sources and scatterers, the right-hand side of (5.1.1)
will be different from zero. However, in a scattering event, both the initial
and final field configurations are far away from the sources, so that (5.1.1)
is sufficient for our general discussion.

The elementary, fixed wave number and fixed frequency solutions of
(5.1.1) are

ilx, 1) = ¢ kx-ekn (5.1.2)

where @ = Vk2 + u?; conventionally, we call the minus sign in e "’
positive frequency. Of course, if the field ¢ is real, ¥ must consist in a
superposition of at least two of the elementary solutions, ¢, and ¢,

A conserved energy functional of the scalar field ¢, and a correspond-
ing locally conserved energy density and energy flux, are permitted by
(5.1.1)." The energy density is given in arbitrary units by

2

oY

w=| (%) + v+ vt (5.1.3)

'We shall learn general rules for constructing such conserved quantities in Chapter 7.
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and the energy flux (the equivalent of the Poynting vector) by

1 oy
P=—-——"V.
47 ot v (5.1.4)

u and @ satisfy the conservation equation
ou
—+V-?=0 (5.1.5)
at

leading to a conserved energy in a volume V-

W, = jdru (5.1.6)

v

provided there are no sources of ¢ inside the volume and the flux through
the boundary surfaces is zero:

J@-ds=o. (5.1.7)

A scattering problem must specify an incident wave packet heading
toward the target T, as shown in Figure 5.1. The vertical lines are meant
to represent maxima of the amplitude within the envelope; thus, the
distance between the lines is roughly Ay, where Ag = 2n/k, is the mean
wavelength of the incident field. The incident field $o(x, ) is taken to be

do(x, 1) = f a(k — ko) K Ox) =l gg 4 ¢ ¢ (5.1.8)

Here, kg is the central wave number of the packet; we would refer to the
scattering of this packet as the scattering at wave number ko, even though
the packet involves a superposition of a continuum of wave numbers. For
this terminology to make sense, the packet spread in wave numbers Ak

*~

Figure 5.1
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must be small compared to the characteristic wave number of the source;
that is, Ax ~ 1/Ak must be much larger than the source size, or force
range. Note that this creates special problems for Coulomb scattering.

We choose a(k — k) for simplicity to be a real, smooth function,
symmetric in k — ko— —(k — ko), with width Ak as stated above. Then at
time ¢ = 1, and with q = k — ko,

Po(x, 0) = ™0 7% p(x — x4) + c.c. (5.1.9)

where

h(x — Xo) = J dqa(q) v~ (5.1.10)

where h is real and symmetric under the reflection of x — xo. The mean
value of x,, defined by

dex,- ",l/()(x, 0)|2

+

dell/lo(X,O)lz

will be xq;. The mean value of k;, defined by

fdkhhw—k&V

i )

Jdek—hmz

will be ky,;. The root mean square spread in x; will be

12
[ dx(x; — xo; )2l Yro(x, O)lz
Ax, = . (Nosumoveri)

de|wo()(,0)|2

The root mean square spread in k; will be
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1/2
J dk(k; — ko:)*|a(k — ko)|?
Ak; = . (Nosum over ).

Jdkla(k -~ ko) |?

Of course Ax; and Ak; have the uncertainty property

Ax,‘ ‘AkiZ

DN | =

To study the time dependence of (5.1.8), we expand w in powers of
q = k — ko; thus,

1
w(k) = w(k()) + q- Vk(,w(ko) + "2'(1 . Vkoq . Vkow(ko) + .- (51.11)

and

Wo(x, 1) = e/l 7wt (0] J dq a(q)

% ei{q-[x*xo—vg(t»tg)]*(l/Z)Q'VkO‘I'Vk““’(ko)('—m)*"‘} + c.c. (5112)

where the group velocity

ko
w(ko)

v, = Vigo(ko) = (5.1.13)

The last term in the exponent can be neglected if

2 L' 2
Ciimry<1 o LBR g
) ko

where L is the distance we may allow the packet to travel between observa-
tions. We recall that Ax= 1/Ak > size of the target; hence, since
Ak/kq << 1, we can always choose L so that the initial (and final) distances
to the target are much larger than the target size. Neglecting the last term
in the exponent, we find for (5.1.12)

Wo(x, t) = 'R txx0 el pyg — xo — v (1 — 15)) + c.c. (5.1.14)

=2cos(ko - (X — Xo) — @t = to))h(x — X0 — Vo(t = 10)). (5.1.15)
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Thus, the packet envelope moves rigidly, without changing shape.
To find the energy incident per unit area, dW/dA, we must integrate
the flux & over time:

0

dW 1 3o
AW o~ | a0y, 5.1.16
dA 47rJ o ¥ ( )

—oo

We note that since ko> 1/Ax, the gradient in (5.1.16) acting on h is
negligible; similarly, since wo = ko/v, > Aklv, = (1/Ax)vg ~ (1/h)oh/dt,
the time derivative in (5.1.16) acting on A is negligible. Finally, since the
envelope function h varies negligibly in a period Vw,, the integral in
(5.1.16) averages the trigonometric function over time. There remains

x

dwW 1
a = 2(1)0'(0‘4‘; I dt[h(x — Xo — Vg(t - t()))]z (5¢1-17)

—oc

If we take the target to be located at x = 0, xo and v, must be parallel;
otherwise, the packet will miss the target. Call that direction z. Then

h(x — Xo = vg(t — t0)) = h(p, 2 — 20 — Ug(t — t0))

and
dW  weko
[,z = 2o ute— o
27 p
k
= %0 4 (e, 2) (5.1.18)
2
where

p=ex+8€y.

With p located at the target transverse coordinaté, that is, p = 0, we have

S

f dz h*(0, 2) (5.1.19)

—o0

AW _ wiko
dA 2

energy incident on the target.
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A shorthand for obtaining the result (5.1.19) is to consider only the

positive frequency part of g, 0., and then calculate the integrated flux
as

dW 1 s
=~ =_2Re— | dt==2Vy,.,. 5.1.20
dA Can f 5y Vot ( )

20

We shall use that procedure from now on. Thus, we consider in the
following only the positive frequency part of ¢:

'71/+ — fdk a(k _ kO) ei[k-(x——xn)—w(t—-to)] ~ ei[k(,-(x—xo)—-mo(r—ro)]
X h(x — Xo Vg(t - [0)).

After the scattering is over, there will be an outgoing spherical wave
s and the forward-going residue of the incoming field .. Figure 5.2
illustrates the configuration.

The wave field far from the source after the collision is given by
the retarded Green’s function, Ag(x — x’,¢t —t'), acting on the source,

!
!

Figure 5.2



188 Scattering

whatever that source may be. Ag is the retarded solution of the inhomo-
geneous equation

2
(vz - a%) Ag = —4m8%(x — x')8(t — t') (5.1.21)

which is shown in the next section to be

x<

dw

Ag(r,t) = J — e "'A,(r) (5.1.22)
2m
where

ikr
Au(r) = "’r

(5.1.23)

with k* = w? — p®, and k/w > 0 for |w| > p, k = iVu? — w? for |o| < u.

5.2. GREEN’S FUNCTION FOR MASSIVE SCALAR
FIELD

The equation to be satisfied is (5.1.21):

<V2 —u’ - ;—;) Ar(r,t) = —478°(r)6(s). (5.1.21)

As in Section 4.2, we proceed by carrying out a four-dimensional
Fourier transform:

dkd i(kr—wr) N
Ax(r,t) = (zﬂ;:e(k ) Ar(k, @) (5.2.1)
and
83 (r)é(r) = dk do Qer-wn) (5.2.2)

@m)’
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There results

4

Ark, ) = — —————— 2.2.3
R( ) (0)2 _ [.LZ _ k2) ( )
and
i(k-r—ewt)
Bn(r.1) = lim = —4n [ Bdo € (5.2.4)
e—0+ Q2m)* (w +i€)’ — p? — K?

where the € — 0+ limit ensures a retarded solution.

Unfortunately, the integral in (5.2.4) leads to a more complicated
function than the zero mass case. However, the w Fourier transform is
very simple. Thus, instead of integrating over w, we integrate over k:

% oc

AR(I', t) = - Lhm do e—iwt kdk Sin kr
T2 em0 (w 4 I-E)z _ “2 — k2
- G
ikr
= lim ‘ J dw e~ ! f _ kdkfz i i 5.25)
e—>027T rt k __[(w_+_le) —M]

— —2

We proceed by carrying out the & integration. The integrand has poles at

k=V(o+ie)?—p?=Vo?-p’>+icw

and at k = —(Veo? — u? + ie’w), where the infinitesimal €’ has the same
sign as €. Since we intend to close the contour above, only poles in the
upper half-plane will contribute. These are, for w > u, k = Vw? — u?; for
w<—p k=—Vw?-p?andfor—pu<w<p,k=iVyu? - w2 The end
result is

o

Ag(r,t) =% j j—:e*""”“k' (5.2.6)

—ao

where k = (w? — u?)"? for w > pu, k= —(0 — p?)"* for w < —p, and
k=i(p?— )" for —u < @ < . The function k so defined is analytic
in the entire plane except for branch points at @ = * . The cut is taken
between the branch points; the definition of k informs us that the w
integral goes above the cut.

We list a few properties of (5.2.6). First note that for u =0, Ag =
(1/r) 8(x — r), as it must.
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Second, for r>t, including all <0, the integral vanishes. This is
shown by closing the @ contour in the upper half-plane.

Finally, we note that for t>r, Ag is nonzero and not particularly
simple.

We are now in a position to discuss the scattering as a radiation of a
scalar field by a source S(x, t). Equation (5.1.1) becomes

2

(v%/, - %t—‘f - ,ﬁ) b= —47S (5.2.7)

where S may be a given source, in which case we could study the radiation
from the source; or if we are considering scattering of the field by a
potential, the source S would be a linear function of the field itself, and
(5.2.7) would become a Schrédinger-like equation for the wave function
(field amplitude).

The retarded propagation problem posed by (5.2.7) is solved by inte-
gration:

U(x, 1) = Po(x,t) + fdt’ dx' Ag(x ~x,t —t')S(x',t"), (5.2.8)

where i, satisfies the free equation (5.1.1). In a scattering problem, i,
would describe the incident wave.
Suppose now that S(x', ¢') contains only one frequency, so that
S(x',t')y =e "S(x").

Assigning the same frequency w to i and i, we have the result

Yx, 1) =) e ™, o= do(x) e, (5.2.9)
and
r —iw' (0 — ) + ik’ |x—x"|
d’(x) = d’O(X) + eier dt' dx’ d—w‘e S(X') e—iu)t'
2w |x — x'|
or
ik|x—x'|
60 = o) + [ ax S, (5.2.10)

At this point, we have made contact with the work on electromagnetic
radiation in Chapter 4; in that case, there was no incoming field ¢, and
the source S(x, ) consisted of given charge and current densities. The
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field at distant x was given by replacing

eiklx - x'} ikr

ix—x'| r

accurate to order 1/r. Evidently, the same expansion works for radiation
of the i field by a given source. In a scattering process, the source is
affected by the incoming field.

5.3. FORMULATION OF THE SCATTERING PROBLEM

In a scattering problem, ¢, would specify the incoming field—position,
velocity, wave number and shape of the packet, as described in Section
5.1. In a linear system, the source S would have its frequency determined
by the frequency of o. A Schrodinger-like model, for example, would
have the wave equation

(vz—(#+U)2—;—:2>¢=o (5.3.1)

where u is the particle mass. For U < u and the frequency E=u + W,
W< pu, (5.3.1) becomes

(_V_2+ U)‘l"_‘ Wy (5.3.2)
2p

which is the Schridinger equation. The source S(x) from (5.3.1) is

2uU+U?
4ar

S= ¥ (5.3.3)

and (5.2.10) becomes an integral equation for ¢.

The exponential dependence e* is called an outgoing wave (remem-
ber that the time-dependent factor e~*“’ is appended to the wave function
and that k has the same sign as ; hence, an outgoing wave).

The standard procedure is to solve the integral equation (5.2.10) for
an incident plane wave, ¢, = ¢’*™*. In principle, one would then construct
a wave packet superposition of the plane waves, as described in Section
5.1. In practice, as we shall see, the calculated cross section is substantially
independent of the structure of the wave packet.
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We proceed as follows: The asymptotic (r — =) solution of (5.2.10) is

ikr
B(x) = e** + S F(F k) + @(35) (5.3.4)
r r
The function f(7, k) is called the elastic scattering amplitude at wave
number k and angle T.
The wave packet superposition is given, as in (5.1.8), by

o (x,t) = Jdk ek %0 —w =0l gk — ko) + c.c..

We have seen in (5.1.15) that, for times of interest, the wave packet
moves rigidly without changing shape:

Po(x, 1) = M=o py — x — v (t = t5)) + c.c. (5.3.5)

and that the total energy incident per unit area at the target (p = 0) is

- L J dl%vw()= iw%fzg J' Ih((’, Z)lzdz, (5.119)
4ar at 27

—o

provided S — 0 rapidly enough as r-» . We assume that to be the case,
here and in the following.

The scattered wave packet will be given by the superposition of outgo-
ing waves:

i(kr—wr)

Yo = Jdk e~ gk — ko) £ f(F, k) +cc.. (53.6)

r

We carry out the same expansion about k = k, for . as we did for .
The difference appears in the expansion of k vs. that of k:

k= V= \/(ko +k — ko)* = \/k% + 2Ky (k — ko) + (k — k0)2 (5.3.7)

- k(,[l L (';2_ ko) @((k - kO)Z)J (5.3.8)

2
0 kO

= ko + ko - (k — ko) + o((k—;'ﬁ> (5.3.9)

Q0
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We neglect the quadratic term in (5.3.9), as we did earlier in (5.1.12).
Note that the neglected term here is [(Ak)?/ko] 7; in (5.1.13) it was the
equivalent expression [(Ak)?/wo](f — t,). We also assume that f(7, k) varies
negligibly over the width of the wave packet. This is consistent with our
earlier assumption that the coordinate spread in the wave packet be much
larger than the size of the target. The result for ¢ is

o) A
h(kor ~ X0~ Vg(t .— to))f(r, k()) eilkor—koxg—wo(t—1)] c.Cc.
r

sc

(5.3.10)

Note the role of the wave packet function k. Since ko, X, and v, =
{ko/w¢ are all in the same z direction, the function A is evaluated at p =
0, just as in the incident packet. The outgoing integrated energy flux per
unit area is

T+ 2
J@scdtzlf(;, ko) |2 wé%’ﬂh(o,r—zg—ug(z—to)ﬂ dt

= 1f(;’ kD)iz

2n 5
“"”ZJ |h(0, 2)|" dz. (5.3.11)
2mr

The cross section do for scattering into a solid angle d(} is defined as the
ratio of the energy scattered into d{} divided by the energy incident per
unit area on the target. The differential cross-section do/d(} is defined by
the equation do = (do/dQ)d) (note that do/dQl is not a deriva-
tive!), so that

J P, dt-Fr?
dQ—=d0 —— =dQ]f(f’,k0)|2. (5.3.12)
J@odl‘i\(o

—oo

Thus, the scattering problem can be stated in two ways:

1. Solve the integral equation

ik|x—x'|

o(x) = e"‘"‘+[e S(x') dx’ (5.3.13)

x = x|
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with S a linear function of ¢ as in (5.3.3), with S replacing S and
¢ replacing ¢; from ¢(x) determine S and from S calculate the
scattering amplitude

fGF k) = Ie‘”‘"‘"?(x') dx’. (5.3.14)

Or, equivalently,
2. Solve the differential equation

(V= u2 + 0d) ¢p(x) = —4wS(x) (5.3.15)

subject to the boundary condition
) eikr
l/’raw - e’k.x + .—_-‘f(?7 k) ;
r

from the solution determine the function f, which is the scattering
amplitude.

5.4. THE OPTICAL THEOREM

An important theorem, applied to elastic scattering, relates the imaginary
part of the forward (8 = Q) scattering amplitude to the total elastic scat-
tering cross section

k [do
I g=0)=—|—dQ. 5.4.1
m f( ) pyul e (5.4.1)

In fact, the theorem is more general. On the right of (5.4.1) in the
case where there is absorption of energy, there should be the total instead
of the elastic cross section. That is, the general theorem says

Im f(6 = 0) =ZI%T_UT (54.2)

where f(8 = 0) is the forward elastic scattering amplitude and o r the total
cross section.

In the case of vector (or higher) fields, forward signifies not only zero
deflection angle @, but identical polarization to that of the incoming field.
We will see this explicitly when we discuss scattering of electric and
magnetic fields.
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The theorem follows directly from the energy conservation equation
(5.1.5)

v.p+P_g (5.1.5)
at
or
d
fg’-dS=—-*J’udr. (5.4.3)
dt
S 1 %4

If we consider a given frequency

Y=y, + ¢
with

l//+ = e—iwt¢ and '«;b— _ eiwl¢*

then the time average over a cycle of (5.4.3) tells us that

j P-dS=0 (5.4.4)
since u is periodic in ¢ with period #/w. On the other hand,

P= (e~ U)W+ u) (5.4.5)
T

and the time average Pis

iw

P="—"LVe*+coc., (5.4.6)
47

so that energy conservation takes the form
47 [ = )
*J’g’-dS——— —zj¢*V¢-dS+c.c. = 0. (5.4.7)
w

Equation (5.4.7) is equivalent to the optical theorem. To proceed, we
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note that in the surface integral above, terms of the form

1

J e~ dw g(r, w),

-1

following an integration by parts acquire an extra power of 1/r. Here, w =
cos 8, and g is assumed to be free of singularities in the physical region,
—1=w=1. It follows that, as r — %, we may write

ikr
b — e+ er f+ @C—z) (5.4.8)

and ignore the 1/r* term. Inserting (5.4.8) into (5.4.7) gives, as r — o,
accurate to order 1,

—ikr ikr
—JdS . i(e‘”‘"‘ +£ f*)(ik e+ ir"‘k ¢ f) +c.c. =0. (5.4.9)

r r

With dS = r*7 dQ (we are, of course, integrating over a sphere), (5.4.9)
becomes, accurate to order 1/r2,

2

* 2
Jdﬂ{?- k+ ’ffe"“"""'") Ly gronan KT c.c.} = 0.
r r r

(5.4.10)

The first integral is zero. In the second integral, we integrate by parts:

2w 1

JdQ P J'd(pj dwe "™ f(w, ¢) (5.4.11)

0

where w = cos 6.
Let e”**"" dw = dv; u = f. Thus, integrating by parts, we obtain

1

ikr

—ikrw

and to leading order in 1/7
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w=1
1
+ @(—2)
w=-—1 4

e—ikr e,‘kr
—[l.kr f(1,¢)~ikr -1, ] (5.4.12)

1

f e, 9) = = Lo 1w, )

-1

Since at § = 0 or 7 (w = 1 or —1), ¢ dependence must disappear, we have
for (5.4.11)

—ikxp _ _2_77_' ~ikr — _ ikr — ] _2-_
Jdﬂe . (e f(H=0)-e“f(0=m) + @(rz). (5.4.13)
Similarly,
f d0F K+ e = 2T (Hopr(6 = 0) + K0 = m) + @(12).
ir r
(5.4.14)

Inserting (5.4.13) and (5.4.14) into (5.4.10), we have

_2mf6=0) 2we2'kffge =7, f* =0
r r

+ g.zzf*(e =m)e ¥+ %ﬁflz dQ +c.c.=0.  (5.4.15)
ir ¥

The contribution from & = 7 is imaginary. This leaves, after we add the
complex conjugate,

Im f(9 = 0) = 4—"; o, (5.4.16)

as expected, with o, the elastic cross section,

f dQ = Jlflzdﬂ. (5.4.17)
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5.5. DIGRESSION ON RADIAL WAVE FUNCTIONS

We are about to take up the description of scattering in a system possessing
spherical symmetry. For such a system, the angular dependence of the
wave functions and scattering amplitudes can be expanded in a series of
spherical harmonics. The coefficients of the spherical harmonics are called
partial wave amplitudes. For a wave outside of the region of interaction,
these partial wave amplitudes involve a specific set of radial functions
called spherical Bessel functions. Since these functions appear in a large
class of applications, we treat them in a separate section,
We first study the Green’s function

ikle—r'|
Ar(r—r') = (5.5.1)
r =’
for r>r'. As r— =, we know the leading term is
eikr .
Ap(r —r') > —e ™" with k = kF. (5.5.2)
r

We note that for arbitrary r, r’, but r # r’, Ag satisfies the homogeneous
wave equation

(V24 k?Ag=0 (5.5.3)
as well as
(V*+ k¥ Ag=0. (5.5.4)

We expand Ag(r, r’, w = cos 8) in Legendre polynomials:
Ar(r —t') = Z,O PAw)gdr,r’) (5.5.5)

where now from (5.5.3)

> 24 €+ 1)]
STtk -5 ge=0 5.5.6
[6r2 ror r? 8¢ ( )
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and from (5.5.4)

# 29 ee+1
[ +—————+k2-—(—;,—2-——l]ge=0 (5.5.7)

ar'2 r'ar’
but where

eikr

fe(r") (5.5.8)

8¢ —
r

as r - o, and
1

fer') = f dw P(w) e—ir'kw<

-1

—2€—t1> (5.5.9)

2

The solution of (5.5.6) subject to the boundary condition that it
approach (1/i“*")(e*Ikr) for large kr is called h.(kr) (spherical Bessel
function of the third kind). Hence,

20+ 1

ge= ki ho(kr) - f dw P(w)e " (5.5.10)

—ir'kw

_The dw integral, for large r’, can be estimated by integrating by parts:
e dw = dv, Pe(w) = u, so
—ir'kw € ! 1
dw Pe(w)e = Po(w) — O\ —
—ikr’ 1-1 \r’

= 2(1:{)[sin<kr’ - %) + 0‘(—1—>.

r r/2

The solution of (5.5.7) that approaches {sin[kr’' — (€#/2)]/kr'} as kr' —
is called j.(kr’) (spherical Bessel function of the first kind). Thus,

ge=i(2€ + 1) kho(kr) jo(kr") (5.5.11)
and, for r>r’,
eik[r—r'l
Pl ik 2 (28 + 1) Po(w) he(kr) jolkr") (5.5.12)
r—r 4

= 4mik 3 Yen(Q) YEAQ) hokr) je(kr').  (5.5.13)
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Also, by taking the limit r — ® on both sides of (5.5.12), we find

e = 3 (26 + 1) i Pe(w) je(kr). (5.5.14)
€

The functions ki, and j, are interesting and quite easy to study using
methods similar to the standard quantum mechanical treatment of the
harmonic oscillator and angular momentum. Recall the definitions:

2 + .
{_d_z__2£{+@_k2}{’f‘}=o (5.5.15)
dr rdr r le
and, as kr — =,
1 eikr
i kr
{hf}e | ey b (5.5.16)
je sin{ kr — —
2
kr

The more convenient functions are
ue(kr) = krj(kr) and welkr) = krhg(kr). (5.5.17)

Note that this notation (u, and w,) is not standard.
u.(x) and w,(x) satisfy the equation

[_C%;J(fi D_ 1]{‘“}=0, (5.5.18)

X Ug

the boundary condition u,(0) = 0, w(x — ) ~ ¢'*, and the normalization
determined by

as x —» o, Here, x = kr.
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We solve (5.5.18) recursively by factoring. Call the operator

—~(d?ldx?) + [€(¢ + 1)/x*] = H,,

AZ=—5;+§ and A;=d%f+
Then
- d 0\fd ¢
arar == (G- i) -
and
A7AF =H.,

so that, if H.l, = s, thus satisfying (5.5.18), we have

AfAzde= Y,
and
AFATACY =AT Y,
and hence

He (Ao = (Acy)

so that A; is a lowering operator, that is, it takes . into ;.

Similarly, A;+1Azf-+1 = H(, so that

AenAZede =1,
and
A7 A AlaYe= Al b,
or
Heo (Ao ibe) = (AZae)

so that A7, is a raising operator, that is, it takes . into .. ;.

= |y

(5.5.19)

(5.5.20)

(5.5.21)

(5.5.22)

As x > o, AT — —dldx, A~ — d/dx; acting on the asymptotic forms

for u, and w,, we see that

AL _ e
¢ de it it
ix ix
_ e e
A we—— =—

dx i€+1 2
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A+ .__4_' __flT_ = — _QZ_T_ = Qi ___e_iil
Uy —> dsmx 2 = —COS{ X ) = sml x 5 T

X

and

- d ( €'rr) ( f'tr) ( (f—l)n)
A uy——sinlx —-—|=cos{x~—1=sinlx - ——"—
dx 2 2 2

so that the raising and lowering operators maintain the correct asymptotic
limits and therefore the correct normalizations for the functions w, and
Ue.

We now simply construct the functions starting from the solutions for
£=0

wo(x) = —

(5.5.23)

e ix
1

and

Up(x) = sin x. (5.5.24)
Thus,

wi(x) = AT wo(x) = (" ;id; + )1—6)(—?[— = -eix(l - l)

29

ui{x) = Al Ug(x) = (__4_ + .1_> sinx = —cos x + Slﬂx.
dx x N

We note general properties of w. w, = e*/i*""' (1+ ascending powers
of 1/ix, the last being 1/x¢). u,=sin x and cos x times ascending powers
of 1/x, down to 1/x¢, with u, odd or even in x according to € even or odd,
and going like x“*' as x — 0. This last result can be proved by induction,
using A/, to raise €; however, it is also evident from (5.5.9) using the
orthogonality properties of the Legendre polynomials.

The coefficient of x“*! for small x in u, can be calculated by induction:

{
Acie= (Ed; + ;) Yeo=1the

so that if ge— Cex®™! as x>0, o, — C(2¢+ 1)x* as x—0 so
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Ce_1/(2€ + 1) = C, that, together with Cy = 1, yields

1
Qe+ )N

€

and

€+ 1
X

X 0. 5.5.25
e+ o (5.5.25)

Ue

Here, Q¢+ D1 =1-3-5...(2¢+1).
We can also calculate the coefficient of 1/x ¢ for small x in w, by using
the raising operator A7, on w,. We find, with w, — B,e*/x¢ as x — 0,

Bei ™ (20+1)

e+l - L+ eixBf’
or
Bev1=(2€+1)B,.
Thus,
1 - N
BIZBOZ-:" BZ=§,a c ey B€=Q€—_l)_——9
i i i
and
2¢ — DN e™
6—»(—.—)~5; as  x—0. (5.5.26)
i X

Of course, (2¢ — 1)!1=1 for £ =0.

5.6. PARTIAL WAVES AND PHASE SHIFTS

Given a source S in the form Uy, the resultant Schridinger type equation
is generally hard to solve for the scattering amplitude. There are two
exceptions. The first is valid when the interaction is weak, in which case
one can apply perturbative methods to the problem. We shall see some
examples of this in Section 5.8.

The second requires that the interaction possess spherical symmetry.
In that case, one can use spherical harmonic expansions to reduce the
three-dimensional problem to a set of one-dimensional problems—one for
each € value. We turn to that case now.
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We have
S(x, 1) = Uy (5.6.1)

where U is a real,” spherically symmetric linear operator, which becomes
small rapidly away from the source.” Since U is spherically symmetric, it
is useful to expand the wave function ¢ and scattering amplitude f in
spherical harmonics. That gives, for large r,

W e+ e FG, k) + @»<i2) (5.6.2)
r 14
or
sin{ kr — fﬁ)
¥ 2 (20 + )i” Pt k)
s
<y Fo20+ 1) PR k) + @(%) (5.6.3)
| r
where
FF k)= 2 fo(20+ 1) PR -K) (5.6.4)
'

defines f, and where the Legendre polynomial expansion of e makes
use of (5.5.14).
On the other hand, with

ve(r)

r

lp:EA(

P w)(2¢ + 1), (5.6.5)
as r - ®, v, is real and must approach
. {w
ve—sinl kr — 7 + 8], (5.6.6)

thereby defining the phase shift 8,. The €#/2 is inserted to make 8,=0
in the absence of interaction. Each partial wave function can have an
arbitrary constant coefficient A, since the wave equation is homogeneous.

See Problem 5.2 for a discussion of scattering by a complex potential.
*For example, Uy = _f U(x,y)¥(y) dy, with U a real function of |x|, |y| and x-y.
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That coefficient is determined by the incoming wave and retarded scat-
tered wave boundary conditions implicit in (5.6.3). We find

; _ezi‘s‘—l_eiafsinSg 567
T ik k (5.6.7)

and

F(7, k) = %g (2€ + 1) P,(cos 8) e¢sin 6. (5.6.8)

The scattering amplitude f satisfies the optical theorem. That is, using
the result

47
2¢+ 1

f Pe(w) Pe(w)dQd = e (5.6.9)

we have
J | f(7, k)]2 dQ = %E 2¢+1) sin®> &, = f‘-/:—TImf(e =0, k). (5.6.10)

Referring back to (5.6.3), we see that once f, is known, the wave
function in an interaction free region can be extrapolated back to the
point where the interaction becomes significant simply by replacing
e Ikr by h(kr) i¢*! and [sin(kr — €m)/kr]w by j.(kr).

We may calculate the behavior of 8, for small &, assuming a source
that is strongly confined to the neighborhood of r=0. The scattering
amplitude f will in scalar scattering normally depend on cos 6 through the
dot product k; - k;. Therefore, for small k we can expand f in powers of
k; - ks = k* cos 8. This will lead to a series of the form

ap + ajk*cos 0+ ak*cos> @+ - - -
P 1
= aoPo + a;k*P, +a2k4<‘2‘3_2+ gPO) T

Clearly, the coefficient of P, is a power series in k, starting with k*¢. Since

e®esin 8,

fe= X

goes like k¢ for small k, 8, must go like k*7".
A more general way of looking at the low wave number behavior of
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the phase shift is to introduce the logarithmic derivative £ of the wave
function at a point rg, outside of, but close to, the interaction region. The
parameter £ is then matched to the logarithmic derivative of the wave
function v, that, when kr > £, goes over into

sin<kr - —tﬁ + 60),
2
that is,

ve= ukr) cos 8, + q.(kr)sin 8, (5.6.11)

for r outside of the interaction region. Here, we have introduced the
function
wi—we

= — 5.6.12
qe 2 ( )

which goes for small x like

(2¢ - DN

COS x P

X

The logarithmic derivative ¢ is obtained by integrating v, out from
the origin; with a short-range, energy-independent potential, £ will have
a finite limit as k — 0, obtained by integrating the equation

d? (¢ +
[—:1:2- ru+ & = ”J ve= kv, (5.6.13)

to the point ry where the match is to be made.
The matching equation is [with u; = du(kr)/dr, q¢ = dq(kr)/dr]

_ ugcos 8, + qisin &,

- (5.6.14)
uscos 8¢+ qsin 8,
or
tan 8, = — éu (5.6.15)
€9¢—q

The small k limit of &, can be calculated from (5.6.15). For ¢ approach-
ing a finite limit as k — 0 (which as we shall see is not the case in scattering

by a dielectric), we find, using the small x expansions of u, and g, (5.5.25-
5.5.26),
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£+1
(-5
— 21,2642 To 1 1

Ero+€ Qe+ DNEE-DI

8[’ g

(5.6.16)

Equation (5.6.16) is particularly simple for € = 0 {which is present for
a scalar field, but not for the electromagnetic field). It becomes, for
£€=0,

8o — —k(ro - é) (5.6.17)
= —k<r0 - % k=0>. (5.6.18)

It is useful, following a method of Fermi, to parametrize vo(r) for
k = 0 in the neighborhood of ry:

vo = b(r + a)
vo=b (5.6.19)
and
1 Vo
_=——,-=r0+a (5620)
£ wvo
so that
%_, a. (5.6.21)

a is called the scattering length. The differential cross section at k =0 is
|a]?. Note that —a is the value of r at which the zero energy wave function,
extrapolated from its value and slope at v = vg, vanishes.

We can illustrate with three cases, all for £ = 0. The equation for v
is, at k =0,

dzv()
er + UU() ={,

If U is negative (attractive in quantum mechanics) and small, vo will look
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(a) {h) {c)
Figure 5.3.

like Figure 5.3(a), will vanish at negative values, and a will be positive.
If U is not weak, as in Figure 5.3(b), it can turn the curve over. This

corresponds in quantum theory to the existence of a bound state

and in

classical wave theory to the existence of a localized solution of the wave
equation with w < u. In this case, the scattering length will be negative.
The third possibility is U positive (in quantum mechanics a repulsion), as
in Figure 5.3(c). In that case, the scattering length is again negative.

5.7. ELECTROMAGNETIC FIELD SCATTERING

As with the scalar field, we construct the vector field as a superposition
of a positive frequency field and its complex conjugate. That is, for the

incoming field we have

E'=E% +E° =E% + E%*
where
ES =0 ™™ §%.¢'=1, k=ow
and
B” = B + B%*,
with

iwBY =ik x EY..

The outgoing scattered wave for the E field will be

(5.7.1)

(5.7.2)

(5.7.3)

(5.7.4)

(5.7.5)
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and
. A {1
iwB,. = ikr X E,.+ O (—3) (5.7.6)
r
Of course, E° and f will be transverse. That is,
k-E°=T-f=0. (5.7.7)

The incoming time-averaged Poynting flux will be

?*"=~1—Ei x B,

2m
=_1_Et x(ExE+)
27 ®
or
S 1~
P°=—KkE* - E, = —k. (5.7.8)
2 27

The time-averaged scattered flux per unit area will be

Fre= Lpxx (F x f)l2 (5.7.9)
2m r

1 T
— —f*.f, 5.7.10
2 r? ( )
giving a scattered flux per unit solid angle

@SC-W:if*-f
2w

and a differential scattering cross section*

49 _ g g, (5.7.11)
a0

*The wave packet discussion given earlier for scalar scattering evidently goes through
equally well for the vector field we are considering now, with the final result being the

justification of (5.7.11).
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The polarization of the scattered wave is described by the vector
scattering amplitude f(k, T, €), and is a linear function of & €. The functlon
f can be resolved into any complete pair of polarization vectors &, where
we would normally choose €** - 8*' = §,,.. Thus,

e
o>

f= 2 'e*-f (5.7.12)

A

it

1

and &"*-f gives the scattering that would be measured by a detector
detecting only the polarization state A.

5.8. THE OPTICAL THEOREM FOR LIGHT

As in our discussion of the scalar field, we make use of the surface integral
of the Poynting vector, which satisfies the equation

Jg’-ds=vifdru (5.8.1)
dt
N |4
so that for a monochromatic wave, the time average
f@-ds=£—ReJE1‘xB+-ds=o, (5.8.2)
g
S

where we will integrate over a distant sphere. For r — ©, we know

r

ikr
E. (e e 4 )e—““w o(lz) (5.8.3)
r

and

~ “x ikr .
B, = (k x 80 ghex 4 T2 1€ >e-""' + 0(—2). (5.8.4)
r r

Equations (5.8.2), (5.8.3), and (5.8.4) then tell us that

% , —Ikr ~ ‘
OzReJerr (Ao*e‘ﬂ‘x_*_f e >X<kxé th+ r)(f zkr).
r r

(5.8.5)

We proceed as in Section 5.4, noting that
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f dwe *"F(w) = — l_l%r(e_"k’F(l) - e*F(-1)) + O’(%) (5.8.6)

We have, with w =7+ k,

Re{%”[?- £* 5 (k X 8%)]ey = T £% X (k X 8%)|,e -, e %]
!
27

T %% X (X £)[my — T+ 8% X (F X £) =1 ¥*]
i

+fde*~f}=0. (5.8.7)

Combining terms and noting thatT - k=+latw= +1, we obtain

Re[%—z(fﬁ e’ —%.1) _%Z(f*,éoe—zikr
ik w=1
+ 8% f %) + fdnf* - f] =0 (5.8.8)
w=-—1
or finally,
AT meos.g| = T (5.8.9)
k w=1

where, as before, o, is the total elastic cross section, and &°* - f is the
forward, polarization-preserving scattering amplitude.

5.9. PERTURBATION THEORY OF SCATTERING

We consider a situation where the source-field coupling is sufficiently weak
so that we may calculate the charge and current distribution of the source
induced by the field without taking into account the reaction of the source
on itself. We illustrate with two examples: scattering by a damped oscil-
lator and scattering by a dielectric with a dielectric constant near 1.
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5.9.1. Scattering by a Damped Oscillator and Radiation
Reaction

We write the equation of the charged oscillator in a weak clectromagnetic
field:

mx + Rx + kx = g(E(x, 1) + x X B(x, 1}). (5.9.1)

Here, R is a damping constant that we will adjust to give overall energy
conservation via the optical theorem. m and k are, respectively, the mass
and force constant of the oscillator.

The displacement x and velocity x in steady-state motion will be
linear in the field strength; therefore, since the field is weak, we may
neglect the x and x dependence on the right-hand side of (5.9.1). In this
linear approximation, the scattering is independent of the strength of the
field, which we normalize to unity. The incoming field Eq is then

Eo=8%""" (5.9.2)

and the magnetic field is

The incoming average energy flux per unit area is, with 8™+ - 8% = 1,

Bo= k. (5.9.3)
2m

The steady-state motion of the oscillator is given (in our linear ap-
proximation) by

X = X()e‘iw, (59.4)
with
a®
m
Xp= —F5———5———. 5.9.5
0 wy — 2 le ( )
m

and w} = k/m.
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The field radiated by the oscillator is then

‘o (f
E*=—¢ ——"Ti r) (5.9.6)
and the scattering amplitude f is given by
2, .2~0
f= 19% - (5.9.7)
m[w(z) - w? - E_“j_]
m
The total elastic cross section is
4 4 1 R
0'e1=q a; Jle‘%[zdﬂ
m w 2
ws— w0 —i—
m
4 4
_8mg = ! . (5.9.8)
3 m ’ , .Rwl?
wo = W — 11—
m

Before discussing the result (5.9.8), we use the optical theorem to
determine R(w). From (5.9.7),

2 2
Im@ - £(6 = 0) = 1= (5.9.9)
m > .Rwl?
wy— W —i—
m
Since the optical theorem requires
me&- (0 =0) = o,
4
we find
w 8_71'q4w4 1 q’w? wR
47 3 m2 5 5 Rw 2 m2 > Rw 2
Wo— w — 1/ wWg — W — 1l
m m
or
R= Zqzw2 (5.9.10)
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so, that the dampmg term in (5.9.1) could be written as R-x=

3q %, Wthh is a more usual form for the so-called radiation reaction
force, f, = 3q ?%. We see (as in Problem 4.8) that inserting the force f,
into the equation of motion gives a correct overall energy balance for this
situation. In general, for confined motion this will be the case. It is clear
however that in the absence of a confining potential, the force f, gives
nonsensical results. Thus, with the force constant k and the incident field
E, set to zero, (5.9.1) would be

2 .
m = ngx (5.9.11)
which has the general solution
X = x0—922 (vo—?—g)t+a—(;ey' (5.9.12)
Y Y Y

Thus, unless ap = 0, the motion explodes exponentially, and the formula
makes no sense. Note that this problem is not resolved by a harmonic
binding force.

We return to (5.9.8) for the cross section. We see that the energy
denominator 1/(w} — w?) has been damped by the imaginary term
-3 (w®/m)q°. Note that the scattering amplitude f at the resonant @ =
wp takes on the imaginary value

&5
>
~

fori

[\S R RVS)

independent of g and m. This is a characteristic of resonant behavior: The
resonant scattering amplitude is given by the wavelength multiplied by a
kinematically determined constant (here, ';)

The damping constant determines the width of the resonant curve,
The cross section as a function of w is
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Cw?

Oe1 = 22
2,22 W R(w)

(w (1)0) + 2

m

with C a constant. For small R, the maximum is at w = wq:

C 2 2
Frmax = ——R‘;’("w':) : (5.9.13)

The cross section takes on half this value at

2p2
woR 1R
(@~ wf)=—"> o w-w=:—;

m 2m

thus, the full width at half maximum is I' = R/m.
On the other hand, the possible decay constants of the isolated oscil-
lator are given by the roots of the equation

0l — ot - 2R@) _g (5.9.14)
m
or
0=+ — Rlwo)
2m

giving a time dependence to the oscillation amplitude

x= x(t — 0) etiwoh(R/Zm)t,
and an energy decay given by e "' = e “¥”"_ Thus, the decay constant
is, in fact, equal to the width of the resonance.

There is unfortunately a third unwanted root of (5.9.14) produced at
high w by taking the w? dependence of R into account; this root is closely
related to the unphysical runaway solutions of the free particle equation
found earlier. Note that this root is in the upper half w plane and, hence,
produces acausal behavior in the scattering. We evade all these problems
(without justification) by taking R(w) to be a constant R = R(w). Further-
more, the energy balance now only works near the resonance. A justifi-
cation of this procedure cannot be given within the framework of classical
field theory. The contradiction between energy conservation and causality
is a genuine difficulty of classical electromagnetic theory describing the
interaction of electromagnetic fields with point particles. This problem (the
unwanted root) does not appear in relativistic quantum electrodynamics;
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however, other new problems do. For further discussion of this problem,
see Section 7.5.

We finally note the low-frequency limit of (5.9.7) for the scattering
amplitude by a free particle,

2

f=-Le,,, (5.9.15)

m

and of (5.9.8) for the elastic cross section,

2 2
ou = &Tf<i> . (5.9.16)

The expression (5.9.16) is called the Thompson cross section. This result
was first used by Thompson to measure the number of electrons in carbon
by X-ray scattering.

Note also that the scattering amplitude of a bound electron goes to
zero for small w like w?, accounting for the dominance of short wave-
lengths in the scattering of visible light by air molecules and therefore the
blue color of the sky.

Scattering by a Dielectric with a Dielectric Constant Near 1

Our second example is scattering by a dielectric with permeability . =1
and a dielectric constant e near 1: € — 1 =47y <1.
As always, we return to Maxwell for guidance:

B=— and VXB=—-iwD = —iweE

vV x
vV X ( - E) = —jwek (5.9.17)

or

V x (V X E) = w’¢E.
We expand about E = E,, the incident field, and e=1:

V X (VX (Ey+E))) =1+ (e~ 1))(Eo+Ep
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where V-E;=0 and —V°E, = w’E,, so that E, =&, e ** “? There
follows

V x (VX E)) = w’[E, + [(e - 1) Eo]] (5.9.18)
from which we deduce

V-E; ==V [(e —1)E] (5.9.19)
and

~VE, + V(V-E,) = 0’[E, + (e — 1) Eo}. (5.9.20)
Substituting (5.9.19) into (5.9.20) yields
(—V*=0®)E, = 0 (e ~ 1) Eo+ V(V-(e - 1)Eo).  (5.9.21)

We solve (5.9.21) with the usual retarded Green’s function. As r — ,

eikr ) ) € — 1
E,— f dxe ™™ [&(—-———)E,(;{)
4ar

r

+ v'(v' : (%’;T—l)m,(x')ﬂ (5.9.22)

or

e'k' —ikox'| €T 1 Kex' /A AA
E, =’ J dx e *s <‘““‘>e N O kek; - €,), (5.9.23)

r 47

yielding a scattering amplitude
f= wzfdx’e‘“‘"f)""x(x’)ﬁn, (5.9.24)

where y(x') is the dielectric susceptibility at the point X', y = (e — 1)/47.

5.10. VECTOR MULTIPOLES

We come next to the partial wave expansion for a vector field. As re-
marked earlier, the method is essential for a large class of problems. We
therefore take it up, even though the required algebra is quite complicated
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(but elementary). The prerequisite groundwork was done in Appendix B
and in Section 5.5.

The mathematics is based on a nontrivial operator dyadic identity in
three dimensions:

3 x V
i-vi V+L ey Xk 1L
v? ViL? i

* .
where 1 is the unit dyadic and L the quantum mechanical angular momen-
tum operator:

v
L=l‘><—‘.
i

A vector field can be expanded as

X L

V= Vd’l + Ll!fz + 1113 (5.10.1)

To see that this is correct, we note that we can always expand
V=V, +V xQ (5.10.2)
for some ¢ and Q. Equation (5.10.1) prescribes
Q=iryp —iLys ~ Vi, (5.10.3)

where ¢, does not affect V. We now show that any vector function Q can
be expanded in the form (5.10.3). We introduce spherlcal coordinates r,
6 and ¢ and orthogonal unit vectors T, 6 @ such that £ X 6= 3,
8 x@="*, and @ x = 8. The gradient operator is

L0 B 3
vopl, 82, & 2 (5.10.4)
or rdf rsinf dg
and
1 1/~ 9 6 o
L=T,XV=__<¢“_ __.——), (5.10.5)
[ i 46 sin6dg

The expansion in question is then, with Q = £Q, + 8Q, + @0, and the Q,
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arbitrary single-valued functions,

. 3
0, = irg, — 2L (5.10.6)
or
s 10
-._1.__%_.._‘/@’ (5.10.7)
sinf d¢ r 06
and
0 1 1 9
Q,= - 11 ok (5.10.8)

30 rsin® op

Clearly, one must choose ¢ and i, to satisfy (5.10.7) and (5.10.8).
W, is then chosen to satisfy (5.10.6). So, our problem is to show that 5

and ¢, can be found.
We multiply (5.10.7) and (5.10.8) by sin 6. There results

ingd¥e __ _p (5.10.9)
a0 o
Ws s inolB- _p, (5.10.10)
dp a0
where
54 = l—!li
]

and where the P; = sin 8 Q, are still arbitrary and single-valued. Since the
operators sin 6(3/d6) and /3¢ commute with each other, (5.10.9) and
(5.10.10) can be solved algebraically:

Bom— 1 - (sin e*—";‘w-—"’;‘*’) (5.10.11)
sin@—sin 6 — + — 14
a6 a0 a¢p
and
1 ( .9 aPe)
= - sin@—P,——]. 5.10.12
d/3 62 00 © a‘p ( )

sin 9—a~sin 60—+ —
a6 a8 odep
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We factor out sin® 6:

i L 1 1
- 2 3 9 1 9% sin®6
smG——smBiwL—a— [——I——S'n 06—+ — —a—z-] s
a0 00  ag* sin 896 90 sin‘ 0 dp
so that
— i
Ja= 12<1 Wo, 1 P) (5.10.13)
L:\sin 9 46 sin’ 0 d¢
and
1( 1 0 1 6P0>
=—|~———P 5.10.14
¥s 1*\sin 6960 ° sin’ 8 d¢ ( )

where we recognize the form

1 9 . 3 1 a°
AL
sin 6 06 38 sin“6dg
as the operator

2
L= rz(—v2 + 2 gg_)
or ror

Of course, one here obtains /3 and ¢/, as a sum of spherical harmonics.
Note that the operator 1/L? = 1/£(€ + 1) does not become singular since
the two functions in parentheses in (5.10.13) and (5.10.14) have no € =0
projection, and Py and P, vanish at 6 = 0 and .

We return now to the electric field. We consider first radiation by a
prescribed current. The radiation equations for E may be obtained directly
from Maxwell’s equations:

VXE=iwB, VXB=—iwE + 47j, and V-E=4dmp

SO

Vx(V_XE)=—in+4nj

lw

and

V’E + o’E = —4n[iwj — Vp), (5.10.15)

together with the continuity equation, V - j = iwp.
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We solve directly for the retarded field:

ik|x—x"}
E= f dx’ Iex e (i) = Vo0, (5.10.16)

with the large r form

ikr

"r f dx’e_“‘""[iwj(x’)—V’p(x’)]+@’<%>. (5.10.17)

E:

We now apply the expansion (5.10.1) to (5.10.16):
V_L
E =V, + Ly + - X =Yg (5.10.18)
i w

where L stands for longitudinal, M for magnetic, and E for electric. The
normalization factor w is inserted for convenience.
We solve for the ¢’s by three orthogonal projections. First,

Vi, =V -E. (5.10.19)

Since V - E = 41rp, we can solve (5.10.19) for ¢,:

Uy = —Jdr' ————l:(_r’:,l (5.10.20)

which has inverse power law behavior at large r and is instantaneously

related to the charge density p. Of course, the electric field itself does not

have such acausal behavior since the factor e’ in (5.10.17) guarantees

proper retardation. This power behavior reflects the use of the potentials

 and must disappear (by cancellation) in a calculation of the field itself.
We solve for ¢, by projecting with L. We note that

L-v=Sxv.v=".yxv=0
4 l

and since V X L. = —L X V — (2V/i),

L-VXL=-LxV=-LxL-V=-iL-V=0(,
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and
L*y =L-E. (5.10.21)
Thus,

Y = #L-E (5.10.22)

provides an expansion in spherical harmonics for ;. Note again that the
factor L in L - E precludes any problem with € = 0.

xV
Finally, ¢ is projected with L

- so that
iw
) V2 2 xV
LxV-VxL, LxVp o YL, -LXV g (5102
(1)2 i(l) w lw

The magnetic field is given by a formula very similar to (5.10.18):

E VXL VX V X (V x
p-Y*E_VxL _VxL, cY¥XOXL), - (51024
iw iw iw -w
VxL v?
= ——— iy + — Lyg (5.10.25)
iw )
Outside the charge distribution,
V x
V- and B= 2Ly, Ly  (5.1026)
iw

Note the generalization of the relation (4.5.20) between electric and
magnetic dipole radiation. We interchange electric and magnetic radiation
by the transformation ¢z = Y, and i, = — g, which produces E' = B
and B’ = —E.

We next calculate the potentials from (5.10.19), (5.10.22), and
(5.10.23). We already know from (5.10.20) that

= - f dx' LX) (5.10.20)

x = x|
For s, we have from (5.10.22)

1
Uw=5LE (5.10.22)



5.10. Vector Multipoles 223

@ /eik|r-r’| .

= I r [ r'x V' -jr) (5.10.27)
) , eik[r-r'f ’ , .

= E dr e r’|(—V ) - [ X §(e)]. (5.10.28)

We recognize the source of magnetic radiation as —V - M, where M
is the magnetic moment per unit volume. If we call =V’ [r' x j(r')})/2 =
pm(r’), we have

2w eik}r‘r'l
— 1 dr’ r’ 5.10.29
L2 |l' _ r’l pulr’) ( )

Yng =

so that a Y, ,,, expansion will give us i, for all r outside the source, once
we know the asymptotic form. We use (5.5.13), which gives

Y m(£))

Yn = 8mie® Eh(k) @+ 1)

dr' YE.(Q) jelkr') prg(r’)  (5.10.30)

for r outside the source.
For ¢z, we have from (5.10.23)

Ui = LZVZL xV-E (5.10.23)
1 o p eik|r~r'| v 0

=-——{dr’ L' x V' (iwj(r')—V'p). (5.10.31

VZiLZ ,r—r'f ( J( ) p) ( )

Here again, we find a long-range instantaneous interaction arising
from the Coulomb operator 1/V* in (5.10.31). Since (5.10.16) shows that
such terms are absent in the electric and magnetic fields outside the
source, we may set 1/V? = —1/w? in (5.10.31), confident that the residual
Coulomb-like term will cancel against the field generated from i,
(5.10.20). The cancellation clearly depends on the identity that justifies
our calculation of ¢, , Y, and .. That is that the dyadic

V1V+L1L L
v? L?

-1 (5.10.32)

where :{ is the unit dyadic. This identity is not at all obvious and difficult
to prove directly, but must be true in view of the completeness and
uniqueness of the representation (5.10.1), subject to the usual boundary
conditions.
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We continue to work on (5.10.31). Since

1 1 o+ V?
v = - e e (5.10.33)
and
eikr
(w2 + Vz) = —47(r) (5.10.34)
r
(5.10.31) becomes
where
1 eikbr—r’l
e, = — —Zjdl" L' XV j) (5.10.36)
L Ir—r'|
and
4 1 .
‘/’E2=—?ELXV-J. (5.10.37)

Our result is contained in (5.10.36), the retarded field. The electric field

generated by ¢, must cancel that of J, outside the source. That is, we
must have

Vi (r) +

v X L Pro(r) =0 (5.10.38)
I

w
for r outside of the source, with ¢, and ¢, given by (5.10.20) and

(5.10.37), respectively.
We recall, for a localized function f,

ﬂvlsz(r)z_ %r’fil) (5.10.39)
r -r
so that
dr 1
e [ el i) (5.10.40)

and for r > r'
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Y (2 1
Ve, = 3 YerlS)

— drlfy*mﬂl ervy.. ,. ) )
P TN R m(€7) ir).  (5.10.41)

We expand

’ IJAEY) 1 ’ ’ r e 1
L' XV - § == X V) X V1) = < [V + 2V + 1 V'] ()
l 1
(5.10.42)

We substitute V' - j(r') = iwp(r'), integrate (5.10.41) by parts, and remem-
ber that V"2 ‘Y %,.(0)') = 0. There results

- _ Y(m(Q) ! — rfy*
venm = B a7 v -0 e Y @)
-2l [ ey 1@ pir). (5.1043)

Note here that the coefficient of 1/€ vanishes at € =0, so there is no
singularity at € = 0. Since the electric and magnetic fields are generated
from i, by acting with (V X L)/iw and V?L, respectively, the £ = 0 com-
ponent of =, makes no contribution to either. Note also that the magnetic
field outside of the source generated by i, vanishes, since Vg, = 0
there. We turn finally to (5.10.38):

VXL

Vi + ¢EZ=V¢L+V1(1 +rai> e, =0 (5.10.44)
w r

where we have again made use of the equation Vi, = 0 for r outside of
the source. We find thus that the fields generated by ¢, and g, cancel
outside of the source; only iz, and i, contribute. This is not the case in
the source, as we shall see in Section 5.12.

Our final result for g, is then

1 eiklr—r’}
dr’ L' x V' -j{"); 5.10.36
T et i) ( )

Ve, =
expanded in spherical harmonics, (5.10.36) becomes

((kr) ' ' T
k?_:,ngw )Y,,,,(Q)Jdr jelkr) YE (YL X V' - j(r').

(5.10.45)
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It is again the case that the asymptotic e”/r coefficient of each Y.
produces a known r dependence, h(kr), as long as we stay outside of the
source.

We can see why i is called electric by considering the small kr’
behavior of the integrand in (5.10.45). The algebra is almost identical to
that leading to (5.10.43). The source function is

L' V) = e x V) X V'
l

— ‘1‘(]' R VAL vA rIVlZ) 'j
l

EECE 4 S LS OO
l

| —

=-[( -V +2)V' -j -V -j];

o~

Finally,

12007, &

L% V') = [(r - V' + 2)p] — : I (5.10.46)

Now integrate (5.10.45) by parts, keeping only the (kr)‘ term in j.(kr).
Since V'2r'€Y,,,(€)') = 0, the last term in (5.10.46) makes no contribution.
The first term gives

(—3 +2- r'i>r[: -1+ 07
or’
so that the €, m amplitude is given in this approximation by
J dr' p(r'yr'‘Y (),

appropriate to an electric multipole. Of course, the labels electric and
magnetic are only labels. The importance of the scalar functions ¢ and
Yras is that they permit a spherical harmonic expansion of the vector field
radiation to be made. We shall see, just as in the scalar case, that the ¢,
mth multipole has simple angular momentum properties.
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5.11. ENERGY AND ANGULAR MOMENTUM

We define the multipole amplitudes as

eikr eikr
bu—>— 2 Yo, and  Ypo"— 2 Yenabn
r ¢m r ¢ém
The average flux of energy is the Poynting vector,
— * X
P =Re E B.
29
With
v
E=Lyy+— XLyg (5.11.1)
iw
V x
iw

the radiated power is then

*
d,_,szads=—1—j(L¢M+VXL¢E) x(V.XLwM—L:pE)-ds.
dt 2w

iw iw
(5.11.3)

Since we only need the constant (as r — ) term in (5.11.3), we may set
V = ikT,sothat

aw 1

-J (Lpps + F X Lp)* X (F X Ly, — Lipg) - Tr° dQ,
da 2=

(5.11.4)
The purely magnetic term is

dW y

=—1~Jr2dQ(L¢M)*X(f'XL¢tM)-?
dt 2w

1 % . 2
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SO
dWu_ 1y e+ al.)’. (5.11.6)
dt 277' €.n
Similarly,
AWe _ 1S 4o+ 1) a5, L. (5.11.7)
dt 27T (an

The cross-terms between i and i ,,, when integrated over (), give zero.
We turn next to the radiation of angular momentum. Recall from
(3.8.21) that the outgoing flux of angular momentum through a surface is

F,= —Eijk f asex;Ti, (5.11.8)

where T, is the Maxwell stress tensor

1 1
Tk( = (EkE( + BkB{ - 5 5k('E2 - %6”(B2> . (5119)

47

The terms with 8,, arc orthogonal to the spherical surface, so there
remains, in vector notation,

IF:ffdﬂ(r‘E"‘E><r+r-B*B><lf)- (5.11.10)
o

Note that F appears to grow linearly with r, since the E and B fields go
inversely with r. Hence, there must be a cancellation of one power of r.
With
\
E =Ly + — X Lig,
1w
and (5.11.11)

v
B= XLy~ Lg
tw

(since ¢, and i, cancel away from the source)

L2
roE="yg (5.11.12)
w
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and
LZ
r-B=—iy (5.11.13)
w
and the cancellation has occurred.
There remain E X rand B X r:
VXL
EXr=—<r><L(//M+r><( - >¢E,> (5.11.14)
lw
and
VXL
iw

Again, the gradients must act on e'*” to give ikT, so

E)(r:—(rXLlI/M+rX(i:XL)dIE]) (51116)

and
Bxr=-—(r X (FXL)py—rxLyg). (5.11.17)
Combining, we find for purely electric radiation an angular momentum

Fo=— 3 g€+ DatELomabn (5.11.18)

27w €m.m’
and for purely magnetic radiation

Fu=—— 3 o+ Da L, at, (5.11.19)

27w {mam’

where L,,,, is the quantum mechanical matrix element of the operator
L between the states m’ and m:

Lo = J dQY ¥, LY. (5.11.20)

Note that different € values do not interfere. Since (L;)mpm = MOy, the
z-component of angular momentum is particularly simple. For a single
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¢, m multipole, it is
F,= —1—-€(€ + Dmlac,.|* (5.11.21)
27w

and the ratio of the z-component of angular momentum radiated to energy
radiated is

F. _
dw
dt

(5.11.22)

m
w

which suggests that the wave described by a,,,, would in quantum theory
carry a z-component of angular momentum #im. The suggestion is correct.

The mixed EM fluxes are not so simple. They involve integrals of the
form

L? L?
FEM=f[_ Y X LIIJE—“‘l!IZ*l'XL(/IM} aQ (5.11.23)
w w

. M E
which connect ¢, 's and a «,’s.

5.12. MULTIPOLE SCATTERING BY A DIELECTRIC

The expansion of a field amplitude in electric and magnetic multipoles of
given £ makes it possible to reduce three-dimensional scattering problems
to one radial dimension for each ¢, provided the system is isotropic—that
is, rotationally invariant.

We illustrate this by deriving the general equations for scattering by
an isotropic medium and carry out the calculation for the simple case of
a uniform spherical dielectric.

As usual, we start with Maxwell’s equations:

VXE=iwB, VXxB=—iweE, and V-eE= 0,
which give the equation for E

VX (VX E)=ow’E
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or, from (5.10.18),
VXL

E=Vy, + Ly + — ¢
Lo
SO
VXL v
—VZ(L«//M + «//E) - wze(vm 4 Lyy + 2L wg) (5.12.1)
H143) i@
and
VXL
v. e(w,L + gy + ¢E> =0. (5.12.2)
114

We project the magnetic amplitude by operating on (5.12.1) with L
dot. Since the commutator [L, €(r)] = 0, we find

~V2L Yrp = weL%p (5.12.3)
or

V2 = w€Pa (5.12.4)

provided we leave out the undetermined € = 0 component that does not
contribute to the fields.

Equation (5.12.4) shows that the magnetic amplitude is decoupled
from the longitudinal and electric amplitudes, and can be found
independently of the other two. Since (5.12.4) is a scalar equation, the
function ¢, can be expanded in amplitudes of definite €, just as in the
scalar case studied earlier. There is one important difference: The incom-
ing field has a polarization direction that produces a significant azimuthal
dependence in the scattering and requires the introduction of Y, ,’s for
m # 0 in the expansion. We will see this shortly when we take up scat-
tering by a sphere.

We project the electric amplitude in (5.12.1) by the operator L X V,
which gives

VL2

lw

VZ

Yep=w? L X V'E(Vlﬁ[‘*‘Ll//M‘*“VXLlI’E)

w

or, with €' = del/dr,

232y 2 . V X VZ 2
g‘v—.)—IJ_lllE:szxr-f,<V(/IL+Ll/IA4+ N L(/}'E>+(l)2€<— L)(l/E
lw lw lw

(5.12.5)
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or
4y 2 Pt 2 L2 YV +1
Y - VLRwey, = (Lzm JEe VD w)
iw r @
or
3 -V +1
Ve + 0’eVip = -2 E/<¢L + l//E>
r w
or

VAV + o) yr= 0’1 - €) Ve~ “’—'e'(«n AR ¢E>.
r @
(5.12.6)

The equation for ¢, is given by (5.12.2):

' 2
Vi, + = (r Vi, + L w5> =0. (5.12.7)
r w

Thus, ;. and ¢ are coupled via (5.12.6) and (5.12.7); however,
since both equations are spherically symmetric, different € values are not
coupled. The coupling of i, and ¢ results from the fact that the parity
of each Y,,, is the same in ¢, and Yz, but opposite in 1, Thus, the
rotational and inversion invariance of the system that requires decoupling
of the different £ values permits coupling of ¢, and i g; since any interac-
tion that is not forbidden is, in general, allowed, this coupling appears.
Note that in especially simple cases, such as our example of a spherical
dielectric, with €’ = 0 except at the surface of the sphere, this coupling
may disappear. We find again the presence of an apparent pole at V> = 0
(leading to 1/r at infinity), which now must cancel between the actual
fields produced by ¢, and y ..

Clearly, the general problem of scattering by a dielectric is a hard
one, and we do not address it here. We turn instead to the special case
of scattering by a uniform dielectric sphere.

The equations satisfied by the potentials follow from (5.12.1) and
(5.12.2) by setting € equal to a constant: € = 1 outside the sphere and € =
€ inside the sphere. Thus, from (5.12.7), V*§, = 0, inside and outside,
and we are free to set ¢y, =0 and 5, = 0 (provided we can satisty the
appropriate boundary conditions at the surface without them). From
(5.12.4) and (5.12.6), we find

(V+ewD)dpy =0 and (V2 +ead)Pe=0. (5.12.8)
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The boundary condition at r = R (the radius) are, as usual, E+ and
B continuous, D,orma ANA Bhorma CONtinuous.
From

E= Loy + Ly, (5.12.9)

lw

we look for continuity in E,. Since E; continuous at r = R implies L - E
continuous, L*y,, must be continuous; therefore, Yps 1S continuous at
the spherical boundary. The tangential component of the second term

ist X (V X L), so we must have

r x (VX L)yg continuous, (5.12.10)
or
L(l+r Vg
and hence,
A+r-VYeg= (1 + r?) iy continuous. (5.12.11)
r
From
VXL VL
iw w
or
VXL
B=——¢n — €Ly (5.12.13)
iw
we learn that
€y g = continuous (5.12.14)
and
0 .
(1 + ra—> ¥ as = continuous (5.12.15)
r

It is easy to verify (as we already know from Problem 3.9) that the
boundary conditions we have just found from the tangential continuity of
E and B also guarantee the normal continuity of B and D = €E. Therefore,
Yar and yx are completely determined: They satisfy the wave equation
(5.12.8) and the boundary conditions (5.12.10), (5.12.11), (5.12.14), and
(5.12.15).
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s and ¥ ¢ have Y, expansions

M
W= 2 CH Yo (0, w)”‘—(’) (5.12.16)
ém r
and
E
W= c';),,,Y{,,,,”—‘@ (5.12.17)
&om r

where the functions v}’ and v are independent of m.

The coefficients C¥,, and C%,, must be determined by the incoming
wave boundary condition at large r.

We easily solve for v, (electric or magnetic). For r <R,

v, = udk.r) (5.12.18)

where k., = Vew = nw. For r >R,

U(=A[U('+ quf (51219)

where A, and B, are determined by the boundary conditions, and u, and
q. are defined in (5.5.17) and (5.6.12).

Note that g, may be chosen to be real, since the equations and
boundary conditions are real; then A, and B, are real, and define a phase
shift via

& =tan d,.
Ay

Matching the boundary conditions for v}’, we have

a\v¥ . ot .
1 + r—)— continuous and vy continuous.

ar/ r
Thus,
Asus(nkR) = cos 8 ,u,;(kR) + sin 8,.q,(kR) (5.12.20)
and
Asu{nkR) = cos d,u;(kR) +sind,q¢(kR). (5.12.21)

The prime in (5.12.21) and (5.12.22) stands for differentiation with respect
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to R, not kR. The parameter ¢4’ to go into Eq. (5.6.15) is

_ ue(nkR)

'3 4 GkR)’ (5.12.22)

which for small k& goes like (£ + 1)/R. Thus, from (5.6.16) the normal
term in 8} of order k**! vanishes; the first nonvanishing term is of order
k*“*3, clearly a consequence of the w® dependence of the interaction
strength. This does not happen for the electric amplitude, as we now
show.

The boundary conditions for s are

€ continuous (5.12.23)
and
) .
(l + rg-) g continuous. (5.12.24)
r
With
Ve
Ye=—, (5.12.25)
¥
these become
€v¢ continuous (5.12.26)
and
E
%Ut— continuous. (5.12.27)
r

In this case, the parameter ¢ becomes for small

€+ R
£ R (5.12.28)

and, from (5.6.16),

<€ +1 €+ 1)
26+2
8, — —k3! R R__R (5.12.29)

(¢ + NN2E - 1N ((; 1 e)

€
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which for € =1 is

€—1
e+2

PYR % (kR)® (5.12.30)

To relate this calculation to scattering, we must determine the incom-
ing fields ¢/, and '}, in terms of

A

E,=8"¢*" and =k xe"e™r, (5.12.31)

We use the expansion (5.5.14) to expand e™*" in spherical harmonics:

e =Y (¢ + 1) P((f( Py (kryif, (5.12.32)
and
é() -
E, = 72(26 + 1 P(k-T)uci. (5.12.33)
cr

We solve for ¢4, and 4% as usual

1 A L 2 AL
= k—rE(ze + 1) u e Py (5.12.34)
'
and
(¢] w A() Ikl‘ k A() lkr
= -5 5LxV. =~——L><
Ve i V2 L2 )
1 ~ [ ik-r
=+Ee“‘k><Le" (5.12.35)

M

20+ 1)i), (kr)-—"“ kxXLP(k-T).  (5.12.36)

We have to deal with two spherical harmonics of order ¢:

Al
M e L

Y= 5 P.(k-T) (5.12.37)
and
i B! X f( . L IATVN
YE = E—L—z—— P.(k-1). (5.12.38)
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Note that both ¢ = a, and 8" x k = a, are transverse vectors to the wave
vector k. For either of them,

. L A A

Y’,;=a,--z‘;_P6(k'r)
it

Wiy

ajr k
H

P, 5.12.39
e+ 1) ! ( )

Now choose k in the z-direction. Since r =kcosf +7sinfcose + ]
sin @sing, T XK is

f xk=—7sinfcos g + fsin fsin ¢ (5.12.40)

and

c1
Y'c==(aj,sin ¢ — a;, cos ¢) sin P ;(cos 6), (5.12.41)
i

which is a spherical harmonic of order ¢, linear in e¢™'® and hence a
combination of Y, (8, ¢) and Y._,(6, ¢). In expanding the scattering
amplitude (8, ¢), we must accordingly introduce the spherical functions
Y# and Y% defined in (5.12.37) and (5.12.38).

As in the scalar case studied earlier, we require that the y, amplitudes
consist of the known incoming wave iy, plus an outgoing wave with an
unknown coefficient. That coefficient is then fixed by the requirement that
the resulting wave function for each (¢, m) be a multiple of the known
radial solution v,.

The incoming magnetic field ¢/}, is

o= %% 20+ D u YV, 0), (5.12.42)
and the incoming electric field ¢ is

vo = kiz i@+ u Y@, ¢). (5.12.43)
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The scattered field is, in each case,

e XS i e+ 1) Y6, 0) f (5.12.44)
Y ¢

where f, is determined by the requirement that as r — o,
£
o+ wSCQkLE e+ Y, C, sin(kr - 777 + 8¢> (5.12.45)
Y ¢

for some C,. Equation (5.12.45), in turn, requires

eziﬁl -1

= 5.12.46
fe=—2 ( )

for the magnetic or electric amplitude.
The scattered electric field is now

v
=Ly + — X Ly%E (5.12.47)
lw
or, asymptotically,
E*— Ly + £ X Ly,

and the scattering cross section is the square of the vector coefficient of

e /rin (E* (for €”* - 8° = 1), as defined in (5.7.5); for each partial wave,
that coefficient is

f,= Q€+ DLYY Y+t xLYSFE). (5.12.48)

We calculate separately the noninterfering total magnetic and electric
cross section for each ¢:

oM =2t + 1)2{f?’(2JdQ(LY’(”)* LYY

=€ + D2+ 12 NP f dQY¥xyH, (5.12.49)
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But
w_ &L
C e+ ¢
and
~AQx . AQ .
JdQY’X*YM=J’dQP( grle L,
[€(€ + 1)]
= Am (5.12.50)
2026 + 1)(€(€ + 1))
so that
oM
4w (20 + 1) |2 ~ 12
M_ 5.12.51
7t 22 2 ( )
ot is a little harder:
agf=2¢+1)y |ff|2fd9(i~ X LYH*Fx LY%) (5.12.52)
— e+ 1)2|f§€12fd9 YEEX L Fx LYE + o(l) (5.12.53)
r
— Qe+ )| fER e+ 1)fdn YEXYE.
But
. exk) L
Yf = ( Lz) P[s
SO again,
4m(26 + 1) | ¥ - 1)2
o = 5.12.54
‘ 2U? 2i ( )
Substituting the result for 8% for £ = 1, we find for small %,
8w /R*e - 1)\
of s —k“(——i~———) . (5.12.55)
3 €+2

We recover, for small € — 1, the result given by (5.9.24), which as k — 0
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gives
1) 4
PRI Clall B LAY (5.12.56)
41 3
and
-1 2 2
o= w4<§3_> R6'47T'§. (5.12.57)

The result (5.12.55) shows that the electrostatic polarizability o =

(e — 1)/(e + 2) R of a dielectric sphere dominates the low-frequency scat-
tering cross section.

CHAPTER 5 PROBLEMS

5.1. From the reality of the interaction applied to the scattering of a
scalar wave, we tound the scattering amplitude to go from wave
number k; to k, (with |k, | = |k;| = k), f(kz, k,), was given by

[k, k) = 2 (2€ + 1) Py o) £ () (1)
where
¥~ 1 ¢®rgin §,
fetk) = Py (2)

and & real. y, therefore satisfies a partial wave optical theorem:

Im f, = k{fflz-

From (1) and (2), prove the generalized optical theorem for |k,| =
'k(l =k:

Imfm%ko:kjd““
41

ka2, K) f(Ky, K).

8.2. For a scalar field scattered by a complex potential, the wave function
cannot be chosen real, and the asymptotic form for a given € will
not approach g, — sin[kr — (£7/2) + 8] as r — = with §, real. The
asymptotic wave function g, will approach ¢, — a sin [kr — (£7/2)]
+ B cos [kr — (€7/2)], where a and B are complex functions of k.

(a) Show that one can always uniquely (to within *n=) find a §;
such that g, — A sin [kr — ({#/2) + 8] with complex 8, and that
the scattering amplitude for that case is f, = (e*™ — 1)/2ik.
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(b) Suppose energy is absorbed by the system. Apply the energy
calculation used to derive the optical theorem to a single partial
wave to decide what the sign of Im §, must be if the target

absorbs energy.

(¢) Give an example of a (nonlocal) potential that will scatter only

an £ wave.

Consider the scattering of light by a perfectly conducting sphere of
radius R. The complex electric field outside the sphere satisfies the

wave equation
(V' + w)E=0

and the divergence condition

(a) From (3) and (4) and the multipole expansion

V xL

W

E=Vy,_ + e + Ly,

verify that outside the sphere, for € # 0,

V2, =0, (V>4 0)Py=0, and VIV’ + 0 ) =0.

(b) With
Ve =g, + Yr,,
and
(02 + V), =0, Vi, =0,
verify from (3-8) that we must have

VXL

W

l//1-:3 =0

3)

“4)

(5

(6)

(7)

8

and that this equation can be satisfied outside the conductor for

both ’s # 0.

(c) Write the boundary condition that must be satisfied by ¢, and
¥ at the surface of the sphere. From these, calculate the electric
and magnetic phase shifts ¢ and 87 and the low-frequency

limits of the partial wave cross sections o% and o¥.

(d) In part (c), you found that 87 and 8} — k*“** for small k. How
can this be? We found in Section 5.12 that, for any e,
8 5 k**3 a5 k — 0; but we can include conductivity in € by
letting € — € + (io/w), and a perfect conductor by taking the

limit o — o=, or € — %, What went wrong?
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(e) From (5.6.15) and (5.12.22), calculate the first nonvanishing
power of k and its coefficient in the magnetic phase shift
f¥ (k). Repeat the calculation starting from the perturbative
result (5.9.24) and show that the results agree for small € — 1.

(f) Calculate the £ = 1 electric phase shift from (5.9.24) and show
that it agrees with (5.12.30) for small € — 1 and k — 0.

Calculate the € = 0 scattering length for a scalar field scattered by
a square well potential
U(r) = UQ, r<R
U=0, r>R

The equation for g, is the Schrodinger equation (for € = 0):
2

d”q 2
=2+ U(nqg=k4q.
e (nq q

The boundary conditions are g{r = 0) = 0, and g and dg/dr continu-
ous at r = R. Consider separately the three cases (a) U, >0, (b)
Us<0and V-UyR <1, and, (c) Uy <0 and V—UyR close to w/2.

The Schrodinger equation (5.3.2) has the integral form (with a slight
redefinition of U)

1 eik0]r~ r|

blr) = e — -

47 ) jr—r'

U(r')dr ¢(r').

It is sometimes useful to Fourier-transform the integral equation.
To do this, show first that

(a)

ik .
e™” . 4m dk e™*

im .
ro e—so+ 2m)) k2~ ki —ie

(b) Then show that the integral equation for y(k)=
fdr’ e *TP(r) is

X0) = 27)° 8 (k — ko) — T f AU (k, K'Yy (K')

K2 — k3 — ie
where U(k, k') = 1/(2m)* [ e™*"U (r) €™ "dr.
(c) Show that the scattering amplitude fis

— _i ’ ! ’
f= 47,f‘“‘ Uk k)x (k).

where k, = kT, with T the direction of observation, and therefore
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f= % (k2 = kD) (x(k) — 27) 8°(k — ko).
w

(d) Check that for small U (to be defined) and X, — 0, the results
of (c) above agree with what you found in Problem 5.4.

(e) Repeat (a—c) above for U, a nonlocal potential, defined by
Up(r)=U(r,r') ¢(r') dr'.
Show that the only change is that U(k, k') becomes

1
@y’

Uk, k') = f e e U(r,r') ™" dr’.

A nonlocal potential for which the scattering equation can be solved
exactly (i.e., in terms of integrals) is a product potential:

U(r,r') = g(r) g*(r').
Find the scattering amplitude in terms of the Fourier transform of
8

h(k) = fe""‘"g(r) dr.

Apply the factorization techniques of Section 5.5 to the Schrédinger
equation for the one-dimensional harmonic oscillator:

Hy —(—1£+1x2>¢~Ew —o <y <<
8 2dx* 2 A '
The factors are a, = —(d/dx) + x and a- = (d/dx) + x.

(a) Show thatag,a_ =2H —landa_a, =2H + 1.

(b) Show that if H = By, then Ha, ¢y = (E + 1)a, ¢ so that a, is
a raising operator, and that Ha_y = (E — 1) ¢ so that a_ is a
lowering operator.

(c) The positivity of H shows that there must be an eigenfunction
of H, i, that cannot be lowered. Use this to find the lowest
eigenvalue (E = 3) and corresponding normalized eigenfunction
($o = e~x2/2/ﬂ_1/4)‘

(@) The nth eigenfunction, with energy E,, = n + 3, 1s given by
Lll,, = A(a+)n ‘1’0'
Calculate the value of A required to normalize .

Apply the factorization techniques of Section 5.5 to the Schrodinger
equation for the isotropic three-dimensional harmonic oscillator,
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with angular momentum quantum number ¢:

1d> €+1) 1 2>
Hu,= —=-"=+=="+=r v
e ( 2d 22 2 )Y

= E.vg, Osr<w and v0)=0.

The factors are A; = —(d/dr)+ {/r)+r and A = (d/dr)
+(Elr) +.

(a) Show that A; raises ¢ and E, by one unit each, and that 4,
lowers € and E by one unit each.

{(b) Finding the spectrum here is more subtle. The lowest value of
¢ is zero, for which H, becomes H of the preceding problem,
with the difference that in this case the wave function must
vanish at r=0. Thus, only odd harmonic oscillator eigen-
functions are allowed.

Using all this, give the eigenvalues E (n,) as explicit
functions of € and n, (the harmonic oscillator quantum number).
Give the allowed values of € and n,.

(¢) Show how the € = (0 wave functions fail to be lowered by A, .
(d) Using the separability of the Schrddinger equation,

<1<d2 d*> d?
_-__+~.+_

]' 2 2 2)
+ SRy 4 = Ey,
Nde® dy? d22> LY Je=EY

find the eigenvalues £ as sums and the eigenfunction s, ..,
as products of the eigenvalues and eigenfunctions of the three
one dimensional oscillators.

Write explicitly all the eigenfunctions for which n, + n, +n,
=2 and show how these appear when characterized by ¢ and
n,.

5.9. Show that the next term in the expansion of h.(kr) at large kr is

given by

e €€+ 1)i
h’(kr)zkri‘“(H 2kr +)



CLASSICAL FIELD THEORY

ELECTROMAGNETISM AND GRAVITATION

Francis E. Low

© 2004 WILEY-VCH Verlag GmbH & Co.

CHAPTER 6

Invariance and Special
Relativity

6.1. INVARIANCE

When we say the laws of nature are invariant under a transformation,
we mean that it is impossible to determine whether that transformation
has taken place. To illustrate, cousider invariance under time translation.
The physical meaning of this invariance is that were we to go to sleep and
wake up some time later, no experiments we perform before and after
our nap (not counting looking at a clock) could tell us how long we had
been asleep. That is, the laws of Nature do not change with time; they
are the same now as they were then.

The mathematical expression of this invariance is that the equations
governing the system we are describing are invariant under the transforma-
tion t' =t + A. For example, Newton’s law of gravitation,

d’r, (r; —x))mm
mi—= 5= YR
dt j#i v, —r;l

can be expressed in terms of t':

d dr __ 3 G - ;) mm
d[ JjFi |l',~ l'j‘3 .

Since the two laws are the same, the phenomena they describe
(gravitational motions) cannot tell us whether we are using r or ¢" as a
clock. (See Appendix A.2 for further clementary discussion.)

Similarly, translational invariance makes it impossible to tell whether
our laboratory has been picked up and moved to a new location.

245
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Rotational invariance makes it impossible to tell whether our labora-
tory has been turned around.

Thus, translation and rotation invariance together tell us that space is
homogeneous and isotropic.

Invariance with respect to a constant velocity transformation makes
it impossible to tell if our laboratory has been gently accelerated to a new
velocity. All these invariance principles are believed to hold exactly.'

There is one other class of invariances believed to be exactly true:
these are gauge invariances analogous to the gauge invariance of electrody-
namics.

There are two more space-time connected invariance principles that
are approximately true: inversion invariance (called P), which forbids
knowing whether you are looking in a mirror or at the real world; P is
broken by the weak B decay interactions. An invariance that holds much
more accurately, called CP, forbids knowing whether you are looking at
the reflection of a particle in a mirror, or at an antiparticle in the real
world. CP is known to be violated, but very weakly.

The second approximate space-time invariance, which is also weakly
broken, is time reversal invariance, called T. This invariance tells us that
every motion has a reversed motion that is equally possible, with the
same coordinates and accelerations, but opposite velocities, occurring in
backward order in time. The classical laws of mechanics and electromag-
netism are invariant under P and 7.

In relativistic quantum field theory, it is shown that CPT must hold
exactly. That is, 7 must be violated just enough to compensate in CPT
for the violation of CP. CPT says: You cannot tell whether you are
looking at a certain motion of particles in the real world, or looking in a
mirror at antiparticles undergoing the time-reversed motion.

We may express the space-time invariances in terms of infinitesimal
transformation of coordinates. Thus, for translation in space or time:

t'=1t+ At, X' =x+ Ax, y =y + Ay, 7' =z + Az
(6.1.1)

We have three rotations:

'Of course, real space in our universe is filled with masses that generate gravitational
fields. It is our common experience on Earth that space above our planet is neither isotropic
nor homogeneous. What does appear to be true is that for phenomena occurring on a
distance and time scale that is small compared to the length and timescale of the gravitational
field, there exists a class of observers for whom these space-time invariances hold. This
follows from the equivalence principle, which tells us that an observer in free fall in a
gravitational field will have no local way of determining that there is a gravitational field in
the neighborhood. Of course, the falling elevator must not be so large that the convergence
of the field lines toward their source can be detected.
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x' =x+ yAs8, y =y —xA6, 7'=z. (6.1.2)

and two more infinitesimal rotations about x and y.

One can express finite translations and rotations by iterating in-
finitesimal ones. For translation, this is trivial. For rotations, note that
(6.1.2) is equivalent to

<;‘) =1+ iAan)<;> (6.1.3)

0 —i
where o, = ( i 02)’ Repeated N times, with NAf = 6, the finite rotation
14

is

OG0l

or, as N — o, with 8 remaining finite,

<x:>=emv (x)=< xc?50+ysin 0). (6.1.5)
y' y —xsinf + ycos 6

An inversion cannot be generated by a succession of rotations, since
the determinant of the rotation matrix a;; in x; = a;;x; (Summation conven-
tion) is 1, whereas an inversion x; = —x; has determinant —1.

Finally, we come to the transformation between observers moving
with constant but different velocities. Newtonian mechanics has an invari-
ance of this kind, called Galilean invariance, with the transformation given
by

X; =x; — v, i=1,2,3. (6.1.6)
The Newtonian equations

d*x?

== 2 Fe(xt — x?) (6.1.7)

b

are clearly invariant under the transformation (6.1.6) for a force law F;
that is independent of velocity. Thus, the Newtonian world would have
velocity invariance (called Galilean relativity) were distance measurements
to transform according to (6.1.7)—that is, were the distance between
simultaneous events the same for all observers.
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Another consequence of (6.1.6) is the addition rule for velocities:

dej _dxi (6.1.8)
dt dt

Thus, if observer O observes a velocity v?, an observer O’ will observe
the velocity

v =vP - ;. (6.1.9)

Evidently, Maxwell’s equations cannot be invariant to the transforma-
tion (6.1.6), since they predict a unique light velocity ¢, independent of
the velocity of the observer or the source.

Thus, if there is a principle of relativity (invariance under constant
velocity transformation), then either the transformation (6.1.6) is wrong,
and Newton’s laws must be modified; or Maxwell’s equations are wrong,
and the modified equations must somehow contain the possibility of the
velocity addition law without containing the observer’s velocity as a para-
meter.

No such modification has been found, although it must have been
diligently sought. Einstein took the first view: There is an invariance
principle, Maxwell’s equations are correct, and they are invariant to the
correct, transformation law (to be found) replacing (6.1.6).

6.2. THE LORENTZ TRANSFORMATION

We are thus led to study (first in one dimension) the kinds of transforma-
tion that could hold between space-time measurements made by different
observers moving with constant velocity with respect to each other. It will
turn out that we are almost uniquely led to a Lorentz transformation, with
a velocity parameter c. Galilean relativity results from ¢ — . Einstein’s
relativity results from ¢ = velocity of light.

The most general transformation that leaves space homogeneous must
be linear:

x' = y(u)x ~ vr). (6.2.1)

Thus, the trajectory x = vt corresponds to x’ = 0. That is, the origin of
the O’ coordinate system moves with velocity v to the right in the O
system.

Let us assume that the O system moves (to the left) with velocity
—v with respect to the O’ system. Then, of course, assuming ¢’ = ¢, we
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must have
x=vy(—v)(x" +vt) (6.2.2)
which together with (6.2.1) implies v = 1; back to Galileo.
It was the remarkable insight of Einstein here that relations between
space-time measurements made by different observers cannot be derived

by logic, but are empirical. There is therefore no reason to insist that time
intervals between events be invariant. Einstein wrote, instead,

x' = y(U)(x — vr) and t' = 8(v)(t — B(v) x). (6.2.3)
The transformation from —x to —x’ should have a velocity —v. Then
~x' = y(u)(—x — vt) should be equivalent to x' = y(—v)(x + vt), or
y(v) = y(—v). Similarly,
=8+ B(v)x)
should be equivalent to
' =8(-v)(t - B(~v)x)

so that 8(v) = 6(~v) and B(—v) = —B(v).
Now solve for x, ¢ as functions of x',¢". From (6.2.3),

t!

t= E + Bx (6.2.4)
so that
v =yw(x=o(5+8)) = 0|51 - g0 - %
or
xy(l1-Bv)=x"+ v%t’ (6.2.5)
and
. (6.2.6)
Y

Since we have here

x =y +uvt)
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it follows that

y3(1-Bv)=1. 6.2.7)
Define
v
B= 20 (6.2.8)

where ¢(v) has the dimension of velocity.

We now show that c(v) must be a constant by requiring that two
successive transformations of the form (6.2.1) and (6.2.3) must again be
of the same form. That is, we set

x" =y - v't) (6.2.9)
and
PPN SV
"=y )(1 C,zx ) (6.2.10)
or
X" = y(v') y(v) [x(l + EC%I) - t(v + u’)] (6.2.11)
and

"= y(v) y(u’)[t(l + %l,)—;) - )c(z2 + —C%)] (6.2.12)

C

so that ¢’ must equal c; thus, c is a constant. The rule for adding velocities
is

(6.2.13)

vo’

and

y(v) = - (6.2.14)

i —
o }C
ol
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We note that the addition law for v and c is

v+c

u= =c (6.2.15)
E
c2

1+

so that the speed c is a limit, seen to be the same for all observers. Thus,
the identification of ¢ with the velocity of light will guarantee the constancy
of that velocity for all observers, consistent with the straightforward inter-
pretation of Maxwell’s equations.

Clearly, the simplest three-dimensional expression of this transforma-
tion is

x'=y(x-vt), t’=y(t—%x), y'=y, z'=z. (6.2.16)
[

A few remarks on (6.2.16) are in order. First, these equations must
relate space-time intervals. Evidently, the origins of the O and O’ space-
time coordinate system could be different, in which case we would have

— _— L — _.l_)_x_
x' = y(x —vt) + xg, t'=ylt R
c

with x, and to the same for all events instead of (6.2.16). Equation (6.2.16)
holds when the origins of the two coordinate systems pass each other at
a time that both observers call zero. If there is any confusion about this
point, rewrite (6.2.16) as

Ax" = y(Ax — vA1), At = y(At - gAz_x> 6.2.17)
¢

where Ax and Ar are the space and time intervals between two events;
Ax' and At’ are those intervals as measured by the primed observer.

Second, let us consider the behavior of clocks. Suppose we have a
clock at rest in O, and the time between ticks (say, birth and death of a
n meson) is T. Then the time between these events seen by O’ is, since
they occur at the same position in the O frame,

T'=vyT (i.e.,alongertime). (6.2.18)

Third, moving rods appear shorter. Suppose a rod is at rest in O’
with length L, that is, x; — x5 = L. Then, a measurement of the distance
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X, — X, at the same O time would give

L TS .
L=y —x) or (x1=x)=—=L,1-—, (6.2.19)
v c

the Lorentz-Fitzgerald contraction.
The simplest way to characterize the Lorentz transformation (6.2.17)
is by the invariance of the quantity

2
(ary? = (an - G (6.2.20)
c
or, in three dimensions,
2
(ary = (Arp - B (6.2.21)
c

Thus, the transformation between space-time measurements is (remember
the summation convention)

X =gk 4 AR X" (6.2.22)

where 1 =0,1,2,3, x"=ct, and the invariant interval® between two
events is

(AT)? = Ax"#m, Ax'" = Ax* ), Ax” (6.2.23)
with
Noo = 1, ni; = —0ijs Noi = Nio = 0, i=1,2,3.
In our one-dimensional example, with x = x,, etc.,
v v
A=y, A= gt A=y, A= —= (6.2.24)

The transformations (6.2.22) form the Poincaré group. The subgroup
with a* = 0 is the Lorentz group. The Lorentz group has six parameters:
three velocity transformations (boosts) and three rotations. The Poincaré
group has four more: the four space-time translations.

*The reader is warned that there is no general agreement on the sign of 7. Qur choice
makes (At)* > 0 for a timelike interval, that is, one with |Ar| > |Ax|/c.
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From (6.2.23) we learn that

Axru-n“VAxruz A#UAXUT]}“,AV,\AXA — AXU‘V],,,\AXA (6225)
or

AM(rnuuAVA = na'/\- (6226)
So, if we define

A"\ =A,, (amatrix) and A*,=A,,=A!

o

(6.2.27)
Eq. (6.2.26) requires that
A"pA =1 (6.2.28)

as a matrix identity defining the most general Lorentz transformation.
Just as in the case of rotations, we find from (6.2.28),

det n = det(A"nA) = (det A)* det ¢
so detA = =1.
Transformations with determinant +1 can be reached by a succession
of infinitesimal Lorentz transformations.® Thus, analogous to (6.1.2), we
can consider

x'=x - Avt, t'=1t- Avx

(where from now on we use units in which ¢ = 1). With £ = NAy,
, N
()-8 e )
¢t N t 10

=¢ ¢« (f) = cosh £ — o, sinh £) (':)

As N — o,

so that

(x’) _ < x cosh ¢ — tsinh §>. (6.2.29)

t' —~xsinh £ + fcosh &

3This does not include x’* = —x*.
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The transformation velocity is clearly
v = tanh §. (6.2.30)

The most general infinitesimal Lorentz transformation is specified
by a 4 x4 antisymmetric matrix that we call €,,. Thus, we set
A*, =8*, +e*,, and with €,, = n,.€"x, (6.2.26) shows that

€on + €xo = 0. (6.2.31)

Returning to the invariant (d7)°, we remark that the notation is
deceptive, since (d7)* can be negative or positive. For two simultaneous
events, (Af)* = 0, (A7)*> = —(Ax)?; the interval is called spacelike. For two
events at the same spatial location, (Ax)*=0 and (A1)* = (AT)%; the
interval is called timelike. In general, if the interval is spacelike, there is
a coordinate system within which the events are simultaneous. In
one dimension, At = (Ar— vAx)/V1 —v?, so setting v = At/Ax, with
|At/Ax| <1 for a spacelike interval, we find Ar’ = 0. Clearly, slightly
smaller or greater velocities than v can make At’ either positive or
negative; time order for a spacelike interval is not invariant.

Similarly, for a timelike interval, there is always an observer for whom
the two events happen at the same place. Also, for a timelike interval,
the sign of the time difference is clearly invariant.

We finally consider the consequence of an object moving with a super-
luminal velocity, that is, a velocity greater than 1. Suppose the object goes
from xi, t; to x,, t, where x; — x; = v(t; — t;), with v > 1. Then the (1,2)
interval is spacelike, and the time order ¢, and ¢, will be different for
different observers. That is, it will be impossible to say whether the object
went from 1 to 2 or from 2 to 1. Thus, no causal relationship between
events 1 and 2 can be established.

How can we write equations that are covariant with respect to the
Lorentz transformation—that is, equations which are the same for all
Lorentz observers, but which do not contain explicitly the velocity of the
observer with respect to a given coordinate system?

We have a clue in our treatment of rotational invariance. There, we
required that all equations be tensor equations— the tensors being defined
by a specific set of transformations: rotations. Thus, the basic tensor
in classical mechanics is a vector x;, or better, dx;, the (infinitesimal)
displacement between two points. Since dt is a rotational invariant, dx;/dt,
d’x;ldt?, etc. are all vectors, so linear equations joining d2x,/dt* to other
vectors, for example, (x; — y;)/|x — y|?, will be vector equations and hence
invariant under rotations.

We can do the same for Lorentz transformations. We define a contra-
variant vector under Lorentz transformations as an object V* such that
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Vi = ARV
An immediate example of such a vector is the coordinate differential,
dx* = (dx°, dx', dx?, dx?),

since dx'* = A", dx” precisely describes the way coordinate differentials
(space-time intervals between events) transform.

A more compact and convenient way of characterizing the transfor-
mation properties of dx* is

dx'* = ox'"

dx” (6.2.33)
ax?

or, for a general contravariant vector,

How do we construct a finite Lorentz (or four-) vector? We clearly
need an analogue to the use of dt described above for rotational invari-
ance. We recall the invariant

(d7)? = (dt)* — (dx)* = dx* m,, dx".
If the two events are separated by a timelike interval (and for two

locations of a particle moving with v < 1, they will be), (d7)” is positive,
and dr = dtV1 — v* will be invariant; thus,

dx* 1 v

=2 (= v

(6.2.34)

will be a four-vector, sometimes called the four-velocity.

We can now write a covariant equation for momentum conservation.
Let us call the four-vector p* (where mu* = p*) the four-momentum of
the particle with mass m. Then a covariant conservation law for a two-
body interaction, with a and b incoming, possibly different ¢ and d outgo-
ing, would be

P* =pl+phL=pc+pa. (6.2.35)

The covariance of the momentum conservation law requires a fourth
conservation law: energy. The energy, of course, includes rest energy:
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The four-vector

Pt =P (6.2.36)
has
mu
= 6.2.37
P=i— ( )
and
0 m
= . 6.2.38
P = ( )

For v <1, p ~ mv and p° ~ m + mv*/2, the nonrelativistic forms, but
with the rest energy (mc?) added.

The individual momenta are timelike with positive time components,
so their sum P* is timelike. Therefore, there is a coordinate system in
which the space component P’ is zero; it is called the rest system and is
usually the most convenient place to carry out calculations. We consider
the two-body example. First, we express the energy in terms of the mo-
mentum of each particle:

mv p
= e ——— 6.2.39
P Vit 7 Vp? + m? ( )
and
p’=Vp? + m2 (6.2.40)

Therefore, in the rest system of a and b, p, = —p, = p and

P =pd+ py=Vm2+p2+Vmi + p2. (6.2.41)
Since momentum is conserved, p. = — pys = p’ and energy is conserved,
P =pl+pa=Vm2+p?2+Vmi+p= (6.2.42)

The system will be exothermic or endothermic according to whether
m, + m, is greater than or less than m_, + m,.
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6.3. LORENTZ TENSORS

Since, for any contravariant vector, V*#7,,V" is invariant, so is
(Ve+ Uy n(VP+ UY)

and hence so is U*7,,V". Thus, given a contravariant vector U", there
exists an object

U, =n,U" (6.3.1)

such that U, V* is invariant for any vectors Up and V*#,
U, is called a covariant vector. From (6.3.1), with U* = (U°, U'), we
have*

U, = (U -U" = (U, Uy). (6.3.2)
Tensors under rotation have the property that their covariant and contra-
variant representations are the same. However, we note that if we had

used a nonorthogonal basis system, say, €,, as the basis vectors in three-
dimensional space, then any vector V could be expanded as

V=2,V (6.3.3)
A
and would be invariant under rotation. In particular, for the vector

dx = 2 e, dx*, (6.3.4)
A

the dx*’s would transform contravariantly, and since dx is invariant, the
e,’s transform covariantly.
The transformation law for covariant Lorentz vectors is

[
U= =2 U, (6.3.5)
since with
ox'*
(¥ o
s ax” v
‘We usually represent four-vectors and tensors with Greek indices, p, v,..., and

three-dimensional space vectors with latin indices, i,],k, . . ..
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we have
(6.3.6)

v I
X X ve = U8V = U,V
ax'™™ ax”

ULV'* =

where 6., is the usual Kronecker delta.
Conversely, if U, V* is invariant and V* is an arbitrary contravariant

vector, then U, is a covariant vector, since

'
Uy =u, Ty oy, ve
ax”

from which

Lorentz tensors are constructed in the same way as rotational tensors,
except that they can be covariant, contravariant, or mixed. Thus, we have

a second-rank contravariant tensor

ax'*ax'v
W= —— T, (6.3.7)
ax? ox
a second-rank covariant tensor
. ox? ax?
wy ’#A,; aA (6'3-8)
ox'* ox
and a second-rank mixed tensor
ax'™ axt
T, = —=——T%. (6.3.9)
ox7 ax'
Symmetry properties are invariant: For example, let 7, = +T,,,. Then
ox, ox , 0x, 0x
T;J.l/ = N A oA and TV;L = -, oA
ax'*ox' ax'v ox'*

interchanging the dummy indices o and A gives
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_ ax, dx,
dx'" ax'#
= + 90X, ﬂi
Toax'ax'™

r
v

Ao

— ’
oA T i-T[.LV'

There are several universal tensors. §* is a second-rank mixed tensor:

b X7 Ax' ox’* ax*
e Dy V') (6.3.10)
ax'" ax ax” ox’

M 18 @ second-rank covariant tensor: With x* and y” as contravariant
vectors, we see, by the definition of the Lorentz transformation, that

—_ A
xlﬂn’l“}ylu_ x n)\oya

is invariant, where 7,,, is the same function of its indices as 71,,. Since

ax'H ox'"”
xl[.L= " x/\’ yyv____ X y(r’
ax ax
we have
x)\ya"7 — X)\ya ax'#‘- ax“-’ n/
e ax* ax”
so that
ax'Hox'
Nao = o ox” Ny (6.3.11)

Of course, (6.3.11) is equivalent to the original equations that determined
the Lorentz transformation matrix. The result could also have been de-
duced from the fact that 5, V" transforms as a covariant vector for any
V7, since if T,V transforms like a covariant vector for any contravariant
V¥, then T, is a tensor. The proof is identical to the one given above for
a covariant vector. Clearly, these rules apply to tensors of arbitrary rank:
Any covariant index can, with summation, cancel a contravariant index.
Thus, with 4 and B tensors, A,,,,B"7 = T,, is a mixed tensor, as
indicated. Single indices can be lowered with 7,,. However, note that
MuNus = 65 and is therefore a mixed tensor; it follows that n,, = n** is
a second-rank contravariant tensor as well as a second-rank covariant
tensor. Thus, n*” = 7,, can also be used to raise indices and to lower
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the rank of a tensor by tracing:

TrT

rv

=0Ty,
or with

T, =Ty, TrT,,=T",. (6.3.12)

One more universal tensor; €,,.,, is defined to be totally antisymmetric
in urAn; hence, all four indices must be different, so €,,,, = * €g123, the
plus sign for prA7n, an even permutation of 0123, the minus sign for an
odd permutation. We define €y,23 = 1. (Beware of applying the three-
dimensional rule that cyclic permutations are even. They are not. In four
dimensions they are odd.)

Is € a tensor? We calculate

ax® ax* ox® ax”

ax'™ax' ax' ox'™

! —
€pvan =

eo’)\aﬂ .

Since €' has the total antisymmetry of €, we need only calculate

ax® ax* ax™ ax®

ax'®ax't ax'? gx"?

- dct(ax(r). (6.3.13)

’ —_—
€0123 = €urap

So, €., transforms like a tensor for proper Lorentz transformations, but
like a pseudotensor for inversions.

6.4. TENSOR FIELDS: COVARIANT
ELECTRODYNAMICS

Tensor fields are functions of x and ¢ that transform according to tensor
laws. Thus, a tensor of rank zero is a scalar, and a scalar field is an
invariant, say, y(x).”

The invariance of the field means that two Lorentz observers observ-
ing the field will measure the same value of i at the same space-time
point, so ¢'(x'(x)) = y(x). That is,

*From now on, we will frequently use symbols like x and y to stand for a four-vector,
x* and y*. Thus, a scalar field w(x) = y(x", x).
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Y (x’) = Plx) (6.4.1)

where x’ and x represent the same space-time point.
The prototype covariant vector field is the gradient of a scalar field:

_ 9y
V.= Pl (6.4.2)
since
oY (x' 0 ox?  ax°
y, = WED_ ) &7 _ 0", (6.4.3)
ax'* ax? ax'*  ax'™
Derivatives of tensor fields generate higher tensors, for example,
To=-v (6.4.4)
ny ax# ye e
Derivatives can also be used to lower rank by tracing:
9 ve=V (6.4.5)
ax ’ o

a scalar.
The first example of a physical scalar field is the scalar density asso-
ciated with a point particle, moving along a given trajectory
xb = xp(t) (6.4.6)
or more covariantly,

xy=xp(7) (6.4.7)

where dr7 is the proper time along the trajectory:
dr = dx"V1 = v2. (6.4.8)
We obtain (6.4.6) from (6.4.7) by solving x* = x°(r) for 7 as a function

of x° and substituting it into x'(7).
We wish to construct a scalar density® that, for a point particle, must

®We here give the word “density” its physics meaning. The expressions scalar (and
vector and tensor) density are sometimes used to designate certain transformation properties
under general coordinate transformations [as in (7.6.15)]. That is not the case here.
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be proportional to a three-dimensional delta function
d(x’ x) = A8 (x — x,(x")) (6.4.9)

where A may depend on the velocity of the particle.

To show that an A exists, we note that the four-dimensional volume
element d“x = dx°dx is invariant, since the Jacobian from x to x' is just
the absolute value of the determinant

which is equal to 1. Therefore, the four-dimensional deita function
84(x — x,(7)) = 8(x" = xp(7)) 83 (x — x,(7)) (6.4.10)

is invariant, as is its integral over the invariant 7 [which is held to a unique
value 7(x°) by the first delta function in (6.4.10)]. There results

d(x) = Ja’f 8(x" - x?,('r)) & (x — x,(7))

dr
= 8 (x — x,(1))
at xp(7) = x°% so
d(x) = V1-0v28(x — x,(x") (6.4.11)
where
_ 4%
dx®

Similarly, a four-vector density for a point particle can be defined by

d"” = ),
that is,

JM-_Jd de(T) 4( ““X,,(’T))
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_dxf dr

e 2 8%(x — x,(xp)) (6.4.12)

or

J° = 8%(x — x,(x%)) and J =v&(x - x,(x%). (6.4.13)

We recognize in (6.4.13) the electromagnetic charge and current density
of a point-particle-carrying unit charge. For a particle of charge g, we
would have

j*=ql" (6.4.14)
Finally, we construct a second-rank tensor density for a point particle:

_dxfdup dr

T""
dr dr dx°

8(x — x,(x%). (6.4.15)

Covariant densities can be constructed by using the tensor 7,, to lower
contravariant indices. Remember that this operation is actually very
simple: Leave the Oth component alone and change the sign of the three
space components.

A useful clue to help construct a relativistic electrodynamics is fur-
nished by (6.4.13), which telis us that the charge and current densities of
a point particle form a contravariant four-vector; so therefore does a sum
of these objects over different particles. Therefore, a general charge and
current density form a contravariant vector field j*(x). The local charge
conservation law is a scalar equation

3j° a .
0= 4+V.j=-—j* 6.4.16
250 =27 ( )

which we know is satisfied by (6.4.13). (See Problem 2.1.)
Recall now the equation for the vector and scalar potentials in the
Lorentz gauge:

s 92 _ . 2 9 -
v - (o) A = —4mj and Ve - (ax ¢ = —4mp.

(6.4.17)

Since
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is a scalar operator, it is natural to treat A and ¢ as a contravariant
four-vector. In general, of course, there can be no required relativistic
transformation properties for A and ¢, since A and ¢ are only determined
to within a gauge transformation, and gauge transformations have no
special covariance properties. Note however that the Lorentz gauge allows
A and ¢ to be given vector transformation properties, since the Lorentz
condition

v.a+28 g,
0x

expressed covariantly becomes

SRy (6.4.18)
axk
A gauge transformation takes
. ax
A, into A, +—=. (6.4.19)
ax*

None of these considerations chooses a sign for the contravariant
vector A", It is actually most convenient to deal with the covariant vector

A, which we take to be given in terms of the vector and scalar potentials
A and ¢ by

A, = (-, A). (6.4.20)

A second clue tells us how to obtain the fields. Remember B =V x A,
or in tensor language’ B =9;A; — 9;A;, so that B,, = B;, etc. The ob-
vious covariant generalization is to define a field tensor®:

F,.=0,A,-0,A,. (6.4.21)
The antisymmetric tensor F,, is gauge invariant (under
A, — A, + dx/dx*) and has the right number of components to generate

the electromagnetic field: Fy2, F,3, F5, (which we have defined to generate
By;) and Fyg, Fa9, F3o (which must generate E;). Let us check:

"We introduce here another convention: 4, =0d/dx* and 2" = 9/ox,,.
“Here again, the reader is warned that there is no general consensus on the sign of
F ... Our choice makes F,p = E,.



6.4. Tensor Fields: Covariant Electrodynamics 265

F;=(8;A;~9;A)= By (6.4.22)
and

E() = a,’AO - a()A,' = E,‘. (6.423)
Finally, we must be able to write Maxwell’s equations in covariant
form. First, the inhomogeneous equations involve derivatives of F on the

left and current components on the right. The covariant expression of this
must be 3, F*” on the left and j* on the right. Thus,

8, F"" = «j” (6.4.24)
with « to be determined. We write out (6.4.24):
8, F"” + 9oF% = kj". (6.4.25)
Let v=0: §,F° = «j°, or using (6.4.23), we obtain
V-E=—«j° (6.4.26)
s0 k = —41r. Now let v = €: We find
0 F' + 8oF% = kj*. (6.4.27)

Since the form of (6.4.27) guarantees rotational invariance, it is sufficient
to consider one value of ¢, say, £ = 1. Then (6.4.27) becomes

6,—F,~, + (901'70l = K].1

or
0:Fiy + 8oF10 = Kfl
or
82F21 + 93F3; + 0E, = «j'
or

(63B2 - 62B3) + a()El = Kjl; (6428)
with k = —47, (6.4.28) gives

~(V X B) + aF = —4j

which is correct. Therefore, the four inhomogeneous equations are put
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together into one four-vector equation:
d, F"" = —4mj*. (6.4.29)

The homogeneous equations are also four in number, suggesting a
four-vector equation. However, we know that the homogeneous equations
involve axial quantities: 0B/dt, V X E, and V - B. The unique axial vector
consisting of first derivatives of Fis d,, F**, where F*” is the dual of F:

2FHY = e"AIF, (6.4.30)

€"*7 is, of course, —€,,.,, since one time and three space indices are

raised to go from €,,,, to €***?. The dual F* of F v Simply interchanges
E and B. That is,

~. 1 . ,
ij __ = _ijuy _ ijk0
F]-'ZGI Fuv_E] Fk()

= e-ijk Ek
and

~. 1 . 1
F'= EGJOk{Fk(' = Eejkl‘Fk(' =B;.

Thus, we conjecture that the homogeneous equations are equivalent to
3,€*"*F,,=0. (6.4.31)
Written out, (6.4.31) is for u = 0:

€0, Fj=—€d;F=0 or V-B=0.

For u=j,
€/ 0, Fry = € QFy + € 9 For + €40 54 F oo
= €k O00F 0 ~ 2€;4¢ 91 Fos
= 2(9()Bj + 2€jk( 6kE( = ()
or
dB
—+VXE=0.
at

A more familiar form for (6.4.31) is

ay,Fw\ + 6)\F[J.V + aVF)\IJ. = 0 (6432)
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To see the equivalence, note that (6.4.32) is antisymmetric in any inter-
change. For example, interchanging p and v gives

0, Fun+0,F,, +93,.Fy,

which is the negative of the original expression. Therefore, we rewrite
(6.4.31):

0=3e*"*79,F,, = €*"*3,F,, +€*7* 3, F,\ + €**" 3, F,,

= E“V)\U(aVF/\u' + auFVA + a/\ Fav),

for each u. The sum over vAo simply multiplies the result by 6 (the
number of permutations of three objects). Therefore, the quantity in
parenthesis is 0.
We close this section by studying the transformation laws for the E
and B fields. We have, since F,, is a tensor,
pr, =9 o g (6.4.33)
BT axax T o

Let the primed observer be moving with velocity v in the x direction.
Then

10 2 ' 10
o X"+ ux X t+ux
=, x=, 6.4.34

V1 —p? V1 - p? ( )

y=y" and z = z', from which we can calculate ox°/ox'*.
We first calculate the longitudinal fields B, = F,, and E, = F,:

ve=————F,s=F,, (6.4.35)
' ay' az’ ’
and B, is invariant.
,_ox7 ax?
X0 = Er—' g0 A
_ox ox® ax” ax

2
_ < Lo v u2> Fuo= Fuo (6.4.36)

and E, is also invariant.
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Consider next the transverse components

a (ra A
B,=F,=""""F,
0z’ ox’
ox*
T
ox 9 0
=—Fut _X’F:()
' ax’
1
= g [B, + vE.]
or
, 1
= —*—“\W(BP v X Er) (6.4.37)
since
(V x ET)V = (Dé"‘ X (é”E.V + @zEz))y = "'UEZ
Finally,
, . ax7 oax?
E,=Fj= av’ g0
ax?
"o
ax ax®
T ax® Fe ox’° Fyo
1
= ———‘—\/i_:_v_ ‘_2 (E‘ - UBZ)
or
, 1
ET= \/l___l)z(Er+ v X BT)- (6—4-38)

Suppose there is a magnetic field but no electric field in the O system.
Then an object at rest in the O’ system would have velocity v in the O
system, but would only experience the electric force in the O’ system,
which is, for small v, ev X By = ev X B, as it should be.

We observe that we can construct two invariants from the F,. field.
The first is
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1
Ii= =2 FuF*"=E -B (6.4.39)

The second is, in fact, a pseudoscalar:
1 = ,
L= ZFWF =E:-B. (6.4.40)

One verifies easily that /, and /I, are left invariant by the above
transformation rules for E and B.

Another invariant is the phase of E or B; thus, for a monochromatic
wave,

kox*=k-x=k'-x'=k,x™* (6.4.41)

defines k* to transform like x*. For a wave vector in the v direction,

and since w =k, (6.4.42)

This is the relativistic Doppler shift. For other angles, the formula is more
complicated but straightforward, although some care must be taken to
define the observation when 8 is near 90°. (See Problem 6.9.)

6.5. EQUATIONS OF MOTION FOR A POINT CHARGE
IN AN ELECTROMAGNETIC FIELD

We can guess various covariant equations of motion for a charged point
particle. We narrow the list of suspects by requiring that they (the
equations) be linear in the F,,, field and contain no derivatives.”

We start from the four-velocity u* = dx*/dr. A four-vector acceler-
ation is

_ Xt du
dr? dr’

"

The presence of first derivatives would, for example, result from an internal structure
of the particle, such as a magnetic moment.
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a covariant equation would have a four-vector on the right-hand side,
linear in F,,. The only possibility is F,,u". We conjecture'®

m71-—= kqF,  u" (6.5.1)

where ¢ is the charge and the constant « will be adjusted to agree with
the nonrelativistic limit. Consider first p = i:
d : 0
-m E—u = kq(F;u + Fou™) (6.5.2)
T

or

= ————%(Ei + (v X B),)

so that x = —1. The particle equation is

dip =q(E+vXB) (6.5.3)
't

where p is the particle momentum:

mv

v
The fourth component of (6.5.1) not independent, since

du, _ kg

u* utF,u"=0,

dr m
or

d
— (u*u,) = 0.
dT( )

This is as it should be:

"Observe that covariance requires four equations for four variables, the u,. The
equations, however, cannot be independent, since w,u* = 1. The cxistence of such con-
straints occurs often in relativistic theories.
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1-?
2 2 -
ubu, =usg—u R
The fourth equation is
m—ug = —qFou' or mg L - E-v (6.5.4)
dr 0T "o avi-or v O

Equation (6.5.4) looks like an energy equation; the right-hand side re-
minds us of work done on the charge, the left-hand side the increase in
energy m/V1 — v2. It is, in fact, an energy conservation law, when E is a
static field derivable from a potential E = —V¢. It is easily seen that
(6.5.4) under these circumstances implies

(%(\/%Jrq(p) - 0. (6.5.5)

6.6. RELATIVISTIC CONSERVATION LAWS

We prove a theorem. Let 0% be a conserved vector field, that is, let

9, 0" =0. (6.6.1)
Then

dx°
14

ij Q°dr = —J Q- dSs (6.6.2)
S
and there is a globally conserved quantity
Q= f dr Q°
14
provided there is no outgoing flux:

JQ~dS=O.
N
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The theorem is that Q is an invariant."' We already know an example:
the charge of a particle.
Proof: Consider

Q(t=0) = jd“xj“(x) 3,.6(n - x) (6.6.3)

with
1, t>0

6 = {0, 1<0

(6.6.4)

n-x=nx", and n, a unit vector in the time direction, so that n - x = x°.
Then

0=00) = j @%@ 5 0

= Jd“x 7o(x) 8(x°) (6.6.5)

and
Q= J'd3xj°(x, 0).

Consider a different observer O’. He calculates Q':

' roer ' d r ax’* ‘o d i d
0] =Jd4x J(x )waxm(?(n-x)=Jd4x x”] (x) ;”L f(n-x")

ax d ax”

= Jd“xj“(x) 3,0(n-x").

But

Br- X = R

and

"'We consider a vector Q* for simplicity. The theorem also holds for a conserved
tensor Q**, with 8,Q** =0, Then Q¥ = Jvdr 0" will be globally conserved and a four-

vector.
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0- 0 = [/ W al60n ) - 60 -0}
Since a,.j* = 0, d,. can be placed to the left of j* in the integral:
Q-Q' = J d*xa,| j*(x)(6(n - x) - 6(n’ -x)]. (6.6.6)

Integrating each derivative, we see that the surface terms all vanish, since
for large x, j* vanishes and for large xq, both n - x and n' - x are positive
or negative, so that the 6 functions cancel.

Are there other conserved integrals of functions of the field? Evi-
dently, yes—we already know about energy, momentum, and angular
momentum. Consider first energy and momentum. We have seen that in
particle mechanics they together form a conserved four-vector; we also
know that in electromagnetic field theory, they both can be expressed as
integrals of quadratic functions of the fields. It is natural to suppose,
therefore, that we can write

Ph= J dx T (6.6.7)

where P% is the energy, P% the momentum of the field, and T} a
conserved tensor, that is,

a.T™=0 (6.6.8)

in the absence of sources.

This is, in fact, the case; T/* is called the electromagnetic stress-
energy (sometimes energy-momentum) tensor. From now on, we shall
call it the stress tensor, meaning the four-dimensional stress-energy-mo-
mentum tensor, unless otherwise stated.

From the electromagnetic conservation laws that we have already
proved, we can identify all the components of T;*. From the energy
equation, P} = f d*x T, we see that T¢ is the energy density and

PO = — f &0, T



274  Invariance and Special Relativity

thus, T is the Poynting vector:

T = (E X B). (6.6.9)
4 Ji

We also know the momentum density

Pl = (E X B)
A )i
But, from (6.6.7),
pr=TY¥, 6.6.10)
)
T =TY.

From the momentum conservation equation, we find
Pr= fd% dTH = —J'd3x 8, T

and — T’ is the Maxwell stress tensor:

—T‘F‘=ZI—(E,-E,-— %Elai,Jf B,-B,—%BZS,-,). (6.6.11)

ks
In all, we have a symmetric two-index object T 7, that generates a vector

on integrating T over dx. It is, in fact, a Lorentz tensor. Its manifestly
covariant expression is

T¥ = ZL (n‘“’FMF"” + ‘1-1 n"”FaBF"") (6.6.12)
k

Next, we calculate a,7 }:

1
3, T3 = —nF,\0,F" + Q" (6.6.13)
A7
where

1
4 Q¥ = F¥n"*a,Fop + 5 N FP8"F op, (6.6.14)
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= FAVnMa<auFaA + %aaF/\u>

1
= EF“T,““ (0,Fan + 0xF o+ 9.F2) =0.  (6.6.15)

Thus,

3, T = n*Fonj? (6.6.16)

and T} is conserved in the absence of sources. We know, however, that
global energy momentum conservation holds in the presence of sources,
if we add together the energies and momenta of the sources (particles)
and fields. We now write the most obvious candidate for a particle stress
tensor. T4, that we will add to T%":

T% = mu*u’d (6.6.17)
where d is the scalar density defined in (6.4.11):
d=V1—-128(x - x,(x0)). (6.6.18)

If more than one particle is present, or there are other interacting
fields in play, then the single term in (6.6.17) must be replaced by a sum.
We here confine ourselves to this simple system of electromagnetic field
plus charged point particles. We shall see in Section 7.4 that for the
relativistically invariant theories that we are discussing, one can always
find an appropriate conserved stress tensor. However, the electrodynamic
plus point particles case is particularly simple, in that there

THY = THY 4 T (6.6.19)

is, in fact, the correct conserved stress tensor.
We calculate 8,7 %", remembering that

0, (utd)=4,J"=0. (6.6.20)
Therefore, since u* depends explicitly only on time, not x,

“ "
0T = m % Od = m d_;_d. (6.6.21)
X T
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But, from (6.5.1), with k = —1,

du*
m— = —gF"u,
dr i
and
0,TH = —qF*u,d = —F", (6.6.22)

where j, is the current density four-vector. Adding T*' =TF + 7%,
from (6.6.16) and (6.6.22), we get

ny
aaTxV = P Farj* = F*j, = 0.

Thus, we have a symmetric, locally conserved tensor 7**, from which we
can construct a globally conserved energy-momentum four-vector:

Pvzfd%TW. (6.6.23)

In more general field theories, it is easy (see Section 7.3) to construct
a stress tensor ®*” that is conserved,

3,0 =0,

but is not necessarily symmetrical. It is, however, possible (but not
necessarily easy) to find a conserved symmetrical T#”. These techniques
will be discussed in Sections 7.4 and 7.8.

The importance of the symmetry is that it makes possible the construc-
tion of six more global constants by defining a third-rank tensor

M*A = (x"T** = x*TH). (6.6.24)
M*** is conserved with respect to the u index:
8 M¥ = THASY - THYgA = T — TA* = )

provided T"" = T™.
Therefore, we have six global constants constructed as usual as
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L™= J d*x MO = fd3x(x”T“" - x*T%). (6.6.25)
The space-space components L,; define an angular momentum
L= J’ d’xr X p, (6.6.26)
where p‘ = T® is the momentum density. The components L” are
LY = J dx(x°T" — x'T) = Px° - P%! (6.6.27)

where P° is the total energy:

PO = f d*xT%, (6.6.28)
xL is the center of energy,
jd3x T %!
Y (6.6.29)
J d> T%

and P’ and x° are, as usual, total momentum and time. We thus learn
that for a relativistic system, dL,/dx° = 0, or

dxt P
o= (6.6.30)

This is as close to a center of mass theorem as one can come in a
relativistic theory: The center of energy moves with constant velocity,
v. = P/W. None of the other center-of-mass theorems of nonrelativistic
mechanics hold.

CHAPTER 6 PROBLEMS

6.1 A point particle at rest undergoes an acceleratilon a=1ia, ;%- Ja,. so that
its motion is described by the equations x = za,t*, y = za,t’.
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6.2

6.3

6.4

6.5

6.6

6.7

6.8

Invariance and Special Relativity

How does an observer O' moving to the left along the x-axis
with velocity v describe the motion near x = y =t = 0? That is, how
does acceleration transform under a Lorentz transformation?

Using the result of Problem 6.1, that is, a, = a,(1 — v*)*?, show that
a particle starting from rest at 1 = 0, and undergoing an acceleration
a(7) in its own rest system as a function of its proper time 7, travels
a distance x = JO sinh u(7) dv in proper time 7. Here, u(r) is the
“proper velocity™”:

u(t) = J a(r)dr.
0

Show that the electromagnetic energy radiated per unit time by a
point particle is an invariant under a Lorentz transformation; from
that, calculate the rate of energy radiation by a point particle moving
with velocity v and acceleration a. Then calculate the instantaneous
rate of radiation of momentum for a particle moving with velocity v
and acceleration a. (Hint: First show that the momentum radiated
in the rest system is zero.)

From the known electrostatic field (or potential), find by Lorentz
transformation the electric and magnetic fields of a point charge
moving with constant velocity v with |v| < c. These fields must, of
course, be expressed in terms of the space and time coordinates used
by the observer with respect to whom the charge has the velocity v.

The production of a 7" meson from a proton by a photon is de-
scribed as the process

ytp—7m'+n

At what photon energy E., on a proton at rest will the threshold for
the process be reached? Call the respective masses ., m,, m,, and
m, =0.

Consider a Lorentz transformation in an arbitrary direction v. Write
a three-vector equation for the transformation r’ =f(r,v,t) and a
three-scalar equation 1’ = g(r, v, t), where f is a vector function of r,
v, and ¢, and g a scalar function of r, v, and 1.

An observer O’ has a very small velocity v, relative to O; a second
observer O" has a very small velocity v, relative to O’.

Now consider observers O ' and O" who have interchanged the
order, that is, O’ has vy, 0" has v,. To lowest order in v,L,, what
is the transformation that brings the observers O” and " into coinci-
dence?

A charged condenser moves with constant velocity v. Call the charge
density p(r).
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(a) In terms of p, write expressions for the electric and magnetic
fields generated by p.

(b) Write an expression for the force per unit volume on the moving
charge density.

(c) Integrate the expression you found in (b) to find the self-force
on the condenser. It should be zero.

(d) From your results in (b), write an expression for the torque per
unit volume on the moving charge density and integrate it to
find the self-torque. The answer should involve the tensor

J (x2i — x1:)(x2j — x3j)

i"z—l'IP

p(2)p(1) d>x, dx,.

Let the condenser consist of two oppositely charged very small
spheres, separated by a vector d. In terms of the total charge Q
on each sphere and the vector d, write an expression for the self-
torque. Note that it is not zero, and so should have (according
to prerelativistic theory) furnished a way of detecting absolute
motion. Experiments, of course, failed to do so. Can you say
why? After all, the field calculations are correct, as is the Lorentz
force.

6.9 Study the relativistic Doppler shifts by noting that the phase of an
electromagnetic wave is invariant. Thus,

A A
ik\x ik \x

€ =e

and k* must transform like x*. Thus, for a Lorentz transformation
in the x direction

k., — vw w — vk
kL = ———, ki, =k,, kj = k,, w =
V1-1? : g V1 — vk?

with k the wave vector and  the frequency in the rest system of the
radiator. Show that the frequency measured by an observer who sees
the radiator moving with velocity v is

, _ wV1—1?

@ =
1+vcosé

where 6 is the angle the radiation makes with the motion of the
radiator (as seen by the observer).

6.10 (a) Calculate the ratio r of L, the rate of energy loss through radi-
ation, to G, the rate of gain of energy from the accelerating field
in an electron linear accelerator. Express v = L/G in terms of the
accelerating field E and natural constants. Assume the electron is
relativistic so that v = c.
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(b) Calculate the ratio r of the energy loss per cycle of a relativistic
electron in a circular accelerator to its energy. The electron has
energy E, the average magnetic field is B, and the machine
radius is R. Assume v ~ ¢ so that the frequency @ ~ ¢/R. Elimin-
ate R and so express the ratio in terms of E, B, and natural
constants. Finally, express the ratio r in terms of R in kilometers,
B in tesla, and FE in electron rest energy units. Explain from
these results the advantage of linear accelerators over circular
acceleration for ultrarelativistic particles.

6.11 The functioning of an accelerator requires that the chosen orbit be

stable with respect to small deviations. Consider a particle beam in
the 7 direction and a stabilizing electrostatic potential ¢ = kx*/2 in
the x direction. Unfortunately, since V?¢ = 0, the y potential must
be destabilizing. The overall potential must be a quadrupole: ¢ =
k[(x*2) — (y*/2)]. The alternating gradiant principle takes advan-
tage of the fact that a stabilizing passage followed by a destabilizing
one can be stabilizing with a proper choice of parameters. Since the
potential is harmonic, one can calculate the matrix U,; that takes
the vector (x;, X;/w) to (x;, X2/w) and combine the U matrices for
different lengths of potential, a and b:

UST? = U%US,, etc.

Let U,,; describe a converging sector, with w(t, — 1) = ¢, and Us,
a diverging sector with w(f; — ) = 6. Here, w® = k/m(1 — v3)"?,
provided x and y are much smaller than v, the beam velocity.

(a) Calculate U, {¢) = Usa(p) and Us,(8).

(b) Combine the sector U’s as described above to give U=
Un(e) Usa(0) Uzi(@).

(c) Show that det U = 1 and its eigenvalues are e, where cos u =
cosh 6cos 2¢ and |cosh 6cos2¢| < 1. For |cosh #cos2¢| > 1,
the eigenvalues are e®*, where cosh A = {cosh 8cos 2¢| and
cos2¢ >0 or —e™* when cos 2¢ < 0.

(d) Note that U is neither unitary nor Hermitian, so the apparent
stable behavior coming from the eigenvalues can mask actual
growth. To illustrate this phenomenon, find the two components
of the vector U ((')) and show that one of them can actually be
arbitrarily large, even for |cosh 6 cos 2¢| < 1. Then show how-
ever that for small 2¢ = 6, the scctor is stabilizing.

(e) Show that magnetic stabilizing via a quadrupole magnetic field
leads to the same equations for x and y.
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CHAPTER 7

Lagrangian Field Theory

In classical field theory, we introduce Lagrange equations and Hamilton’s
principle for several reasons. These include the special simplicity of using
generalized coordinates and eliminating constraints, but most important,
the ease of building invariance principles and the corresponding conser-
vation laws into our equations. In quantum theory, the canonical formal-
ism plays such a crucial role that the use of Lagrangians is often indispens-
able.

7.1. REVIEW OF LAGRANGIANS IN MECHANICS

The Lagrangian is a function of generalized coordinates and velocities, g,
and ¢,

L = L(qa: Gas1)s (7.1.1)
where ¢, is the derivative with respect to 7. Here, ¢ can be a variable,
usually the time, that is used to parametrize the trajectories of the system.

The second-order equations of motion follow from Hamilton’s prin-
ciple, that is, from the requirement that the action

15

8(q.) = J L(qu(1), Gu(t), 1) dt (7.1.2)

n
be stationary for infinitesimal variations of g.{t) — q.(t) + 8q.. or
qa(t) = qu(t) + ena(t) (7.1.3)

provided ,(t;) = n,(t;) = 0. Here, € is an infinitesimal and 7.(f) an
281
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arbitrary function of ¢. Sometimes, we will use the common shorthand
en.(t) = 8q,; however, in case of confusion, it is often best to go back
to (7.1.3). For example, (7.1.3) makes it obvious that (d/dt)8q, =
8(dg./dt). The notation S(g,) indicates that S is a functional of q.(t); that
is, it is a number that depends on the functions g,(¢).

We carry out the variation

85 = S(q. + 8q.) — S(q.)

5]

aL oL )
=||(—8q,+— 84, )dt
Haqa&l aq'aaq

dL d aL aL
=f(—~*—_~>6qa+—,8qa
dq, dtog, n

(7.1.4)

Since the integrated term vanishes at the ¢ boundaries, (7.1.4) shows that
the condition 85 = 0 for any 8q, requires

9= L%y, (7.1.5)

For obvious reasons, the left-hand side of (7.1.5) is called the
variational derivative of S, written as 85/8q,:

98 _3L _doL  d'iL

99, 0q, drdq, dr’ g, (7:16)
and so on, if the Lagrangian contains higher derivatives.”
The relation between the symmetries of the Lagrangian and conser-
vation laws is given in first instance by Noether's theorem, which follows.
Suppose that when gq,— g, + 8q,, 8L = d6A/dt, where d8A/dt is a
time derivative of a function of the g’s and g’s. Then, independent of the
equation of motion,

9 oL _. | déA
E[—Léqa+~.—6q'a:|——=0 (7.1.7)
a LOg, aq,

or, using the equations of motion, we get

'If the Lagrangian does have higher derivatives, the action principle most economically
formulated states that 85 depends only on the variation of g, ¢, etc. on the boundary.
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gt@%naqa—m):o (7.1.8)

and we have a conserved quantity

L
5Q=Ea—.—8qu— A (7.1.9)
a 0{,

which is independent of 1.
We list the major examples from classical mechanics:

1. 8x,= 8, a fixed displacement, identical for every particle, with L
invariant. This would hold for motion in a potential depending

only on the relative position of particles. In that case, we would
have

SQ:Epa'st'EVk‘,L (7110)

and we have total momentum conserved by virtue of translational
invariance. The symbol V,, stands for the operator

+8, —. (7.1.11)

2. 8x, = 60 X x,, a fixed rotation about the origin, identical for every
particle, with L invariant. 8Q is given by

80 =2V, L850 xx, (7.1.12)
or
5Q =080-2x, XV L (7.1.13)
so that
L=2x, XYL, (7.1.14)

is conserved. We identify (7.1.14) with the angular momentum.
(Do not confuse L, the angular momentum, with L, the Lagrang-
ian.)

3. Suppose L is translation-invariant in 7—that is, it depends on ¢ only
through its dependence on g and ¢. Then with 8q, = 4,6t [so that



284

Lagrangian Field Theory

q(t) = q(t + &), (1) - 4(1 + 8)]

dL
51,:2(%4“%4“)&:——5{

a 8(]“ Oqa dt
and
w=3%g.-1L (7.1.15)
a Bqa

is conserved. We recognize in (7.1.15) the conservation of energy.

. Our last example is a Galilean transformation to a moving ob-

server: dx; = dv;t, with §vu; the same for all particles. Then, sum-
ming over particles a, we obtain

ol = EQABUI[‘*’ 2%60,‘ = g}(E maxaiaul)

a 6xm‘ a 6xa,-

for a Lagrangian with translation invariance, whose only velocity

dependence is in its kinetic energy. So, our conservation law here
is

(2 25) t—- 2 m.x,; = constant

a 6)5,,1 a

or

<2 ma)éai) t— 2 m,x,; = constant. (7.1.16)

Equation (7.1.16) tells us that the center of mass moves with
constant velocity.

7.2. RELATIVISTIC LAGRANGIAN FOR
PARTICLES IN A FIELD

Relativistic invariance may be achieved by choosing an action that is itself
invariant. The obvious choice for a relativistic free particle action is the
integrated proper time interval for the particle:
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'7'2 ‘,2
I
sp=~der=~Mdex“dxu=—dea,/ix—"gx— (7.2.1)
do do

o oy

where M is a constant with the dimensions of mass and o any increasing
function of 7. It is important to distinguish between dynamical variables
(the x* here) and Lagrangian integration variables (the o here). Notice
that x°, the physical time, is here regarded as a dynamical variable. Since
the final result is required to give us x as a function of x°, our equations
must make this possible. We shall see that this is always the case. The
invariance (with respect to the choice of ¢) is called reparametrization
invariance.

In order to include an electromagnetic interaction, the simplest choice
is to add to § the invariant

Se.m —Efdx“A *Ef~—A do (7.2.2)

where E is a constant with the dimensions of charge.
Note that (7.2.2) is gauge-invariant: A gauge change,

A,—> A, +3,Ax),

changes S by
5§ = Efﬂgx—da JdA AQ) ~ A(1)

so that a variation of S keeping the end points x*(o,) and x*(o,) fixed
is unchanged by the change of gauge.
The Lagrange equations, with o as the independent variable, are

d 9L oL
do

where

® M
L=-m B e &, (7.2.4)
do do do
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so that

dx,
d do dx 9A,

- = || === |-EA.|=E=— (7.2.5)
do Idi(ig_{g do ox
do do

since A,,(x) is evaluated at x = x(0); dA,./dx* is the space-time derivative
of the ficld evaluated at x = x(o). Carrying out the o differentiation of
A,., we have

dx
oyl | _de|_ (@i, _axtons)
do\ [q. dx,, do ox* 4o ax*
Vdo do
- g% (7.2.6)
do

There are two simple choices for do: either do? = dx* dx,, = dr*, ordo =
dx,. Either yields the equation

d [dx dx*
Md—7<~d?“) = -E—d: F.\ (7.2.7)

so that (7.2.6) agrees with (6.5.1), provided we set M = m, the particle
mass, and E = ¢q, the particle charge.

There is an alternative action, also Lorentz-invariant, that gives the
same final equations for a particle in a given electromagnetic field:

corresponding to a Lagrangian

mdx® dx, dx"
2 do do do

L= (7.2.8)

The Lagrange equations are
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d d dx*
_<mﬁ‘._qA#>=_q_x_a_Al (729)
do do

or

Fru (oA oA

do? ox*  ax*/) do’ (7.2.10)

The action S is not reparametrization-invariant; therefore, do is not
a free variable, but is determined by (7.2.10). Multiply (7.2.10) by dx*/do
to obtain an integral of the motion:

I
4 (fi—’f— d—xﬁ) =0, (7.2.11)
do\do do

so that do must be a constant multiple of dr. A change in the constant
multiple can be compensated for by redefining the coefficient m. Evi-
dently, o = 7 gives us the correct equation, as written in (7.2.10).

Note that the “energy” constant that we would obtain from the new
action is

M
uws’=_<m£ji‘f._qA“>éx——L=-—m—d—x’i£1—, (7.2.12)
2 do

xl-‘
do

just the integral we found above in (7.2.11).

There is still, however, Noether's theorem that may be applied to
time displacement to obtain a physical energy integral. If the Lagrangian
L is invariant under x’-> x® + 8 (8 a constant), then there will be an
integral of the motion. For L to have this invariance, A, must be indepen-
dent of x°. The constant of the motion is then

sw=—"L_5 (7.2.13)

a(ﬁ”)
do

L depends on dx’/do as

02 0 0
L=-" (ﬂ{‘_) +q éLAO + non dx terms (7.2.14)
2 \do do do
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SO

and with do = dr

W= - [\/#—7 + q¢], (7.2.15)

in agreement with our earlier formula (6.5.5), as it must be, since the
equations of motion are the same. A technical point: (7.2.15) is a constant
of the motion, but it is the negative of the usual energy 7T+ V. For a
particle in an external field, the sign is irrelevant. For a system of inter-
acting fields and particles, the energy must be obtained from the full
Lagrangian (or better, full action) for the particles and fields. We will
discuss this problem in Section 7.4.

Although the Lagrangians (7.2.4) and (7.2.8) for a particle in an
electromagnetic field lead to the same equations of motion, this is a special
circumstance and does not necessarily hold for other interactions. In parti-
cular, adding a linear gravitational interaction to (7.2.8) leads to a
simple —and experimentally correct—linear theory, and, as we shall see,
to Einstein’s equations for the gravitational field; following a similar proce-
dure with (7.2.4) does not. From here on, we will work only with exten-
sions of (7.2.8).

We wish here to complete the list of Noether currents for the case of
a Lorentz-invariant particle Lagrangian. Thus, consider an action

S=Jdcr]4(x“(a),c%> (7.2.16)

a

which is invariant under the Lorentz transformation

Xt x't= A" x” (7.2.17)
and
i ’ L %
axf_dxt s BT (7.2.18)
do do do

with do an invariant, L itself will be invariant. Thus, the Noether theorem
will give us the conservation (with respect to o) of
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oL
50 = S, (7.2.19)

a ———
do

where dx* is the change x'* — x* for an infinitesimal Lorentz transforma-
tion. We take as an example the “new” Lagrangian

_mddx,

. 7.2.20
2 do do ( )

Thus, 8Q is

v

d
5Q = —mm,., ;"; Sx*. (7.2.21)

The combination 7,,8c* is particularly simple. Since &x* =
(A*, — 8",)x", we learn from (6.2.31) that

NuBX™ = 1, (A, — 8*)x” (7.2.22)
= € ux®. (7.2.23)

Returning to (7.2.21), we obtain

0= —m™ e ,xP, (1.2.24)
do

so we have six tensor constants of the motion:

-x"— (7.2.25)

L"”=m<x"dx L dx >’
do do

where following (7.2.11), do must be taken to be proportional to dr, the
proper time.

In this trivial free particle case, we recognize in L” the three com-
ponents of angular momentum, and in L' = constant the three equations
of motion, x’ — (dx'/dx")x° = constant. The interest of the expression
(7.2.25) is that in the case of interacting fields and particles, (7.2.25) will
again emerge as the particle contribution to a general conservation law.
For an example of this, see Problem 3.3.
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7.3. LAGRANGIAN FOR FIELDS

Fields are systems with an infinite number of degrees of freedom: the
fields and field time derivatives at every point in space at a given time.
The Lagrangian is then itself a functional—an integral over space of some
function & of the fields and their derivatives. The function £ is some-
times called the Lagrangian, although it is more appropriately called the
Lagrangian density. Thus, we have

L= J x L(a(x), 8 W - - ) (7.3.1)

where the ¢,’s are all the fields we are considering and the 4, ¢,’s their
derivatives. The index « can refer to a species of field, or to a vector or
tensor component. The action S is now

S = J dxoL = j d'x <. (7.3.2)

Since the four-dimensional volume element d*x is Lorentz-invariant, the
action (and hence the equations of motion) will be invariant if Z itself is
an invariant function of the fields and their derivatives.

Again, here we must distinguish between dynamical variables (the
fields at every point of space) and the Lagrangian integration variable x*
(the time and space point at which one asks for the value of the field). In
order to avoid confusion, we will from now on call the dynamical space-
time coordinates of the particles y%, or sometimes y*. We will keep the
variables x* for the arguments of the fields.

By analogy with ordinary Lagrangians, we know that quadratic
functions of the fields in £ will lead to linear equations; higher derivatives
than the first will lead to higher than second-order ditferential equations.
We confine ourselves here to first derivatives and second-order equations.
Higher derivatives are suggested in Problem 7.6. The rule for using the
action is the same as for the point Lagrangian: The action must be station-
ary for arbitrary variations 8y, that vanish on the integration boundary.
So,

7 0
55=Efd4 [a S + ““"J‘ 7.3.3
@ * (")l//a d/ a(ayl/la) ( ¢,) ( )

Integrating by parts and dropping the boundary term, we have



7.3. Lagrangian for Fields 291

8= | d* awa[i’i(’i - —"’—-"&] =0 (7.3.4)

D oL 0 92 _g (7.3.5)

the Lagrange equations for the fields. The definition of functional deriva-
tives has been extended in (7.3.5) to apply to fields.

The Lagrange equations (7.3.5) permit the construction of a con-
served stress-energy tensor, called canonical:

R YL P PV (7.3.6)
a a(aul//,,)
for which
« a(a,u.wa) a(aﬂ-dla)

Using (7.3.5) yields

0¥ 0y A
9, 0M =2 1—0", + 8, 08" W, — — 0",
g g{awa v (0 ta) v e v
&
(0, a)

=~ [3"]% (7.3.7)

a“(ama)} [

where the notation [9”].¥ means that the derivative is only on explicit
space time dependence of £. If [¢"]¥=0, 9,0*" =0, and we have a
conserved tensor.

We note here that the conservation of (7.3.6) is a special case of
the Noether theorem applied to field Lagrangians. Thus, assume that an
infinitesimal transformation

Yo Yo + 81, (7.3.8)
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leads to a change in £ of
8¢ =0,(8A") (7.3.9)

for some 8§A4*. It follows that

oF
6,L< S, — 6A“> =0, (7.3.10)
6(8,“11[,)
since
N4 A
8F=—28p, + —— 9,00,
0 4 (0, ¥
A
=0, 6%); (7.3.11
<3(3m!f.r) )

Combining (7.3.11) and (7.3.9) yields the conservation law (7.3.10). The
vector in (7.3.10) that satisfies the conservation law is called the Noether
current.

Equation (7.3.6) for @** follows by setting &, = 9, 8x", where
8x* is a constant increment in x* and 8A* is #8x*. This will be discussed
more fully in Section 7.4.

The conservation of ®*” makes possible the definition of a conserved
four-vector that we identify with the field energy—-momentum:

P* = f d’x®°, (7.3.12)
such that
dP*
—— =), 7.3.13
dx® ( )

The tensor ®*" is not symmetric, except for scalar fields. If we could
find a tensor T*" that was both conserved and symmetric (and we can),
we could, as discussed in Section 6.6, define a tensor field

M#PYA = xVTHA e (7.3.14)
which would then be locally conserved:

a, MmN =0, (7.3.15)

leading to the global conservation of the angular momentum tensor
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LuA - J d3x MUV/\ — Jd3x (x"TO’\ — x)‘TOV); (7316)
that is,
dL"”
=0. 7.3.17
dx’ ( :

Equation (7.3.17) shows the general value of finding a symmetric
tensor T"".

We next show how a conserved, symmetric stress-energy tensor can
be constructed for a Lorentz-invariant Lagrangian density. Since the
canonical stress tensor ®*" is symmetric only for a scalar theory, this
is a useful procedure. We start from

A
Y = 3"y — "' E (7.3.18)
9 to)
and add to ®*” a tensor
SO = 9, P MY (7.3.19)

where ®**” is antisymmetric in A and pu, so that
TH = @4 + 5@H" (7.3.20)

is conserved (since 9,9,9**” = 0), and P” = fd3xT°” is left unchanged
(since fd3x8A(D“”’ = fd3x8id>i°" = O).

In addition, it will be shown that ®**” may be chosen so that 7*" in
(7.3.20) is symmetric under the exchange of u and v. We proceed by
deriving an identity that follows from the Lorentz invariance of the La-
grangian density, £(,, d,9,).

Under a Lorentz transformation, the fields ¢, transform so that

ll,tlz = Subd’b (7321)

where §,;, is a matrix representation of the Lorentz group. If the transfor-
mation is infinitesimal, specified by €,,,, as in (7.2.23), then the matrix §
will be of the form

S=1+¢,,5*" (7.3.22)

where each 2*¥ is an antisymmetric matrix in the (a, b) space. We give
some examples:
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1. ¢ a scalar field: = = 0.
2. i a spin-one-half field:

e =T (7.3.23)

where o*” is the set of six relativistic Pauli matrices:

otV =

[T
LA Y ] (7.3.24)
21

3. ¢ a covariant vector field ¢,. Then
8= —n"€ratls. (7.3.25)
On the other hand, from (7.3.22)

8, = €.,3" .ty (7.3.26)
so that

s b = %(65:17” ~ Bty (73.27)

correctly transforms .
Similarly, a second-rank covariant tensor field transforms like
6‘!’(1}) = _ea’aq}a'b - e‘blh'ﬂl’ab' (7328)
so that
SEVLTY = 8 I 4 5 SR (7.3.29)

with £#*,”" given by (7.3.27).
The Lorentz invariance of the Lagrangian (¢, 9,,1) requires that

oF aF
— o + 6(d,.)=0 7.3.30
” ' 2o (3.9) ( )
where
S = €, 27", (7.3.31)

Note the abbreviated notation: 8y and d£/dy are vectors in the (a, b)
space in which 2 is a matrix, as are 8(d,¢) and 9Z£/9(a, ). Note that if
¢ is covariant, 3.¥/9y is contravariant and vice-versa.

With
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0L _
d(3u¥)

", (7.3.32)

the Lagrange equation applied to (7.3.30) tells us that
(0.p") 8¢ + p*8(a,.y) = 0. (7.3.33)
The transformation law (7.3.21) together with (6.2.31) informs us that
8(0,.9) = 0,06y — €",0,¢. (7.3.34)

This follows from the recognition that 8(d, ) is not equal to 8,8¢; the
added Lorentz index  must also be transformed. Thus, (7.3.33) becomes

WP oY) = p*ner 0,0 =0 (7.3.35)
or
(P e, I Y) = prey, Y (7.3.36)
so that
F-al’ — Vaﬂv
pry — pTdty : POV _ o (75 (7.3.37)
We return now to
O =praty — ¥ (7.3.38)
and note that with
PV = (pT TV — pPETY — p¥ Iy, (7.3.39)
THY = @Y 4+ 9,P7HY (7.3.40)

has all the desired properties. The divergence of the first term of (7.3.39)
added to p*a8”y produces a (u,r) symmetric sum. The second and third
terms of (7.3.39) are already (u,v) symmetric, as is the n*" term in G*".
Therefore T#* is (u,v) symmetric. However, ®7#” is (o, u) antisym-
metric, so that the new symmetric 7*" is conserved and leads to the same
conserved energy and momentum as ©*,

We consider an example: a hypothetical scalar field.

The simplest consistent Lagrangian density is ¢, where ¢ is the scalar
field. This choice yields the variational equation ¢ = 0; this is not a very
interesting result. The next complication is to add a derivative. Since £
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must be Lorentz-invariant, we can only add

g =2 por B0 (7.3.41)
ax” ax”

to obtain
F= %H,\Lpa/\l/l - % pzwz. (7.3.42)

. 1 . . .
The arbitrary constant 5 determines our units, which here and from now

on are rationalized. This saves a lot of 47 writing! The constant
pw = Vu?is real and is, as we will see, the minimum frequency at which
the field will oscillate.

To derive the field equations from the Lagrangian density, it is useful
(only this time) to go back to the more explicit notation

O pd"h = a,dm"7 0.

so that
¢
L o (7.3.43)
Hdotp)
and
£ oL
B d - —==(3"8, + pHY =0. (7.3.44)
Haoh) oY
We recognize
2
89"a, = -ﬁ(,—; - V2
(8x7)

Equati_oP (7.3.44) is, of course, the familiar wave equation with solu-
tions e*"**, where

pu? = krk* = p? + K — (k9*=0. (7.3.45)

The canonical stress-energy tensor for this theory is
o — wiid?
TV = 8”1,[18"1[1 _ n(rV( ‘r’/ /\lp M ‘1[/ )

5 (7.3.46)

which is symmetric and, therefore, entitled to be called 77”. The four-
vector P” is given by
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A _ 2
pr = J [aotlla"d/ B TJO”(a—%&)] dx (7.3.47)

with

=2 [anti s w2+ ), (7.3.48)

clearly showing the need for positive w2, since otherwise P° would be
unbounded both below and above and the system would be unstable.
The momentum is

P'= Ja"wa"w d>* or P=- fd%c GV, (7.3.49)

The angular momentum density I(r) is r X p(r), where p is the momentum
density. That is, the angular momentum Ly contained in a volume V is

Ly=— J gr x Vip d’x, (7.3.50)
v

and the angular momentum flux is obtained from the equation

d~d‘6 LJJ = Jd3x(8()T()ixj - 3()T0jxi)
X

= J [ = (3TN + (9,T%)x']

= J’dSk(kaxi ~ T*%'). (7.3.51)

S
Thus, the loss (radiation) of angular momentum through a surface S is

Ji . .
—dﬁ—” = - fdsk(r’“'xf — THx"). (7.3.52)
t
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7.4. INTERACTING FIELDS AND PARTICLES

Following the work in Section 7.2, we use particle coordinates y/.(o;),
with o an invariant parameter to be determined, as, for example, by
(7.2.11). In what follows we drop the label p, with the understanding that
we must sum over all participating particles.

The particle Lagrangian L, is a function of y,(c) = dy,.(o)/do, and
the particle action is the functional

S, =jL,, do = - %jyu(a)y“(a) do, (7.4.1)

as given by (7.2.8).
The field coordinates i, (x) are functions of space and time. The field
action is the functional

0= [ @5 200), ) (7.42)

where £, is the Lagrangian density. For a scalar field, we have seen in
(7.3.42) that we may take

w

1
Ly ==y - 2 7.4.3
v=5 AYa Y ) ¥ ( )
The Lagrangian corresponding to £ is
Ly(t) = J d*x¥(x) (7.4.4)

that is a function of ¢, whereas the particle Lagrangian
L,=-m/2 dy*ldo dy,/do
is a function of o.

It is therefore necessary to consider the action as the fundamental
functional. The action for the scalar field particle system will be

S=S,+5,+5, (7.4.5)

where §; is the interaction action. We have seen in (7.2.2) how §; must
be chosen to give the correct equation for charged particle motion in an
electromagnetic field:
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d "
;= qfdo A 2= (7.4.6)
do
We see that S, is also a functional of the field A, (x) by rewriting S;:
4 ay* 4
S;=qld xd076 (y—x)A.(x), (7.4.7)
o

in which form the field variable A, depends on the field point x, as is
required by the Lagrangian procedure.
In general, we will have

Sllf = f d4x§€,,, (748)
Sp=jdoLP (7.4.9)
and §; with two equivalent forms:

S["_"‘ de'L[ (7.4.10)
as in (7.4.6), or

S1: Jd4x$, (7.4.11)

as in (7.4.7), the first form appropriate to the y* (o) equation, the second
to the ¢, (x) equation.
The Lagrange equations for the combined ¢,(x), y* (o) system are
WZy + &) W%+ &)
3(d.y) oy

=0 (7.4.12)

©w

and
ia(L,, + Ly) 3 (L, + L)
do ay ay*

0. (7.4.13)

The interaction action §; in all the cases we will consider is linear in the
¥,’s; in first approximation, the field action S, is bilinear in the ¢,’s and
d,.¥.'s. Therefore, the overall sign of §,, which is equivalent to the sign
of the coupling constant, is irrelevant, since it can be changed by a redefi-
nition of ¥, : ¢, — — . By the same token, the signs of S, and S, alone
are irrelevant. The important sign is the relative sign of S, and S, and,
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if there are several independent §,’s and S,’s, corresponding to several
fields and particles, their relative sign. We choose the relative signs so
that the energy of the noninteracting system has a definite sign, which we
normally take to be positive.

If the equations of motion are translation-invariant in space and time,
we can apply Noether's theorem to find the conserved energy-momentum
four-vector. The translational invariance is with respect to the transforma-
tion

e (7.4.14)
with 8y* a constant four-vector, and

Yo (X) = Yo (x ~ 8y) (7.4.15)

or, for an infinitesimal transformation,

ll/n(x)_')wu(x) - 3)’“0#%(3‘)- (7416)

As in (7.3.9) and (7.3.11), we calculate 85 in two ways. First, using
the Lagrange equations, we get

88 = J d“xa“[%’—) 5¢IC,J + Jd(r i[% Sy”].
(7.4.17)

In the d’x integration, we can carry out the time integral from 1, to t,;
the space components of 9, integrate to zero. Similarly, we carry out the
do integral from o, to o,, where o is such that y°(oy) = ¢, and y(a,) =
t,. 65 becomes

5§ = Hd3 0Ly A " + Wp T LD) 5 } (7.4.18)
8(60‘1’0) By“ 72
since 0L,/ 3(d, 0, ) = 0
Second, remembering that dy* is constant and, as in (7.4.1) and
(7.4.6), that S; and §,, are invariant under the transformation, we find, by
a direct calculation

_ e 4. _ 0 3 |
88 = féy 8, Ly d"x = —8y f&‘f,,,dx
n

(7.4.19)

Equating (7.4.18) to (7.4.19), we find with 8y, = —8y*d, Y.
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oZ, o(L, + Ly)
—&yH d3[ '] S a_60 gjlz__g____l_}z_a »p
Y U *30ve) v ay* Yo hu

(7.4.20)

with P, a constant:

Zu d
P =143 [ d : _ 50 ] B | .
’ J Voo b=~ O Lo oy (L, + Li) (7.4.21)

Equation (7.4.21) gives us a rule for extending the field theoretic
canonical formalism of (7.3.6) to include particle degrees of freedom, the
Yulo).

We return to the example of the scalar field, considered earlier in
Section 7.3, but now interacting. We choose the action (see Problems 7.1
and 7.2)

{4 au,l/a*t//—uzllfz]__n_lf dy* dy, ”
S fdx[ > = | do ST 1 guy). (74.22)

The equations of motion are

—aAaAw—uzw—de 4" Do gbe—y) =0  (7.4.23)
2 do do
and
d(dy, ) mdy* dy, ay(y)
(== 1+ R e 7.4.24
mdo-( do LT8O ) e 8 oy (7.4.24)
The “W” conservation law is for
dy* dy, (dr)?
A N = 1+ 7.4.25)
o dU( g¥(y) (d0')2( g (y) (

which we may set equal to 1. The energy momentum vector P, is

2
Pa:stx{ggM 50 (a3 = p24)

2.5 . }+ m 2 (1 + gu(y).

(7.4.26)
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Note the positive energy

(2 2 2,2 1/2
Po=fd3x Ld +(w,2) A +m(\1/;§%’_2 . (1427)

provided the expression (dr/do)? (1 + g) = | behaves properly.

If we return to (7.4.21), an obvious question arises next: Is there a
conserved tensor ®*,, of which P, is the space integral of the Ov compon-
ent? The answer is yes. It can be written down by inspection. It is

. _ 0%
(0, tha)

e 0
duiha — 8%, Ly - Jy“ o (L, + L) 8%(x = y)do.

(7.4.28)

It is left as Problem 7.4 to show that ®*, has the desired properties.
The totally contravariant form of ©*,,

8L 0

L N LR rmepreye
(0, W) v .,

(7.4.29)

is, in general, not symmetric.
The next question: Can we always find a tensor 6®*" such that

T = 0" + 60" (7.4.30)

has the desired properties listed in Section 7.3? That is, is it symmetric,
conserved, and having the same P* integral as ®*"? Again, the answer is
yes. The construction technique parallels the treatment leading to (7.3.40).

We make use of the fact that &, and L =L, + L, are separately
invariant under the Lorentz transformation ¢ — ¢ +¢,, 2"y, as in
(7.3.22), and

oyt ety (7.4.31)

From the invariance of %, follows
a7,
a_.f 8y + p*8(8,.4)=0 (7.4.32)

where p* is still given by (7.3.32). From the Lagrange equation for ¢, we
learn that
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0., SL
Ly J do - d,p* =0, (7.4.33)

o ) sy(x)

so that, with 8(8, ¢) = 9,8y —€*, 8, ¢, (7.4.32) becomes

oL
0,.p") B - do 8y + pa, 8y — pre,a =
(up ) l»[’ f&l/l(x) g l//+p aﬂﬁdt P € ;La/\‘l’ 0
or
3 “6 - d 6 » A A s Bl 2
u(p ¢’) J o 5!,0()() ¥+ pre p0 ¢ (7 4 34)
and from (7.3.22)
R 8L uv (p" "y — p*o”y)
VaO' ® - Cuv d ¥ nv
€., 0,p 72" Y =€ j USdJ(x)E Y +e 5

so that

our oL v,  PUOMY —praTy
PSP = | d " . (14,
A (pTZH ) J aw(x)z U+ 5 (7.4.35)

We define ®“** as in (7.3.39) and add 60*” to ®*”, where

SO*Y = g,P7*" (7.4.36)
and

" = @*Y + 60*". (7.4.37)
The symmetry properties of ®“*” show that 8@*" is conserved:
8,0 =10 (7.4.38)

and the energy—momentum vector P* is unchanged by §0*":
fd3x 80 =0. (7.4.39)

It must next be shown that T#* is symmetric. We sece that the last term
on the right of (7.4.35), (p*a*y — p*3”¢)/2, added to the first term of
O*” in (7.4.29), p* 3"y, is symmetric.
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There remains

STHY = — J}i“% 84 x — y) do + Jm(-—) Sy da. (7.4.40)

ayu

From the invariance of L, we find

_alL alL
€ —— IHT(Y) + eyt =0 (7.4.41)
" au(y) "
or
. oL ol. ™
L surgyy + —(—— =2ty ) 0, (7.4.42)
ay(y) CIM 3.
The variational derivative §L/8y(x) is given by
L - L gy (7.4.43)
ap(x)  oY(y)
so that
8T+ = — Jy i11‘0‘4()5 ~y)da'—~fd064(x —y)<——)5”- %y >
8y,, y,_,. ()y,

which is pr symmetric. This completes the construction of T"",
In Section 7.8, we will find a second method of constructing a con-
served, symmetric stress tensor directly from an action principle.

7.5. VECTOR FIELDS

We return now to electrodynamics. We first ask for a Lagrangian density
for a free massive vector field A, analogous to the vector potential of
electrodynamics. We require an invariant bilinear function of 4,,, involv-
ing at most first derivatives. A first guess might be %; (G for a guess):

Fo=—0,A"3"A, + p*A"A,. (7.5.1)

This choice has an obvious problem: If we consider each » value separ-
ately, we have in (7.5.1) a sum of four scalarlike #’s, three with the sign
to give a positive energy and one with the opposite sign. Therefore, there
is no lower or upper bound on the energy and the system is unstable.
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How do we produce an & with positive energy? There are two ways.
The first, which we leave as an exercise (see Problem 7.9), is to write
down all possible invariant bilinear functions of A, and 3*A , with arbitrary
coefficients, calculate the energy, and adjust the coefficients to make the
energy positive-definite.

A second way is easier” and perhaps more enlightening. Notice in
(7.5.1) that the space components of A, carry positive energy, the time
component negative energy. Furthermore, the space components form a
rotational vector, and the time component a rotational scalar. Perhaps the
scalar is present only to preserve Lorentz invariance, and we should try
to eliminate it as an independent field. The clue is in the four-vector wave
number k,,> which for a massive propagating field will be timelike:

kok® = . (7.5.2)

Therefore, there is a Lorentz system for which k' =0, and the Lorentz-
invariant condition

ko A =0 (7.5.3)

will set Ag = 0 in that coordinate system.
We expect the field to be radiated by a current density j,, according
to an equation resembling

(0,0% + u)A* = —j* (7.5.4)
(note rationalized units), but requiring that a propagating solution with
wave number k£ will satisfy k,A“ = 0.
We try to accomplish this by projecting (7.5.4). With wave number
k*, (7.5.4) becomes
(k) (k) + p2)A* = =P, " (7.5.5)

where P is a projection operator that makes (7.5.3) hold for k* = u®. The
projection operator P, is clearly 85 — (k*k,/u?), since

krk s
(o))

*This is especially true in the case of a second-rank tensor field, like the gravitational
field, where, as we shall see in Chapter 8, the Lagrangian has many possible terms.

*We go back and forth freely between a coordinate space description of the fields and
their Fourier-transform space.
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which vanishes at k% = u?. Note that this procedure, as opposed to the
direct construction of a Lagrangian density suggested earlier, requires that
one start with u + 0.

Equation (7.5.5) now becomes

. 7 A
ko Jk”. (7.5.6)
2

~ (w2~ K)AN = -

We eliminate & - j by operating on (7.5.6) with k,:

'S ,
(,ﬁ—kz)k-A=—k.j<1—;3) or k-j=-pk-A (7.57)

and (7.5.6) becomes
(p* = KHA* + krk- A= —j* (7.5.8)
In coordinate space, k, = (1/i) 9, so
p2AN + 3,0°A% = 92 9, A% = —jA
or
aa(auA/\ - aAAu) + ILZA/\ —_ _.]-z\
or
o Ft + wPAr = - (7.5.9)
the natural extension of Maxwell’s equations to the case of finite wu.
Equation (7.5.9) is called the Proca equation.

The cancellation of the factor w”> — k? in (7.5.7) would appear to
contradict the assumption that would make k- A =0 for a propagating

mode. However, the remaining identity, p’k- A = —k - jor
Y
DA% = — 2ol
M

shows that the cancellation does occur, since it is only at the source j,
that 9, A* fails to be zero. An equivalent statement is that k - A has no
pole at k*> = u®, although A" does have such a pole. The residue of the
pole represents the propagating radiation. Since k - A has no pole, the
propagating solution has k- A = 0.

We see in (7.5.9) that there are only three degrees of freedom for the
vector potential A*, since the second-order time derivatives only act on
the space components A‘. Therefore, A® is a constrained variable, and
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there are only three propagating modes. Of course, this results directly
from the way in which we derived the equation, that is, from demanding
that the propagating mode with k; = 0 have no A” component. The three
degrees of freedom correspond in quantum theory to the three directions
of spin of a massive spin one particle.

The presence of the mass term has destroyed the gauge invariance of
the massless theory. We also note that the limit 4*>— 0 requires a con-
served current j*, since in that limit the left-hand side of (7.5.9), 8 uF rA
is identically conserved by the antisymmetry of F**. Of course, in that
limit gauge invariance is restored, and any one spatial component of the
vector potential can be eliminated by a gauge transformation, leaving two
independent modes.

We next write a free field Lagrangian density that will yield (7.5.9)
when the A* are taken as the independent coordinates.* Since it is the
spatial vector coordinates that correspond to the actual degrees of freedom
of the field, we choose the sign of £ to make their energy positive. Also,
for u? = 0, £ should be gauge- and Lorentz-invariant, and bilinear in A%,
The only choice is

F= —cliFAVF‘"+%cz;L2AAA)‘ (7.5.10)

where ¢; determines our units and c,/c, = 1 satisfies the field equation
(7.5.9).

From now on, we work in rationalized units with the free field La-
grangian density

2
= —%FMF”Jr%AAA*. (7.5.11)

We already expect, from our work with particle Lagrangians in exter-

nal fields, that the scalar potential enters as —q¢(y,,t), where y, is the
particle coordinate and q its charge. Since

by 1) = f dxp(x) B(x: 1),

where p is the particle charge density, we guess that the correct interaction
Lagrangian density should be %; = j*A,. The Lagrangian density (to
whose action we will eventually add the particle degrees of freedom) is

*And j* is set equal to zero.
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then
1 @y I‘Lz o .o
F=—=-F, F"+—A, A%+ j°A.. (7.5.12)
4 2
With
F/\V = (a/\Au - a,,A,\)
we have
0F__ -F (7.5.13)
8(9,A,)
and
A ’
= uA"+ j¥ (7.5.14
Ay M J )
leading as expected to (7.5.9):
— 3. F*" = u*A" + j*. (7.5.15)

We may repeat the argument following (7.5.9) .rom the Lagrangian
point of view, by noting that A, does not appear in &. Therefore, the
Ay equation

z_,
0Aq

b

is a constraint equation, and only the three A; equations are dynamical.
As before, when we consider the u = 0 limit, we eliminate one more
degree of freedom with the introduction of the arbitrary gauge function.

We wish to verify that the energy P° of this theory, with j, =0, is
positive. It is

P = Jd3x[ 0L oA, - 3], (7.5.16)
3(90Ay)

since the canonical tensor ®*" and the symmetric tensor T*" give the
same conserved energy-momentum vector P*. In terms of (¢, A) =
—(A°, AY) with

$=%(v¢+A)2—%(VxA)2+’§(¢2—A2) (7.5.17)
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we have

00 _ A i L iz, 1 2 % .M,
O =(Vop+A) - A--(Vo+AY +- (VXA +-A--¢

2 2 2 2
£+1(VXA)2+£A2—1(V¢)2—
2 2 2 2

2
&2
2¢

or, with = V¢ + A, and using the equation [from (7.5.15), with j* = 0]

Vom=pu’d

we find, after an integration by parts,

2 2,42 L2
P°=[d3x®°°=fd3x[-“—+“ A +1(V><A)2+M] (7.5.19)
2 2 2 2u?

which is positive-definite.

It is also of interest to express the energy P in terms of the Fourier
transform of the vector field:’

Aux)= f d’kla, (k) e'®*"*0 + c.c.].

Since P° is time-independent, only cross terms between e’ will be
different from zero. In addition, the d”x integral will only connect +k to

—k and, hence, a, to a;.. From the divergence condition on A, koo =
k - a, and from (7.5.18),

P° = (27)? J d3k{ |ag)|" - %}(kf +K+ )

or, with k in the three direction, and k/ky =€ <1

P’ = (2m)? J d3k{<k02 + k2 + ;ﬁ)(laxlz + |azf)

+ (1 — )k + K> + ,ﬁ)[agz}. (7.5.20)

. e g ke
SNote here, and remember in the future that ¢ ™ %" =, thex
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We see that as u— 0, k> kyand e > 1, so
l—"”—>2(27r)3jd3 kk*[la, > + |az|] (7.5.21)

and the longitudinal mode a5 carries no energy, unless a; becomes singular
as u— 0. This does not happen in the vector theory we are now consider-
ing. We shall see later that the situation with the gravitational field is not
so simple.

From the general result (7.4.37) and the preceding discussion we can
calculate the symmetric stress tensor T*” for the electromagnetic field and
a charged particle in interaction with each other. The action is

I o
S = _'l'fd“pr.vF“u—JdU{QdL@_&—quAM}' (7522)
4 2 do do do

The stress tensor is

L V4
THe = (n““FMF“ +1 n“"F,,BF"H> +m J dr LY 5y
4 do do
(7.5.23)

in agreement with (6.6.19). (See Problem 7.5.)
Evidently, we have chosen the signs of the free field and free particle
terms in the action correctly, since the energy density

> 8(x —
T()() - %(E‘_ + B2) + m_.(x—y((ﬂl (7524)

' 2172
y()

As we have remarked earlier, it is an exceptional circumstance that
the electromagnetic and particle stress tensor 7" is the sum of the free
particle and free field stress tensors, even though the equations for E, B,
and y involve the interaction between them. It is clear from the discussion
leading to (7.4.37) that T*” will normally have an explicit interaction term
in other field theories.

One must realize that the fact that the energy density (7.5.24) is
positive (strictly, nonnegative) is a necessary, but not sufficient condition
for the equations of the theory to have sensible (i.e., finite) solutions. In
fact, the equations of the electrodynamics of point particles do nor appear
to have sensible solutions. In classical theory, this is manifested by the
electromagnetic contribution to the inertia of the point particle becoming
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infinite (a consequence of the singularity of the electric and magnetic fields
at the position of the particle). This problem was discovered by Lorentz,
who tried to remove it by renormalization. We explain.

Lorentz calculated the self-force (i.e., the force of the retarded fields
generated by the electron on itself) for an electron, instantaneously at
rest, but undergoing arbitrary motion as a function of time. To make the
calculation finite, he assumed a charge density for the electron

p(x, 1) = ef(x — y(1)) (7.5.25)

where

ff(X) dx=1. (7.5.26)

Lorentz found for the force

d’y 2e*d%y
F= *Bm?'i"g;gt?, (7.5.27)

where 6m is the electromagnetic self-mass

om = gez f d’xd% &‘)—f(y—), (7.5.28)
3 lx =yl

and y (¢) approaches y(¢)) as the characteristic radius R of the cut off
function f approaches zero. In the limit of a point electron, the integral
(7.5.28) diverges like 1/R. The second term in (7.5.27) (which we have
already seen in Section 5.9 and Problem 4.8) is independent of R as R — 0.
In this limit, there are no other terms.

Lorentz observed that the equation of motion for the electron would
follow from (7.5.27):

ey _ 5Ly, 28dy

m = —fm 7.5.29
*dr d* 3¢ dP ( )
(where m, is the nonelectromagnetic mass of the electron) or
2 2 ;3
dy_Zedy (7.5.30)

m =
i 3¢ def
where

m=mgy + ém. (7.5.31)
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Since the equation of motion for the electron only involves m, and
not my, and 8m separately, one might optimistically hope that a finite m,
achieved either by a negatively infinite my, or by a cut-off at small r,
would leave us with a sensible theory.

These two alternatives must be considered separately. The first, a
negatively infinite m,, does not work, because (7.5.30) has exponentially
growing solutions. We have already seen a hint of this problem (without
the infinite 8m) in Section 5.9, with (5.9.11) and (5.9.12).

One can, in fact, show that the run-away solutions and the divergent
self-mass are related problems: A charge density that makes the integral
(7.5.28) finite does not have run-away solutions. Unfortunately, such a
cut-off function would violate special relativity, since the action, as in
Problem 7.8, would not be Lorentz-invariant. The application of relativis-
tic quantum theory improves the situation but not enough: It turns the
linear divergence of (7.5.28), that is, the linear dependence on 1/R, into
a logarithmic divergence. The run-away solutions disappear, but new prob-
lems arise.

How should one deal with this situation? There is probably a modest
consensus favoring the following view.

We know that the electron mass is finite; therefore, our theory is
wrong. At some small distance, R,, the equations must become less
singular so that the equivalent integral (7.5.28) converges. One can try
to guess a value for Ry. A popular guess is the Planck radius R,. R, is
the Compton wavelength and radius of a body whose gravitational self-
energy is equal to its rest energy.® This radius is

1/2
R, = (%) ~ 10" ¥ cm. (7.5.32)

Here, G is Newton’s gravitational constant and A Planck’s constant divided
by 2.

Why pick R,? For one thing, the quantum theory of gravity must
come into play at that radius. We have no satisfactory quantum theory
of gravitation; perhaps a correct quantum theory of gravity would provide
the necessary cut-off. Since the divergence is only logarithmic, the self-
mass is relatively insensitive to the cut-off. The self-mass value given by
quantum clectrodynamics, cut-off at the Planck radius, is

h

sm 4

202 o TeE (7.5.33)
m 3w R,

“Incidentally, a particle with this radius would be a black hole.
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where « is the fine structure constant:
1
— =137 (7.5.34)

and #/m,c is the Compton wavelength of the electron:

A1
—=-x10""cm. (7.5.35)
Mmec

The resulting logarithm, log 10%, is small enough so that ém/m is still
smaller than 1.

Of course the cut-off, the distance where our present theories fail,
could be much greater than 10 **cm. We know experimentally from
electron-positron collisions that electrodynamics holds at least as far down
as 107" cm, so the cut-off could be anywhere from 107" to 107> cm!

To conclude this brief discussion of the boundaries to our understand-
ing, we summarize.

Our present theory of electromagnetic fields interacting with electrons
does not lead to finite results. However, modifications of the theory at
interaction distances that might be as small as 107>* cm might provide a
consistent, finite theory, with no perceptible effect on present-day physics,
including atomic and nuclear scale phenomena. We proceed with this
assumption, even though we do not know how to construct such a theory.

7.6. GENERAL COVARIANCE

We next take up the subject of general covariance, that is, the study of
objects that transform like tensors under general coordinate transforma-
tions. We need this knowledge in order to formulate a consistent theory
of gravitational fields (Sections 8.6 and 8.7). We consider it now because
it permits us to construct a symmetric stress tensor 7" directly from a
generally covariant action (Section 7.8). In addition, it permits us to write
known dynamical equations in arbitrary coordinate systems.

We start from the notion of physical tensors under Lorentz transfor-
mations and define an extension to general coordinate transformations.
Whatever the coordinate transformation x’(x) be, define a contravariant
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vector to transform like dx*, that is, like

1

der =2 g, (7.6.1)
ox”

Higher-rank contravariant tensors transform like products of vectors, so
that

1 v
ax'®ax'

T = S T (7.6.2)

etc.

Tensor equations hold in all coordinate systems. Thus, if V* =0, so
will

ax'+

ax"

ye v (1.6.3)

and conversely. To see the converse, multiply (7.6.3) by dx*/ox’*. There
results

ax™ . axtaxe

ax'H ax'* ax”

V=V (7.6.4)

The tensor transformation property defined by (7.6.1) is consistent.
That is, if

ax'*
VIM. — Vx
ax”

and

then

or, by the chain rule,

Vr//\z , VV.

There are physical invariants under Lorentz transformations. We
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define them to be invariants under general coordinate transformations.
Thus, if ¢ is an invariant field,

d
' (x'(x))=ed(x) and  P(x+ &x)— P(x) = a—d))\ &t (7.6.5)
X
is also an invariant. Evidently,

b _ ab ox” 766

3
ax’t ax* ax*

this transformation rule is called covariant. Just as in the case of Lorentz
tensors, the contraction of a covariant with a contravariant index produces
an invariant. We see a special case in (7.6.5); the general rule follows
from the defined transformation properties.

Contravariant, covariant, and mixed tensors can be found by multipli-
cation. As usual, symmetry properties are preserved under tensor transfor-
mations.

An interesting object is 8%, which is a mixed tensor since

6 Iy a
s =g (1.6.7)
ax” ax'”
The space-time interval
dr* = dg¢* m,,, d¢” (7.6.8)

where the £"’s are the normal rectangular coordinates in some Lorentz
system is an invariant. In a general coordinate system, it will have the
form

2 9" ag”
ax< ax*

=g, dx” dx*. (7.6.9)

dr Nyw dx” dx?

Since dr? is an invariant, Z-» 18 a tensor and symmetric. It is called the
metric tensor.” The tensor g, can be used to lower indices. Thus, if V*
is a contravariant vector, V,, =g, V" is its covariant representation. This
can be seen as follows. Let U* and U, = 7,,,,U" be the contravariant and
covariant representations of a vector in a Minkowskian coordinate system.

7Conversely, if g,.. is a tensor, dr* as defined in (7.6.9) is an invariant.
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Remember: If U* = (U", U), U, = (U, — U). Then, by the definition of
contravariance and covariance,

I
ye =2 (7.6.10)
aé
and
aet a¢*
Ve="-U, = sU°. 7.6.11
o Tt axe K ( )
Since
e =2
ax’
Equation (7.6.11) yields
¢ a¢”
V=" Mhe V=g, V"
B axm m ox” Bu

The metric tensor has its contravariant counterpart, defined here by
g"tga, = 84, (7.6.12)
from (7.6.12) we see that lowering both indices of g*” produces g,,,, since
8uo8n8”" = Buab? = gy, (7.6.13)
The determinant of g,, is another interesting object. Of course, the

determinant of 7,, is —1 and remains unchanged under Lorentz transfor-
mations. The same is not true of det g,,. We define

= —detg,, (7.6.14)

and calculate g

I
~—
(=W
o
-y
=1
R
| R
N’
| S—
g

and

V' = (det :xa )\/;. (7.6.15)
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An object that transforms like \/§ is called a scalar density of weight
—1. The number of powers of det(dx'/dx) that multiply a normal tensor
transformation law is called the weight of the tensor density. Thus, for
example, (1/Vg)T*" is a second-rank tensor density of weight 1.

The transformation property of Vg provides us with an invariant
volume element. Since

||
/'\
(=3}
=
R
Sa—"
=
Q.

Il
&

(7.6.16)

\/g d’x is an invariant volume element.

We have learned how to rewrite some Lorentz covariant formulas so
that they are generally covariant. For example, suppose ¢ is a scalar field
and C,, a covariant vector. Then

99

xh =C, (7.6.17)
is a generally covariant equation, as is
A, g"¥ B, = constant (7.6.18)

if A, and B, are covariant vectors. The equations of electrodynamics,
however, involve space-time derivatives of vector and tensor fields. In a
Minkowskian coordinate system, these form Lorentz covariant tensors of
one higher rank; they are not tensors under general coordinate transforma-
tions. To take a specific example, we recall that the space-time derivatives
of a contravariant vector U* in a Minkowskian coordinate system form
the components of a mixed Lorentz tensor:

auH
a&r

= Q%,. (7.6.19)

We can therefore define a tensor T#, in a new coordinate systems by
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its transformation from Q*,:

ax* 9€™
T’L)\ = —0ij T
A€ ax
_ ai}.: 6§’T aUlT
aL” ax og™

(7.6.20)

On the other hand, we have already agreed to define the vector V*
in a general coordinate system by the equation

ve="-u". (7.6.21)

If we now calculate dV*/ax*, we find

INVA " o ks 28
Ve aUTIE —37(‘9—"—) Ue (7.6.22)
ax AE” GET ax dE”
or, since
yr =% 70 (7.6.23)
ax*H
23 B T 24 M [24
ave _ix* 087 oU +L(@c_)isv, (7.6.24)
ax* 9”7 ax™ 9&T  ax*\ag”
=TH —TE V" (7.6.25)
or
M
AL (1.6.26)
ax?
where
AE” Fxt
I, = - o€ 9 . (7.6.27)

ox" 9ETAE ax®

T*, is called the covariant derivative of V*. It is the tensor that in a
Minkowskian coordinate system is the tensor dU*/9£*.

The extra term in (7.6.26) arises from the correct formulation of
parallel displacement. If we displace the vector U* from £ to £ + d£, the
new vector is still U*. However, in a general coordinate system, the first
vector is
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a M
R (7.6.28)
&

and the displaced vector is

"
o av“z%;(ﬁ 5x) U”

m
" —(’—<9’ﬁ~) sx U°

ax*\ag”
D i g
o %(a—x—) ox* 2y (7.6.29)
ax* \0E7 ax"
or
SV* = —T% 62 V. (7.6.30)

The covariant derivative subtracts the parallel displaced vector from the
vector at the new point; this results in a covariant derivative, as given by
(7.6.26).

The three-index quantity I}, is called the affine connection. Although

v has tensor indices, it is not a tensor. For example, it vanishes in a

Minkowskian coordinate system (x = £). We note here that T'%, is sym-
metric in A and ».

We introduce some convenient notation: The ordinary derivative of
V* is written as

_av+

VE = P (7.6.31)
The covariant derivative is written as
T, = V™., (7.6.32)

The rule for covariantly differentiating a higher-rank tensor follows
trivially from the above procedure: There is one extra “’kinematic’” deriva-
tive for every dx/d¢ in the transformation replacing (7.6.21). Therefore,
one must replace the single extra term in (7.6.26) with a sum:

T
v AT T
ax

+ T8, Vo 4 TY, VAo (7.6.33)

etc. for higher tensors.
Finally, we derive the equivalent rule for a covariant index by noting
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that if A, and B" are vectors, then A, B" is a scalar, 9,(A,B"*) is a
vector, and

a.(A.B*) = (0,A,) B* + A, (3, B*). (7.6.34)

On the other hand, we can consider (7.6.34) in a Minkowskian coordinate
system and then transform each term separately. The second will become

A, B*, (7.6.35)
and the first
A, B*. (7.6.36)
Therefore,
A (B*) = B*,)+ B*(A,n — An,) =0
or

A5 B + B (Aga —Apn) =0
so that, since A and B are independent,
Aca=Aoa —ThH A, (7.6.37)
We can express the I"’s in terms of the metric tensor by noting that

the covariant derivative of g,, must be zero, since g, is a tensor, and
8uw = M., a constant, in a Minkowskian system. Therefore,

_ 98uv
gy-u:)\ - 6x"

- FL.)\ Erv FTII\ 8ru ™ 0. (7638)

We can solve (7.6.38) for I'. Interchange v and A in (7.6.38) and
subtract. Then interchange « and A in (7.6.38) and subtract this from the
first subtraction. There results

Bura ~ 8uam ~ Buan T 207,80 =0 (7.6.39)

or

alA
ry, = %(gm.“ + Bun = Buvn) - (7.6.40)

Thus, given the components of g, I can be calculated. We will see in
the next section that we can find a coordinate transformation that takes
any metric tensor to Minkowskian form at a point, with vanishing deriva-
tives, and thus vanishing I'. This a posteriori will justify the procedure of
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transforming from a Minkowskian system to derive the formulas for co-
variant differentiation, whether or not the underlying space is Minkowsk-

1an.8

It is possible, but nontrivial, to derive (7.6.40) directly from (7.6.9).

We now know how to make any Lorentz covariant expression
generally covariant. We simply replace all derivatives by covariant deriva-
tives, and all d*x integrals by d*xVy integrals.

There are some special cases worth noting:

1.

Ap-:v - Avcy. = (A;.L,u - FILVAT) - (Av,p. - F;;:.A'r) = Ap.,v - Av,p.'

(7.6.41)
This is a very helpful formula in electrodynamics.
Fount Fyp+ Fory  (for F,,, antisymmetric)
il TR 7 S :u\ F'ru - :A F}LT
+FA/.L,V— I\VF'A';.L—FLVFAT
+ Fw\.p. - Fzy Fr)\ - F;'u, FV,-; (7642)

T

by virtue of the antisymmetry of F and the u» symmetry of I'},,,
all the T" terms cancel, leaving

F’_LV;/\ + F)"_L;V + Fl,,\;“ = F’_LV,)\ + FA;J..V + F,,,\_”. (7.643)

This is also a very helpful formula in electrodynamics.

. The divergence of a vector (or tensor) V* . From (7.6.26),

Ve, =a,V*+T8 VY and V¥, =a,V* +T4, V"
: (7.6.44)

From (7.6.40),

g
Fﬁu=7g“)\’y (7645)

which can in turn be calculated from the determinant g=
—det(g,..):

g+ 8g = —[det(gy, + 8gu.)] (7.6.46)

®That is, whether or not there is a coordinate system in which g,,, = 7,, everywhere.
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and
L (g + 5g) = det(g™) det(g,., + 5g,.. (7.6.47)
8
= det g7*(ga, + 881,)
= det(87 + g7 8gx») (7.6.48)
)
14
% _ yrgg,, and TH, = 8 (7.6.49)
g 2g dx”
For V*,, we then have
L ag 1
Vi, =,V + — ==V = —=3,(VgV*). 7.6.50
= O 28 0x” Ve w(VgVH) ( )
The divergence of a tensor follows in a similar way:
daF+*"
prv, = E L ru Fev T, R (7.6.51)
ax™

for the special case F*“ = —F7*, the last term in (7.6.51) is zero,
and we have, for the electromagnetic field tensor,

1

FM ": g
©Ve

3, (Vg F**). (7.6.52)

4, We can use (7.6.50) to derive the general expression for the n-
dimensional Laplacian (or pseudo-Laplacian, if the space is Min-
kowskian rather than Euclidean):

.9
Al .
a¢ 0§

_ b par
¥ \/gau%g 3o (7.6.53)

where i is a scalar.

We can illustrate (7.6.53) with the familiar case of V2 in orthogonal
coordinates in three dimensions: With

(ds)* = hidqi + h3dg3 + hidgs = g, dg" dq” and Vg =hihohs,
(7.6.54)

we have
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1 d 1 9
Vi = <—h1h2h3"5"“ + - ) (7.6.55)
hlhzl’l:; E)ql hl aql

7.7. LOCAL TRANSFORMATION TO A
PSEUDO-EUCLIDEAN SYSTEM

We will now show that any symmetric tensor that is analytic in the neigh-
borhood of a point can be transformed to pseudo-Euclidean form at that
point. Let g, be that tensor and x, = 0 that point. The theorem states
that we can find a coordinate system in which g,.(x0) =7,, and
08, v10x ) |x=x, = 0. Here, 7, 1s the appropriate pseudo-Euclidean tensor,
in that it must have the same number of positive and negative eigenvalues
(all =1 in this case) as g,,. As was noted earlier, this shows that the
existence of a coordinate system in which the tensor g,,,, = m,.., everywhere
is not necessary for the arguments of Section 7.6. We start in a coordinate
system with metric g,.,(x). In the neighborhood of x = 0,

Zuv = 8ur(0) + 9,8,.(0) x™. (7.7.1)
We transform to a new coordinate system

bp. erxr)\
AT

2

A
Bllt/\xux v

x'*=abx" + + .- and x* =alx

(7.7.2)
for x and x' close to zero. The equation for g, is

oot ax”

- ox'* ax'v Ere

!
Env

or

8w = (@l + bia X' )@l + blsx'*)[8r0(0) + dagrs(0) ag x'’].
(7.7.3)

We must now solve for a’s and b’s that make g..(0)=7,, and
dgh,/9x'* = 0. The first condition specifies 10 values of g,,,(0), and there
are 16 a)’s. Thus, six parameters are left over, corresponding to the six
parameters of a Lorentz transformation, which are undetermined, since
Nu» is left invariant by a Lorentz transformation. There are 40 d,g,.’s
and 40 b%,’s, so that there are just enough conditions to determine the
local transformation dx'/dx up to a Lorentz transformation. We must still
show that the equations have a solution. We divide the proof into three
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parts. First, we diagonalize g;,, at x = 0. Since g,,, is a real, symmetric
tensor, we can diagonalize it by an orthogonal transformation. An ortho-
gonal transformation can always be written as e, where A is real and
antisymmetric; hence, there are six independent parameters that are
determined by this process. The metric will now locally be of the form
€uv = 8, A", where the A are the eigenvalues of the original matrix.
We can now reduce the A’s to +1 by a scale change, determining four
more parameters. It must be the case that three of the eigenvalues of g
are negative and one positive; otherwise, we cannot transform to 7.
without a singular transformation.

The remaining 40 equations are expanded to first order in x', with
ak = &) and g,,(0) = M.,

g;w = NMuw + x’p[b:\m Mav + bﬁp Tap + apg#v(o)]’ (7-7-4)

and therefore,
b:‘LP Mv + bf\/p T + 6pgp.v = O (7.75)

The solution to Eq. (7.7.5) is casily seen to be [repeating the work leading
10 (7.6.40)]

AT

i
bzp = 5 (apgrw +0u8ur— 875’#0) . (7-7-6)

If we try to go to one higher power of x, that is, make all second
derivatives vanish, we will, in general, fail. The number of conditions
is now the vanishing of 8,0,g,.., or 10 second derivatives of a 10-com-
ponent tensor; thus, 100 conditions. The coordinate transformation is
x* = a%,, x'"x"*x'"; the available number of transformation parameters is
four (for u =0, 1,2, 3) times the number of components of a symmetric
tensor of rank € (with € = 3) in four dimensions. This number is calculated
in Appendix B. It is given by (B.2.7):

€ (—ny €—ny—ny

S 4y=2 2 2 1 (7.7.7)

ny=0n=0 n3=0

_(E+ D+ +3)
6

(7.7.8)

and for £ = 3, §(3 ,4) = 20. Thus, there are 4 x 20 = 80 adjustable para-
meters in the transformation, and 10 X 10 = 100 equations to satisfy. This
leaves 20 combinations of second derivatives that cannot, in general, be
set equal to zero. As we shall see in the next chapter, this is just the
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number of components of the curvature tensor in four dimensions. (See
also Problem 8.6.)

In three dimensions the number of nonzero second derivatives is six;
in two it is one, and in one dimension it is zero. In each case, this number
is the number of components of the curvature tensor.

We see that we cannot, in general, carry out a local coordinate trans-
formation to a pseudo-Euclidean coordinate system, up to vanishing se-
cond derivatives of g,.,, although we can do so, up to vanishing of all first
derivatives of g,.,.

The metric tensor can therefore inform us of intrinsic properties of
the space: for example, as just seen, the impossibility of finding a coordin-
ate system for which the metric is pseudo-Euclidean. We recall here two
examples with which the reader is surely familiar: an invariant interval

(ds)? = (dr)* + r*(d8)* + r¥sin’ 8(dep)?, (7.7.9)
corresponding to a diagonal metric tensor
g:=1, goo=r",  gep=r’sin’8, (7.7.10)
will permit a transformation
Z=rcosé, x = rsin 0 cos ¢, y=rsinfsing (7.7.11)
which expresses (ds)° as
(ds)? = (dx)* + (dy)* + (dz)* (7.7.12)
forall r, 6, ¢.

A space of two variables, ¢ and ¢, with0=60<=mand 0= ¢ =2,
and invariant interval

ds® = R?[(d6)? + sin® 6(d¢)?] (7.7.13)

will permit no such transformation. Of course, (7.7.13) describes a spheri-
cal surface embedded in three-dimensional Euclidean space. We will see
later, when we discuss curvature, precisely how the metric tensor deter-
mines intrinsic geometry.
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7.8. ALTERNATIVE CONSTRUCTION OF A
COVARIANTLY CONSERVED, SYMMETRIC
STRESS-ENERGY TENSOR

The method takes advantage of the possibility of writing a Lorentz-
invariant action in a generally invariant form. Thus, we introduce a sym-
metric tensor g,,,, and rewrite the special relativistic action with the substi-
tutions

d*x — Vg dx (7.8.1)
Ap = Apins (7.8.2)

etc.

The action § is now a general invariant, so a general coordinate
transformation does not change it. The main point is then the following:
A general, but infinitesimal coordinate transformation changes all the
dynamical variables. However, provided y5, A,., etc. satisfy the Lagrange
equations, the infinitesimal variations 8y%, 8A4,., etc. will leave the action
invariant. Therefore, the only interesting consequence of the transforma-
tion is the change of g,,,, which is nor a Lagrangian variable; this change
alone must therefore leave § invariant. We shall see that the statement
85 =0 is equivalent to the conservation of a specific symmetric tensor
T+,

The algorithm is the following. Write S in generally invariant form;
then make an infinitesimal variation in g,,,, 8., — 8., + 8g... T"" is given
by the equation

1
85 = -5 J d*xVgT*8g,,,, (7.8.3)

which obviously defines a symmetric tensor. We will show that T"" is
conserved:

T, =0 (7.8.4)

is a correct equation with ., representing the covariant divergence. All
we need for the special relativistic case is this equation with g, set equal
to 7,.,, where (7.8.4) would become

T, =9,T" =0, (1.8.5)

Note that (7.8.3) would change sign were we to choose the metric 7,
with positive space components instead of a positive time component.
Consider as an example the action for charged particles with charge
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q, interacting with the electromagnetic field. We know the action

m, [ dx} dx’
s = —E;"J—Ji—ﬂn da,,—ﬂd“xF,wF“"
I4

ny
do, do,

3 dy,
t2q, | T Aulyp) do, (7.8.6)
P dO‘P

where o, is an invariant parameter associated with the pth charged parti-
cle. We remember that this choice of § is not reparametrization-invariant,
so that do, will be determined by the equation of motion. It is proportional
to dr,; choosing do = dr makes m,, the observed particle mass.

We can easily write a generally covariant form for (7.8.6):

dx,, dx;
S =—E% do, g, —— X 45 - Jd x\/gF w88 F oy
do,do, 4
d
+ Eqpfdap e Au(xp). (7.8.7)
do,

We make a small change in g,,,:

8uv = &uv + 88,00 (7.8.8)
and from
8(g""gn) = 8(8%) = 0,
observe
8" = — g 8grng™ (7.8.9)
and recall from (7.6.49)
% _ guvsg,.. (7.8.10)

The result is

n d
E Jdﬂ'p‘[ x8(x ~ YP(‘TP)) do de 88,.0(x)

- éJ’d‘tx\/ég}Luagqu/\o‘F)\U

+ ‘1—1 J d*xVg8g, (F*\F™ + FMF,"), (7.8.11)
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so that, setting g*” = #**, we find
dxb dx},
=2m, J do, —2 =" 8*(x = yp(a )
P dop d(Tp

[0 Fag FA = 2(F*\F™ + FAF,")]  (7.8.12)

.|>|»—-

Note that the last two terms are equal and symmetric in u and v. With
do,=dr,,

4 a d7p
jd(rlﬁ (x—yp) = depé (x—yu(m) = EF 8 (x—yp)

=V1-v28(x~y,) (7.8.13)
so that
dy, d 1
Em I,dy' d)’p 3(x—y,,)+z1]""FAUFA" — F*,F™,

(7.8.14)

in agreement with our earlier result (7.5.23).
We call attention to an important property of (7.8.14), the vanishing
trace of the electromagnetic stress tensor:

T =2 m,\V1 — 02 8(x = x,) + Fo, P = F F*
P
=2 m,V1 - 28 (x — y,). (7.8.15)
p

Note also that the particle contribution to (7.8.15) can be written as

2
m
)Y E’i 53(x — x,)

P Lp

and therefore vanishes like m? as m, — 0, E, remaining finite. In the case
of a massive vector field, with a term

2

=L 4, A"
2

added to the Lagrangian density, the trace of the vector field stress tensor
no longer vanishes.

We show that (7.8.3) defines a conserved T#", Assume
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= f d*xVg(x) L(¥,(x), X, y,) (7.8.16)

where £ is an invariant density and y,, are the dynamical variables in the
Lagrangian, including the metric g,,. The meaning of the ¢, is clear
enough for A, g,.,. etc.; for the particle variables, we would write

d
:——Jda'——gw Vi
Ip

= -—~jd4x\/_dap gw( )d(yr” ﬂx\—fg—y‘ﬁ. (7.8.17)

The action S is invariant under a general coordinate transformation
x% = x7(x"), under which

Prmdt, W), A A =

Ax(x),
etc., so

= J dx'Vg'(x') L(A(x"), g x'), x" yp, .. ). (1.8.18)

The integration variable x’ in (7.8.18) can be changed to x without
changing the value of S. Thus, in one dimension,

def(x) = de’f(x’) (7.8.19)

with x' and x single-valued functions of each other with the same end
points, and f an arbitrary function. Similarly,

= J d*xVg' ()£ (x). (7.8.20)

The superscript £ instructs us to calculate £ as a function of the transfor-
med field, but with x’ set equal to x. For example, if ¢ is a scalar field
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and x = x' + 8x, then

¢'(x") = P(x)
and
P'(x) =9’ (x") + ¢'(x) — ' (x)

= (x) + (—f—l—l’; &x* (7.8.21)
b

to first order in 8x; similar definitions hold for the other variables.

We now return to (7.8.20). As shown above, we replace x’ by x,
which leaves § unchanged. Next, we expand § in the first-order changes
in A,, yy, etc. Since A,, y,, etc. obey the Lagrangian equations, their
first-order changes leave S invariant. The only change that could affect §
is in g, with

8un(¥) = LX) + grulx) ~ guX) (7.8.22)
ax” ox* ( 0 )
= ——gort | =8| 8x7 7.8.23
axlp. axurg A axrr gl-‘- ( )
68)(")( A aﬁx‘)
=16, + 8, + oat 0x7 0,80
(" ax* axv ) 5 8u
adx” aéx*
= 8uv + —Lg(r bt —;x—‘gp.}\ + ﬁxgaa’guu (7824)
ax* ox”

still accurate to first order in 8x. However, this transformation does not
affect S, since S is invariant. Thus, we have from the definition (7.8.3)

&S

- %J d*xVgT* 8g,., (7.8.25)

1 adx7 adx” 9
- d"x\/—T’“’( v T 8 T OXT— v)
2f 8 ax* & Ax” Br ax” Eu

= %Jd“x Bx"{a#(gcr u\/ET""’) + 6,,(g”u\/—gTﬂ-V) _ (aug,“/)\/gT“V}
=0 (7.8.26)

Since the integral in (7.8.26) is generally invariant, (7.8.26) can be
written as

0= J d*xVg 8x7 Q, (7.8.27)
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where @, is a vector under general coordinate transformations. Since
locally, in the £ system, Q, = (3/9€*)T*, , Q, must be the vector:

er = T“rr e (7828)

Equation (7.8.27) then shows that 7%, , and hence T, is conserved.

CHAPTER 7 PROBLEMS

7.1

7.2

Consider a particle of mass m moving in an external scalar potential
. Consider the action

S=JLdt

with L =—(m+g¢)V1l—-v? and g a dimensionless coupling
constant.

(a) Derive the equations of motion for x(¢).

(b) Show that they form the space components of a consistent four-
vector equation.

Consider next the action
S= f L'do

with L' = —(m + gy} dy*/do dy,/do and o an invariant parameter
replacing time.

(a) Derive the equations of motion for y*(o).

(b) Show that (m + gi) dy*/do dy./do is constant and that the
constant may be freely chosen without affecting the equations of
maotion.

(¢) Compare the equations derived from L’ with those derived from
L in Problem 7.1 and show that there are no scale changes of g
and m that bring them into agreement. Thus, if we assume that
we complete the scalar theory with the usual field Lagrangian for
¥, the two Lagrangians L and L' lead to different theories.

(d) Show, however, that there is a nonlinear transformation of the
field ¢ in the Lagrangian L’ that will bring it into agreement with
the Lagrangian L. This shows that with a giver external field i,
one can use either Lagrangian for determining the particle mo-
tion, providing one makes the appropriate transformation of .
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*7.3

7.4

*7.8

*7.6

Lagrangian Field Theory

Complete the construction of a scalar field theory outlined in the
text: (7.4.22-7.4.27).

(a) Derive the Lagrangian equations for the field ¥(x) and the parti-
cle coordinates y*.

(b) In the non-relativistic limit (gy/m < 1, ay/dt < |V, do = dy°),
show that the interparticle force is attractive between like part-
icles. (Do not try to calculate the force of the particle on itself.)

Verify that ®*, as given by (7.4.28) is conserved, 4,0, =0, and
P,.= f@)o,,dsx is correctly given by (7.4.21).

From the action for an electromagnetic field interacting with a
charged particle,

1 dy* m dy* dy
S=\4d* {——F,,FW}+ Jd ~—A ——Jd =
f x- 4" 1) do w0 2 7 do do

where A, (x) and y* are the dynamical variables:

(a) Construct the canonical stress tensor @*" given by (7.4.29).
(b) Construct from it the symmetric stress tensor 7#" as defined by
(7.4.37).

(c) Show that in the u” = 0 case the energy P’ = f T d3x is given
by (7.5.24).

Consider a Lagrangian density £ that is a function of a set of fields
Yo(x) and their first and second space-time derivatives, d, y,(x) and
8,0, 4(x).

(a) Derive the Lagrange equations for this case.

(b) Assuming that  has no explicit x dependence, apply the Noether
procedure [as in (7.4.9-7.4.17)] to find an expression for the
energy-momentum four-vector P”,

{¢) P has the form
Pa — deX @()u

where 8™ is the 0-a component of a tensor @, Construct the
tensor ®*“ and show that it is locally conserved: 9,07 = 0.

(d) Construct a single invariant Lagrangian of the form 9,,4*, with
A* a function of a single scalar field ¢ and its first derivatives.
Imagine that this function is added to an existing Lagrangian.
Verify that the Lagrange equations are unchanged by the addi-
tion. Show that the tensor ®*" is changed, symmetric, and con-
served, but does not contribute a change to the energy-momen-
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tum vector P*. (The fact that @*” is symmetric will not, in
general, be true for more complex theories.)

*7.7 A Lagrangian density & is changed by adding a AZ=9,A*(¢.,,
d\y . ), where the ¢, are the set of fields described by the Lagrang-
ian.

In order to simplify the problem, choose A* so that the A.¥ (as
well as ) depends only on the fields and their first derivatives.

(a) Find the condition on A* such that A¥ not depend on second
derivatives.

(b) A* (and £) are taken to be independent of x* except through
the x* dependence of the fields. Show that the Lagrange
equations for the fields are unchanged by the addition of A.Z.

(c) Construct the change in the canonical stress-energy tensor A@*#
and show that it is conserved (but not zero).

(d) Show, however, that the change in the energy-momentum four-
vector

APP = fd3x A@"

is zero.

*7.8 The action that yields the model of Problem 3.2 is

§= Jd3xdt$+ JdtLI(y,y)

where

#=2o+ 42— (T2A) - glox 0 - §- AL fx - )

and L, = %myZ.
Define the field Lagrangian L = [ £d’x.

(a) Show that the above action yields the equations of Problem 3.2.

(b) Show that, provided f(x — y) = f(|x — y|), the Lagrangian L + L,
is invariant under a rotation; that is, a transformation

¢'(x') = $(x(x))
where to first order in €

X' =x+e€eXx
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SO

¢'=d-exx Vo
A=A+exA-exx VA
and
y=ytexy.

(c¢) Use Noether's theorem to construct the conservation law emerg-
ing from this symmetry. The conserved quantity 60 = € * L; the
axial vector L is a conserved angular momentum.

(d) Show that L = L., + Lneen + Lin, Where L. ., is the electrom-
agnetic angular momentum:

i
Le.m. = _Jd:’xr x (E X B)a
4

Lecn the particle angular momentum:
Lmech = Eyz X miYi!

and L, an “interaction” angular momentum:
Lo =4 [ 4 =0 % A= y)

(e) Show that L;,, is gauge-invariant [only, of course, when f(r — y)
is invariant under rotations: f= f(|r — y|).

*7.9 Show that the Lagrange density
1
F=- E(aﬂAVa“A" — ad, A*d,A%)

does not lead to a positive energy except for a = 1.

(a) Do this in two steps. First, with & = 1, show that the A° equation
is an equation of constraint: 9;(3'4A" — §°4") = 0.

(b) From this, using the technique that led to (7.5.19), show that
the energy integral P* = f@oo d’x is positive-definite.

(¢c) Now take a # 1. The equation for A” is no longer a constraint
equation, since it gives the A in terms of the fields (potentials)
and their first derivatives. Show that the energy integral is now
unbounded in both positive and negative directions.

7.10 Consider a freely propagating electromagnetic field. Let the vector
potential have a well-behaved Fourier transform a,, (k). a,,(k) satisfies
the Maxwell equations
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k’a, — k,k*a, = 0.

(a) Show from this that if k?=k2—k®+0, the field Fourier
transform k,a, ~ k,a, is zero.

(b) If k* =0, evidently k*a, =0, and we are in a Lorentz gauge.
Clearly, the requirement that the Fourier transform for A be
well behaved is a strong condition.

7.11 (a) Consider a flat two-dimensional space with polar coordinates
x”=p and x¥ = ¢ which we define to be contravariant. The
invariant distance squared is

(ds)* = (dp)* + p*(de)*.

Find g,.. (4, v=1,2), g, and express the invariant V=
(g""9,¥).,. in terms of p, and derivatives of the scalar ¢ with
respect to p and ¢.

(b) What are the covariant coordinates x, and x,?

(c) Repeat the exercise for spherical coordinates in three dimensions.
There

(ds)? = (dr)? + r¥(d6)* + r* sin® 8(de)”.

7.12 Consider a vector V =1V, + jV, + f(VZ, whose spherical components
are V.. V, and V,,. That is,

V=1V, + 8V, + ¢V,
where T, 6, and & are unit vectors in the corresponding directions.

(a) Give V,, V,, and V,, in terms of the rectangular components of
Vandr.

(b) Give the covariant components of V: V,, Vj, and V, in terms
of V, Vo, V.

(c) The same as (b), but give contravariant components.
*7.13 We consider here a pair of scalar fields, ¢, and ¢, with a Lagrang-
ian
1 " 1 " 2 5
Ly = Eauwla g+ 53“#/28 Y2 — V(1 + ¢§3).
We note the symmetry of £, under a rotation like mixing of ¢, and
i, that is,
'y = P cos a+ Pasin a, Yo = —sina + Ycos a.
The infinitesimal symmetry is

8y, = bayn, Sy = —day.
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The Noether charge is
G
50 = H 0L 5y, + 22 5¢2}d3x
d(do¥1) 8(dui2)
which suggests a locally conserved current
JH = (W05 — Yo% ).

A more convenient representation is obtained by introducing a
complex field

v = ARl
V2
and its complex conjugate
¢y — i
* —= T2
U] Yl

in terms of which

Ly = Y™ = V(P*y),

and the invariance described above becomes the invariance of ¥
under the phase transformation

(/]l - ei(xw
with real, constant «.

(a) Show that the independent variation 8¢, and 84> can be replaced
by independent variation 8¢ and 8¢ *; then verify that the Lag-
range equations are the same.

(b) Find the Noether current arising from the phase invariance ' =
ey

The phase transformation is “‘gauged” by permitting o to be
space-time-dependent and introducing a vector field A,, into
Ly = (3% +1eA") Y*(0, — ieAL )Y = V (P*Y). (1)
Evidently, &£, is invariant under the combined transformations
=y, Pr=e " y*, and A=A, +d.a. (2)

One must add the Lagrangian Z. of the vector field to have a
complete theory of the interaction of the A and ¢ fields. Of course,
4 must also be invariant under the gauge transformation of A for
the symmetry to hold. However, independent of £,

(c) There is a conserved current for the new %,. It is
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0%,
9A,

Show by explicit calculation that this current is conserved for
and ¢ * satisfying their equations of motion.

(d) Show that the gauge invariance of the Lagrangian (1) implies the
conservation of the current given by (3). The general theorem is
the following: Given a Lagrangian %, (i,, A,.) that is invariant
under the transformation ¢, — ¥, + 8¢, and A, - A, + § A,
then j* = 9%,/0A4, is a conserved current, that is, 4,/ =0,
provided the Lagrange equations are satisfied by the ¢ fields.
Hint: If the Lagrange equations for the ¢, are satisfied, the
action § = f d*x #, is also invariant under the transformation
Yo— Y, + 0, with no change in A4,,.

" &)
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CHAPTER 8

Gravity

8.1. THE NATURE OF THE GRAVITATIONAL FIELD

The essential phenomenology that leads to a theory of gravity was given
by Newton:

The force of gravity between two bodies is always attractive and proportional
to m myiri,, where m, and m, are the inertial masses of the two bodies and
ri2 the distance between them.

From our discussions of massive field theories, we recognize that the
gravitational field must be massless and presumably satisfies some equation
like
¢

Ve —
¢ ar

4mp {8.1.1)

where p is the source density and ¢ some component of the gravitational
potential (for simplicity, we will call it the gravitational potential). The
asymptotic potential arising from a body with source density p; will be,
just as for a scalar field,

1
sty == [ drp. (o), (8.1.2
and the asymptotic interaction energy with body two will be

—ijmwxmfwmmm, (8.1.3)

I

with the minus sign for attraction. Therefore, we expect to have
338
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Jdrpl(r) = Any
(8.1.4)
[ de o) = ams

with A a universal constant.

The remarkable feature of (8.1.4)—the equality (to within a choice
of units) of gravitational and inertial mass—is known to hold to very
high accuracy. All bodies at the same point in space fall with the same
acceleration to about one part in 10''. We will try to find a relativistic
field theory that accounts for the simple phenomenology outlined above.
We will be led to a theory that will turn out to be a linear approximation
to Einstein’s theory; when we try to make the theory internally consistent,
we will be led to the complete Einstein theory. This approach was initiated
by Feynman,' Gupta,® and Thirring.?

What kind of field can carry gravity? Clearly, a vector field is out of
the question, since it generates a repulsive force between like particles.

We have seen (Problem 7.3) that the force produced by a scalar field
is attractive, and therefore a scalar field is a candidate for the carrier of
gravity. However, it does not work. Note that the density p(r) in (8.1.1)
must be proportional to energy density, since J’ p(r) dr = Am. However,
the density that couples to a scalar field is a scalar source, which for a
point particle, we have seen, is

p(r)=V1-v28%(r-y,), (8.1.5)
and ] ps(r) dr = V1 — v2, which is not the energy. In contrast, the T

component of the free particle stress tensor precisely integrates to the
energy. From

dx* dx”

T =m——V1-1?8%(x~y,) (8.1.6)
dr dr
we find
00 _ m
f dr Ty = = (8.1.7)

'R. P. Feynman, 1962 CalTech lecture notes.
%S N. Gupta, Phys. Rev. 96, 1683 (1954).
*W. E. Thirring, Ann. Phys. 16, 96 (1961).
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For a collection of elementary particles forming a nucleus, atom, molecule,
planet, etc., the stress tensor 7*" is guaranteed to give the energy via

W= J T dr (8.1.8)

no matter how complex the system.*

How decisive is the failure of the scalar coupling to yield the inertial
mass? Suppose we consider a nucleus and take a scalar density p, =
m, V1 —1v? &(r —y,) for each particle. The integrated coupling of the
scalar field to the nucleus would be

M, =2 m, V1 -3+ (?) (8.1.9)

where (?) stands for interactive effects, perhaps arising from other scalar
sources in the nucleus. There is no reason to expect that (?) would correct
the error in the factor V1 — v2, which is ~ muv}/m, or roughly the binding
energy of the nucleus over its rest energy, Mev over Gev, or ~ 1072,
maybe 107* or 107" with a little conspiratorial help, but huge compared
to the 107" equality of gravitational and inertial masses.

Another general way of seeing that there is difficulty is to suppose
that the hypothetical scalar gravity is coupled to the natural scalar source
density in a nucleus or atom, the trace of the ‘“matter’’ stress tensor:

T=T,", (8.1.10)

where ‘matter’ includes the electrons and quarks and the gluon and elec-
tromagnetic fields. Here, we recall that the trace of the electromagnetic
stress tensor vanishes; therefore, its contribution to 7,,* cannot match its
contribution to T%, so we would have a correction to the equality of
gravitational and inertial mass of order T, /Tl a few tenths of a
percent or more. In addition, gravity would in first approximation not
deflect light.

It would clearly take a remarkable conspiracy to cancel out all these
problems and restore the known equality of the two masses, gravitational
and inertial. We must consider the pure scalar theory of gravity decisively
ruled out. We turn, therefore, to the next simplest possibility, a symmetric
tensor field ¢, .

*We here exclude internal gravitational energy.
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8.2. THE TENSOR FIELD

We expect to find equations resembling
8o 0" by, + 0= —AT,, (8.2.1)

where T,, is the matter stress tensor, and + - - - allows the addition of
terms like 9,0 ¢,,, etc., as required to give a positive energy. A is a
coupling constant; the minus sign is a convention.

As in our discussion of vector fields, we have two ways to proceed.
We can write the most general Lagrangian density that will give equations
like (8.2.1)—that means bilinear in ¢,, and d,¢,,—and adjust the
constants to give positive energy. This is possible, but difficult. It is much
simpler to repeat the process we used earlier, that is, to require that the
source T,, radiate only fields possessing in their characteristic coordinate
system (rest system for particles, wave number zero for fields) only the
five components associated with a three-dimensional symmetric traceless
second-rank tensor. As in Section 7.5, we work with the four-dimensional
Fourier transform of the field variables. In order to carry out this program,
we must start with a massive field. The equation will be

(8o 0% + p?) ¢P" = —A PP, T (8.2.2)

where P is a projection operator that eliminates the unwanted compo-
nents.

How do we eliminate the unwanted components of ¢,,? In the
k, =0 coordinate system, we require that the three-dimensional scalars
and vectors that we can form from the tensor ¢,, all vanish:

P

boo =0, dio = ¢o; = 0, and b= ¢:=0 (82.3)

i=1
for a propagating mode, that is, for k% = k,k* = p*. This elimination can
be expressed covariantly:

k¢, =0 and  ,°=0 (8.2.4)

reduce to (8.2.3) when k* = 0.

We have thus reduced the ten component symmetric tensor (by
dropping the three-vector, ¢, two three-scalars, ¢go and ¢ ;) to a five-
component traceless, symmetric three-tensor.

We write the most general covariant operator P?”,,, symmetric in
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pv when operating via P?*,,T*" on a symmetric tensor, and satisfying
k,P?*\, =0 and 7,,P?",,= 0 when k* = u°.
The most general structure for P is

PPy, = 8880+ Sk ke, + B Pk ok,
p 2

2

pLV

YT et M 5 (KPk A8+ kYK 82)  (8.2.5)
T m

where a, B, v, £, and € are adjustable constants. We first trace pv,
setting k* = p?:

kik, 4
T}pvayz\r:: 7)/\1-+ a“A—Z— + _B2k/\k'r
M
2¢€
+ ')/T,/\T + 45”’7)\1 + ——5 k'rk/\ = 0 (826)
M
or
(1+y+4£)=0 and (a+4B+2¢)=0.  (82.7)
Next, we multiply with &,
pv v a v B v
ka )‘n:kA87+”—2k k)\k7+——2‘k kAk,.
7!
+ Yk Tar + EK M+ €k n 8+ kk ik, =0 (8.2.8)
I

so that

1+ e=0, a+ B+e=0, and y+ £=0. (8.2.9)

The solution of (8.2.7) and (8.2.9) is
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Our equation for ¢*" follows from (8.2.2):

P
(K -p [ + 2k k ok TAT 4 2 Ly Kaks e
p
1 kPk” 1
il TTz\'r___ pv T)\‘r
3 ,u A 377 Mar
1 P Av v Ap
~ = (kPh T + kK, T™) (8.2.11)
7

where the coupling constant A will be determined later, and k? is no
longer subject to the constraint k% = u2.3

Equation (8.2.11) has the property that the modes k¢, and 1,,¢""
will not be radiated—that is, the pole 1/(k*— p?) in the solution of
(8.2.11) will be canceled for those modes.

We now turn (8.2.11) into an equation for ¢*”; in its present form,
it is not simple to take the limit u — 0. We follow the same procedure
as in the vector case. We express the objects that appear divided by u?
m terms of ¢°”. These objects are T=17,T", T°=k,T*, and

=k,T?. In terms of these, (8.2.11) is

2k°k* = 1 ,, T
k2— 2 P {Tpll T — v_—
( M )¢ V= 3 'u, 3"IP /.L2
p 1 4
+§k’§ T_%,npuT__l_i(kﬂTV.g.k"T”)}, (8.2.12)
73 H

Call ,,¢"" = ¢, kr¢*" = ¢*, and k k¢ = ¢. Now trace (8.1.2):

P T 2
(K= p?)o= /\{T+g£;7 + §%+1%T—§T—%T}. (8.2.13)
3u 3t 3pu 3 In
Next, multiply (8.2.12) by k.
2 v 2
(k> = u?)p = /\{T"+ gl‘—;k" T + 11‘—2T + 1’—‘—2k"T
3u 3pu 3u
- %k”T— «1—2(sz" + k“T)} (8.2.14)
Mr

*We apologize for the use of A both as a coupling constant and a Lorentz tensorial
index. Unfortunately, we have run out of suitable Greek letters.
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and now multiply (8.2.14) by k& ,.:

2 2

- 2k~ 1k 1k? 1
(k*=w*)o =
3ut 3u? 3u’ 3 I

2
MT+==T+-=T+_—T- —sz—zi?}.
(8.2.15)

From (8.2.13) and (8.2.15), we solve for T and T. We rewrite

(kzlﬂz)d) T<1+1E_i>+T<%’ﬁ+i_i> (8.2.16)

3u? 3 3t 3w w?
and
(kZ_#Z) 2 a4 2
- T [k~ ) —,< 2k 5k“> )
=—kN—=—-1|+T{1+-—--— 8.2.17
so that

/\T=3(f)</.l,2“§k2>+2($ and AT =p’(k’¢—¢). (8.2.18)

Substituting back into (8.2.14), we learn that

=k"p— " (8.2.19)
w?

and finally putting 7, 7 and T" back into (8.2.12),
(k2 _ M2>¢pu . kpd)v_ kv¢p+ kpkvd)
GRS R EPY i (8.2.20)
or in coordinate space, with k, = 1/i4,,,
(a/\az\ + M2)¢pv_ apa)\d)l\u - 6118A¢Ap+ apavqs)\/\

=0 (020" + 17) b, ~ i ] = AT, (8.2.21)

Equation (8.2.21) tells us the number of propagating modes of ¢*”.
Of course, for u # 0 we know the number will be five by construction,
just as the number for a massive vector field was three. We first note that
whether or not w is zero, (8.2.21) involves no second time derivatives of
the four quantities ¢°; hence, the equations for them are equations of
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constraint. For u # 0, however, there is one more condition, obtained by
operating on (8.2.21) with a,:

pH0,0°" — 8" dpx) = — A3, T"". (8.2.22)

Thus, for v=j, we have constraint equations on d,¢"”. However, for
v= 20, we find

A 0 ,
P(pr— ") ="di= Lf— — 3¢, (8.2.23)
M

eliminating one more propagating mode. We will see later that for u =0
a different mechanism takes over.

In order to have a theory that treats consistently the generation of
gravity by matter and the action of gravity on matter, we need a Lagran-
gian that includes gravity, matter, and their interaction. We turn now to
a Lagrangian formulation.

8.3. LAGRANGIAN FOR THE GRAVITATIONAL FIELD

We write the Lagrangian density as

o= bpundovafann o L+ i {an® 4
(8.3.1)

where all possible pairings of the six and four indices must be included.

The number of independent pairings of the four indices associated
with the u” terms in (8.3.1) is two: ¢,,¢** and ¢%¢,. The total number
of pairings of the six indices in (8.3.1) is 5 X 3 =15. Of these, only four
are independent: A paired with A’ gives two (as in the p” terms above).
A and A’ paired with pv gives one; A paired with pr and A" with p’v' gives
the last one. All other pairings are reducible to these four by symmetry,
relabeling, or integration by parts.

Our Lagrange density therefore must take the form

1
Lo = 000,08 " + 0016, 0" G + b0, 970" b

+¢0,¢"" 3, P2

2
+ 5 (adud™ + Brs."), (83.2)
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1 . . iar
where we have chosen the factor 5 to give the conventional positive

coefficient for the ‘“‘natural” term, ((13,»,»)2/2. Note that because ¢"” =
¢”?, ¢,” = ¢”, and can be written ¢, with no ambiguity. In order to work
out the Lagrange equations, it is convenient to keep track of indices by
writing (8.3.2) in the form suggested by (8.3.1). That is,

1 ! ! ’ ! v Ay v_p'v '
Ly = ndp,dx by X {5 770" M+ an® Mt + byt g™

2
+ C'n“’n"'”'n*'”} + % Sovbov| an® ™ + By (8.33)

and

07,
—f =0y + ! 8.3.4
(or0m) dov[{ }H4 }] (8.3.4)

where { 1} is the first bracket in (8.3.3) and { } the same bracket with
primed and unprimed indices exchanged.
Similarly,

2. 2 dofl 1+ 1} (8.3.5)

Thus, the Lagrange equations are

Ixdx o[ M 0+ 2am™ M
+2bnpvnp'v’n/\/\' +an\pnp'v’n)\’v+ Cn/\'p'npv_n/\v']

2
=5 do2an ™ + 2807 0 ] (8.3.6)
or
aA[aA(bpv + 2a6v¢p)\ + anpva)\d)(rxr + C[T’)\pavd)”(r+ aﬁd)(rr\npv]]

- wad” + B g, (33.7)
We must still symmetrize in pv, since the only permitted variation of

¢°", 8¢, must be symmetric in p and v. The equation is then (with

¢=d7)
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3,87 + a(8,8" ¢** + 8,97 ™)
+¢8°8”" ¢ + 0°(2b0,0" d + 0,3,¢)
= u*(ad®™ + Bn*e). (8.3.8)

Comparing with (8.2.21), we find a= -1, c¢c=1, b=-1/2, a= -1 and
B=1,so Zis as follows:

1
b= (01 b,,0" 67" — 20, ,,0"$7*

+20,670,¢ — 0,60" ¢~ p1 b, + p ¢7 ], (8.3.9)

Before continuing, we wish to verify that the energy of the free field
described by the Lagrangian density (8.3.9) is positive.
Note first that the second term in (8.3.9) may be rewritten as

3™ = 3,0, + total derivatives.

We may therefore calculate the energy from the canonical stress ten-
sor, dropping every term except

gé = %[a/\ ¢pua)\ ¢pv - “2¢Pv¢pv] (8310)

since all the other terms are bilinear products of expressions, each of
which vanishes by the equations of motion. The energy is therefore

Py= %Jd3x[¢pvépy + 000" + I"L2¢PV¢pv] : (8.3.11)

We proceed here as we did in (7.5.20) by Fourier expansion:

Do = f ki, e* TR0 + cc. (8.3.12)
so that P, becomes

Po=(Q2w)’ f dPk(K? + p> + kd) Y, ¥ (8.3.13)
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Y, is restricted by the conditions

k.. =0 and  ¢,1""=0. (8.3.14)
Thus,
k() lll“,, + kiljlh' = 07 (8315)
k" Yoo + k' i = 0, (8.3.16)
and
k(] l/’O/ + ki(/’l/ = Ow (8317)
s0 that
k'K
oo = }(—Bﬁdfﬁ (8.3.18)
and
Woi = Yip = — i , (8.3.19)
ko

We see that o and ., are not independent degrees of freedom, nor is
i = go. With k in the three-direction, there remain as independent
components Yz, Ya, Y, ¥z, and Yy — Yop. The term Yoy + iy =
Yoo — Y33 is already determined by 33, Substituting (8.3.18) and (8.3.19)
in (8.3.13), we find for 4, y**"

2

igd g |2 ‘W
kK gy _2ﬁjﬁ Tl (8.3.20)

k3 ko
= ns|’€* = 267 |y, [P + [y ]
=P (e* =267 + 1) + 2(1 — (|1 P + |2 ]?)

-]

+ 20l + [y P+ (g (8.3.21)

which is positive-definite, since e = k/k, < 1.

It is interesting to consider the limit of this theory as wu”— 0 and
(1 — €)= u*/w?—0. In order to make a nonzero contribution to the
energy, |3, |* and | 3, |* must go like 1/u?, and |¢53]° like 1/ as w2 — 0.
We can find their actual behavior from (8.2.12). For the limit #*— 0 to
exist at all requires a conserved source, so we take

k,T"" = 0. (8.3.22)
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The equation for ¢** becomes

2 2 pv pr 1 kPkV pv
(6 = 2y = A 70 (S5 =), (8.3.23)

where T = n,, = T*", as before. We note the singularity of ¢/ as u*— 0:
It is uniquely in the amplitude 53, since k is in the three-direction, and
makes | 3] go like 1/u* as u? — 0. The mode

Pt PR = g - g
= (e? = 1) ¢ — constant (8.3.24)

as u”>— 0. The modes ' and y>* are finite in the limit and therefore
carry no energy. The independent modes that survive and carry energy
are therefore y'' — 2%, ¢'2, and *°. As we shall see later, the u? =0
theory, based on (8.2.21) with w* = 0, has only two independent modes—
essentially, ¢'' — ¢** and ¢'?. The limit of the nonzero u” theory as
w” — 0 exists and is different from the w” = 0 theory.

We will come back later to a discussion of the free Lagrangian—
propagating modes, zero mass limit, stress tensor, etc. We wish first to
study the system gravitational field plus point particles.

8.4. PARTICLES IN A GRAVITATIONAL FIELD

We write the action as the sum of three terms:

S=8,+5,+5, (8.4.1)
where
S, = J %, (8.4.2)
and
§,= - (e, D, (8.4.3)

P 2 dlfp = d(Tp

as discussed in Section 7.2; for the interaction we take the simplest in-
variant, nonderivative coupling:

dy}; dyll
S;=-A2m, J 22 () doy. (8.4.4)
P dU'I, dO'[,
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m,, is inserted by hand to guarantee the equivalence principle, that is,
acceleration at a point independent of the particle. We could also add a
coupling to the trace ¢ = n""¢,,, but that would be in some ways
equivalent to adding a scalar field and subject to the same experimental
problems.

It is obviously simplifying to define
8ur(Yp) = M + 24 b, (¥p)- (8.4.5)

The particle Lagrangian can then include the interaction by writing

S[’J - Emﬂ dyl’ dyﬁ

u,,(y,,) do,. (8.4.6)
do,d

The equations of motion are

d dy;  1dypdyp

- g L= TP, 8.4.7
do, 8" do,  2da, da, *EM (847
or
Qyp_Vdyydyp o dy dv
*do? 2do,do, " " do, do, 8y
:_lzxgdyp(i&&_ué@_igg)
2do,da, Aoayr oy
or

A’V o D dyy

2 vA
do, do, da,

-0, (8.4.8)

where T is defined in (7.6.40).
We determine do,, by calculating the o “‘energy” “W™ from

as in (7.2.12). It is

my,dyp dy,
=--rL e, 8.4.9
2 do,da, 8w (8.4.9)
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so that (do,)* = const. X dy* dy} g,..(y,). As in (7.2.11), we may choose
const. = 1 by adjusting m,,. Thus,

172

do, = (dys dy}; 8. (ys)) (8.4.10)

and in the equation of motion (8.4.8) da,, is to be understood as given by
(8.4.10).

The field equations now follow. Once we have chosen the Lagrangian
to give the effect of the field on the particle, the particle’s effect as a
source of the field is determined. Then, the field equations follow from
88/8¢,, (with u?, the gravitational field mass,’ set equal to zero). Thus,
with

a’
S - J zx [aA ¢M,V ¢”V - 3A¢;LV6V¢M/\ - a)\qspvay.(bw\

Emp dYP d.VP

+ 28“¢’“’6u¢— 8)\456)‘(25] do d pwo)p) dUP?
we have
aS A Av v A
- = 9,8 """ — o9 —07d
56, 20" O 20 2@

+ 843" — 1*[0r3 ¢ — 0.0, ]

) da,,( Zy" D d>,“,(yp)> =0. (8.4.11)

uv P Upd

The last term in (8.4.11) is transformed via

Jd0¢pv01») = J’d4x54(x = ¥,) §.lx)do
to

dy® dy”
AZm, 2222 4y 54 - y(a,)) (8.4.12)
do, d

“More precisely, in classical field theory, 1/u is the Compton wavelength of the field.
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which we will call AZ, Th" where 74" is the particle stress tensor:
dyh dy,
T4 =m, 2L 2L | dg, 5 (x - y,(0,)) (8.4.13)
do, do,
with
v /2
do, = (dxtdxpg,..(v,) -

Equation (8.4.11) becomes

a/\a)\ ¢Hv_ 6A8A¢All_ alfaA(z)A;.L + a;d.av¢
— (010" ¢ — d,00 ) = = ATH. (8.4.14)

Equation (8.4.14) has two remarkable properties. First, if we operate
with 3, on the left-hand side, we get zero identically. Therefore, the
equation is inconsistent, since 4, 7*" is not zero. It is not zero because
there is exchange of energy and momentum between matter and field, so
that the matter stress tensor alone cannot be conserved. However, if the
field is weak, then to lowest order, T, " is conserved. In fact, from (8.4.13),

dx® do,

0. Th" = —m,8(x - y,)

I‘;.A(yp)
= *I‘L;\T;f)‘.

It is clear what program might be followed. Instead of 75" on the
right-hand side of (8.4.14), we should have T*", the total stress tensor of
our lincar theory. This way of proceeding poses two difficult problems.
First, it is not clear how we should choose the T#” that is carried by the
gravitational field. We saw in Section 7.7 how to construct a conserved
tensor from a Lagrangian density. However, since the Lagrangian density
can be modified by adding a derivative (without changing the Lagrangian
equations and therefore without changing the theory), there is an infinite
set of possible T#"’s, all conserved and symmetric. Second, if we modify
the right-hand side of (8.4.14), the new equation will conserve a different
stress tensor. To find the new stress tensor, we will need to find a Lagrang-
ian for the new equation, and so on, ad infinitum. This process can be
carried out, but we will not do so here.” Remarkably, both problems are
solved exactly by Einstein’s general theory of relativity. We shall see how
this is done in Sections 8.7 and 8.8. For the moment, we will consider

"It is discussed in some detail in Feynman’s notes, previously cited in footnote 1.
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(8.4.14) as an approximate equation and deduce its immediate conse-
quences. Therefore, imagine an extra term 87" on the right-hand side
of (8.4.14); this extra term makes the equations consistent, but is small.
We shall need to find it later in order to calculate the precession of
planetary orbits.

The second remarkable property of (8.4.14) is that it no longer (be-
cause p = 0) determines ¢,,,. It is, in fact, invariant under the transforma-
tion

¢.u.y__) ¢,U.V+ a#é"’_f_ a"é’n“' (8.4.15)

where the four £* are arbitrary functions of x.

The transformation (8.4.15) is analogous to the gauge transformation
of the potential A, in electrodynamics. There are two important differ-
ences, however. The first is that the gravitational field I'%,, which, accord-
ing to (8.4.8), determines the motion of a test particle is not invariant
under the transformation, unlike the electromagnetic case. The second is
that a coordinate transformation can eliminate the change in the gravi-
tational field. To see this, we observe that the action S, in (8.4.6) is
invariant under the gauge change (8.4.15) together with a transformation
to new coordinates®

x,=x,—2Xé,(x),

all to first order in A, and A§,.

The existence of this invariance provides us with a rigorous but difficult
way of dealing with the gauge problem: Formulate all experiments in
terms of gauge invariants. In practice, one does less: One usually assumes
that experiments are carried out in gravity-free regions, where the only
coordinate ambiguity is that associated with Lorentz transformations. That
is a not very subtle and not very satisfactory way of instructing the reader
not to worry too much about the choice of gauge.

We wish before proceeding to make sure that the weak field, low-
velocity limits of (8.4.8) and (8.4.14) yield Newtonian mechanics. We try
to solve (8.4.14) for a heavy, stationary source (like the sun), with mass
M.

A convenient gauge that decouples the tensor components of (8.4.1)
is defined by the condition

3, " = %a“d;. (8.4.16)

%The alert reader will note here the first appearance of general covariance, albeit in
approximate form.
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This gauge is called harmonic. 1t is analogous to the Lorentz gauge in
electrodynamics.

To see that we can always go to this gauge, suppose d, ¢*" — 59" =
" # 0. Then we let @7 — " + (9"&€" + 87¢*) and demand

(oM + 08" ) — 8" e = — 4 (8.4.17)

or
dotE = —¢" (8.4.18)
which is an equation we can solve for £”. Note that like the Lorentz gauge,
the harmonic gauge is really a class of gauges, for transformation within
which the gauge parameter £* satisties the four-dimensional harmonic

equation 9, a*£* = 0. Hence, the name harmonic gauge.
If we insert (8.4.16) into (8.4.14), we find

o
a/\a)\d)#u_n_z,‘a/\a/\(bz —)\T?')p (8419)

where T%' i1s the stress tensor of the sun.
A further simplification results from the trace of (8.4.19):

4
aAa*qb—EaAa*cfa: -ATs (8.4.20)
with T, = TH,,..
Therefore,
9t = ATe, (8.4.21)
and

[l
aA a)‘(b'“’ = _/\T#)V + %“a,\ (:)/\d)

ey -1
M7 -0, (8.4.22)

For our source, dyi/do, = 0, and for weak fields and low velocities,
dos = dy', yielding

TE =~ M8 (x —yu(yp)): (8.4.23)

all other components of T4 are approximately zero. Let us define *"
by the equation
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Toy=—228"(x — yo )" (8.4.24)

Then from (8.4.24), t* ="' =** =¢* = 1; all other components are
zero. The static solutlon of (8 4.24) is then the solution of

_V2¢IAV: _ A/;()a (X _ yo)[pv
or
A M ol
() = — = (8.4.25)
477' 2 'X - y(jl

We next substitute (8.4.25) into (8.4.8). We take the static field, low-
velocity limit of (8.4.8). That is,

dyh (dy2>2
+ I'x =0. 8.4.26
do* N\ do ( )
The equation for y}, is then
d’yp (d)’p>
+T'h =0, 8.4.27)
d(f 00 dU (

But for a static, dlagonal $"”, as ours is, [')y = 0. Thus, (d’yp/da?) =
and we may take o = y).
The space components of (8.4.26) are therefore

dyp
4+ Tiy=0. (8.4.28)
d(y,)?

In the weak field static approximation,

: 1
oo = Eaigoo = A d; oo, (8.4.29)

and

dyp
= =X didoo
d(yp)
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with

doo = — A _Mo (8.4.30)
87|x —yo
SO
Ly (8.4.31)
8w

Newton’s gravitational constant.

8.5. INTERACTION OF THE GRAVITATIONAL FIELD

We consider a given gravitational field, g,,, = .. + 2A¢,..,. We have seen
in Section 8.4 the action of a point particle in the field g, ,:

my dy" dy"
S, =—-—|do———g..—/ 8.5.1
: 2 J 7 do Br do ( )

with the resulting equations of motion [as in (8.4.8)]

2 A T
ay*, I“;,didl.
da? do do

(8.5.2)

We have left out the p subscript in (8.5.2) since from now on we will be
considering only one particle at a time.

If we let g,,, transform like a tensor under general coordinate transfor-
mations (under which dy*/do transforms like a vector), the action (8.5.1)
will be exactly, rather than approximately, invariant, and the equations
of motion (8.5.2) covariant under such transformations. Further, the argu-
ments given in Section 7.7 that show that g, can be transformed to g,,, =
7., at a point, and I'y, = 0 at that point, hold here as well. Therefore,
at each point there will be a coordinate system (the elevator system) in
which the equations of motion are

d*
— & =0 (8.5.3
do? )
accurate up to and including linear terms in the expansion of g, , about
£ = &. At the center of this freely falling clevator system, masses move
under the effect of all other than gravitational forces: The gravitational
force has been eliminated. For this to hold over the entire elevator, the
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elevator must be small enough so that the effect of the neglected quadratic
terms in the expansion of g, about £ = &, is small compared to that of
the other forces at work.

The principle that all effects of gravity should vanish in the elevater
system was called by Einstein the principle of equivalence of gravitation
and inertia.

At this point, we must ask about other interactions. In particular, it
does not seem possible that all particles move freely in the elevator frame
unless, in that frame, all the laws of nature take their gravitation free
form.

This apparent extension of the equivalence principle is certainly neces-
sary to make the original limited principle consistent. For example, if it
were not true, the electromagnetic contribution to mass, which is different
for different atoms, would show up in the E6tvos experiment (and its
children and grandchildren), now accurate to one part in 10''. The action
(8.5.1) shows us how to accomplish this more general goal: We use the
gravitational tensor g,.. to make the Lorentz-invariant action generally
invariant and the Lorentz-covariant equations generally covariant. Thus,
we take for the action of the electromagnetic field interacting with charged
particles, as in (7.8.7):

mp [ dyp d
Z ”f dyp ypdf,,+2Jqp y”A . do,
2 dcr “do

p

—ﬂd“xvg(aMA,,-avA“)gw (3, A,— 3. AL).  (8.5.4)

In (8.5.4) we have taken the fundamental field A, to be a covariant vector
and the particle displacement dy* to be a contravariant vector. The fields
F.,=(9,A,— 3,A,) are given by ordinary derivatives, since, as we have
seen, the ordinary curl is a tensor.

The equations for the electromagnetic field are then

F* ., = —j"  with

4 —_
jetxy) =q, J d(r,,is—(—x—l&p—))@)—p— and from (7.6.43),
Vg da,

a/,LFuA+a/\PW;Lu+auFAp.:U~ (855)

The relativistic quantum wave equation for a charged scalar field ¢
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with charge ¢ would be the covariant extension of
[(3,. — ieA ) (0" — ieA") + m*] ¢ =0, (8.5.6)

or

[g47(0, — ieA,) @], — ieA . g""(d, — ieA,)p + m*’p=0. (8.5.7)

We shall use this equation shortly to study the gravitational red shift.

We take up now three consequences of the tensor theory developed
so far. These are the bending of light, the precession of elliptic Keplerian
orbits, and the gravitational red shift.

We discuss the bending of light and the orbit precession together. In
both cases, what is at issue is the orbit equation for an object in a given
static gravitational field. We treat the light ray as a rapidly moving particle
(v ~1).

We start from (8.4.7):

d ( dy") 1 dy*dy’
— v ==9 L 8.5.8
do Eu do g met do do ( )
We consider the case where
8oo = Ko 8 = —& 0, goi = 0, (8.5.9)

and g, and g, are functions of |y| = r alone. We found, from (8.4.25) and
(8.4.31),

_2MoG 2M G

g=1 and g=1+ (8.5.10)

We consider here the more general case [in which (8.5.9) still holds],
where we have corrected the right-hand side of (8.4.14), as discussed
below in Section 8.8. Under these conditions, (8.5.8) has three integrals.

First,
d dy"
— <gu di> =0, (8.5.11)
T (22
SO
y()
£o o constant = W. (8.5.12)
a
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Second, from (8.4.10)

dy'\’ dy\
(Lo (o

and third, from the space component vector equation

d g_lﬂ(d >dy)‘dy’
_lofd YT

T 4% e 2\ %) 4o do

(8.5.13)

where § = y/y and y = |y|, we derive angular momentum conservation:

d
L =gy X 4y - constant.
do

(8.5.14)

We learn from (8.5.14) that the motion stays in a plane; we choose
polar coordinates r and 6 in that plane. Then (8.5.13) becomes (with

dAldo = A)
gU);nz - g-s‘(f2 + rzéz) =1,

(8.5.14) becomes
grio=1L,

and substituting y° from (8.5.12) in (8.5.15) yields
2
W g (P +r6h) =1
8o
or

2
(P + r*9%) = 1<—V—V* —~ 1).
8s \ 8o

We change to 6 as an independent variable, using (8.5.16):

dr\ G\ L2 1 (W
— | +r) 5o =—l—-1)
de gsr & \go

The substitution u = 1/r gives

2 2
(]2
de L\ g

(8.5.15)

(8.5.16)

(8.5.17)

(8.5.18)

(8.5.19)

(8.5.20)
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The differential equation for the orbit is found by differentiating (8.5.20):

2 . 2 -
dngﬂ_[ls_:(_‘i’__l)l_ (8.5.21)
de- oul2 L 8o .

We see from (8.5.10) that expanding g, and g, in powers of 1/r = u is
equivalent to expanding in powers of 1/c*. Thus, since we are considering a
slowly moving body (a planet), we may expand

2
18—“2(K—~1> —A+Bu+Cul+- -, (8.5.22)
2L\ g
Equation (8.5.21) becomes
2
% +u(l1-20)=B (8.5.23)

or

B
u— ———=uycos (1 —2C)"*(6 - 6
[ —2C £ ( ) ( 0)

or for small C, with 8, set to zero (choice of axis)

=B+ uycos[(1 — C)(H)] (8.5.24)

for a precession angle 27 C per orbital year.

We have seen earlier that our linear field equations are not
consistent—the right-hand side is not conserved if the particle is accelerat-
ing. When we learn how to deal with this problem, we will find corrections
to g, that contribute to C in (8.5.22). We will return to (8.5.24) when
we have that information [see (8.7.23)].

We turn now to the bending of light by the sun. We treat the light as
a fast particle with vy — 1. In this calculation we need only keep the weak
field limit, that is, the linear term in the expansion of g, and g, in powers
of the potential 2M,G/r. The constants W and L that appear in the
equation can be calculated from their values far from the source
Me: L = boy/V1 — U% and W = 1/V1 — v{. Thus, the orbit equation for
vp— 1 is [from (8.5.20)]

2
(d_u> PRI o
de bzg()
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_ L(l L 4Me G) N @<( "_492>2) (8.5.25)

b2 r r

and

2
u" +u= ; M@G (8526)

where b is the impact parameter of the light ray passing the sun.
The solution of (8.5.26) is

2M.G

b2

—wacosf, (8.5.27)

where « is a constant. We have again chosen our axes to make 6, = 0.
We determine the coefficient « by differentiating (8.5.27) with respect
to o:

~——=—=qasinf —2 (8.5.28)

As r—» x, before the scattering,

ﬂz— _ﬁvo and pr—=L=%———
do V1-uj do VI =03

the * sign depending on the initial sign of 6, which without loss of
generality we take to be positive. « is then given by a = 1/bsin 6, and
(8.5.27) becomes

1 2M.G _ cos )

r b2 bsinb

(8.5.29)

where 6, is the initial direction of 6 from the scatterer, or with £ = r/b

S=e— (8.5.30)

where € = 2M.,G/b is a small dimensionless number.
For & — o,

L cost, (8.5.31)

€= - ;
sin 6,
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the two solutions of (8.5.31), 6 = %6, give 0 before and after the scat-
tering. For € = 0, 6, = £ 7/2, so the particle comes in along the *y-axis,
goes out along the *y-axis, and is undeflected. The scattering angle is
therefore the difference between 28; and 7. Since € is small, the equation
for 6; can be solved:

0=¢e—coté
and with
g, = F - 5] (8.5.32)
2
we have
e—-8=0. (8.5.33)

The scattered angle is therefore, without paying attention to sign,

16| = 2¢ = MG

or in ordinary units

Mﬁg

be?

SC

(8.5.34)

To find the nature of the trajectory (attraction or repulsion), we have to
trace out the orbit from (8.5.29). We write again

1 cos 6
— = € -

3 sin 6,

(8.5.35)
We start with 6, ~ /2, § >0, 1/£ = € — cos 6 so that (see Figure 8.1)
e—cos h, =0, 0=——c¢€.

Clearly, # must increase from 6; to keep 1/ > 0. Thus, the trajectory
circles the origin, ending at ;= —m/2 + €. The particle is attracted to the
scatterer.

We may compare (8.5.31) with a naive (sometimes called Newtonian)
application of the equivalence principle, which would have a light wave
packet accelerate under gravity according to the local gravitational field.
Thus, for a small deflection, we can calculate the transverse change in
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Figure 8.1.

velocity Av from the unperturbed straight-line motion of the light. That
is,

x

Av = J dra,(t)

—x

with
Gr
a, = — M(D ’_‘{'L‘.
JE
The result for impact parameter b is
c cb

half the correct result.

We take up next the gravitational redshift. We note first that it follows
directly and simply from the equivalence principle, as is shown in Problem
8.1.

A general argument for the effect is based on the tensor g, itself.
Consider, in a static gravitational field, a stationary clock at point A with
an intrinsic period 74 and a stationary clock at point B with an intrinsic
period 5. Communication between them is by a fixed-frequency light
wave. This is possible because g,, is time-independent. Call the period
of the light wave T.

Now consider two events at A: two clicks of the stationary clock. The
light wave will resonate with the clock if T is the time (not the proper
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time) between ticks of the clock, that is, if T = Ay°, and
Vg, Ay*Ay” = 74.
Since the clock is stationary, our resonance condition is

TVgu(A) = Ta.
Similarly, at B

TV g(m(B) = TB.

T8 _ \/;00(3)
TA g()()(A)

and the frequencies wg and w, have the ratio

‘_‘{l_i‘_z / (J()(A)'
Wa goo( B)

Thus, if A is deep in a gravitational potential and B is not, wp/wa < 1.
That is, the atom at A appears to be red-shifted.

We can also give an explicit mechanism for this to happen. We assume
a g, that is time-independent and imagine an atom in the sun and a
different atom on Earth exchanging a light signal of definite frequency
wo. We then calculate the resonant frequency w, of the two atoms in
terms of the gravitational potentials at the two positions and the field-free
resonant frequencies wg. We will be solving an atomic equation at each
site, so that the variation of the gravitational potential at each site will be
negligible and may be ignored. Thus, we imagine g, to be constant at
each site, but different from one site to the other.

The atomic equation will be (for a scalar particle with charge e)

Therefore,

(9, — ieA,) 847 (9, — ieA,) + m* |y =0, (8.5.36)

where we have replaced covariant derivatives with ordinary ones, as dis-
cussed above. The Klein—-Gordon equation (8.5.36) with constant g** and
time-independent A, will permit a time dependence

g =xe " (8.5.37)
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where x is time-independent. The result is an eigenvalue equation for E;
the differences of £ between two states of the same atom will be the
exchanged frequency wq.

Before writing the equation, we transform to a coordinate system in
which the three g;’s are zero. This can be done by shifting the time origin:

so that

and

W =x+AX), x=x (8.5.38)

O_ , —'§-x—# axl}
&io o' ax,()gi“‘

o
ax'i 84O
ax’ ax"
i 80t gm
A
= 8ot 800 (8.5.39)
ax
LI 13 (8.5.40)
ax’ oo

This equation can be solved —always neglecting the variation of gio/geo.

The solution is

A= =802 (8.5.41)
oo

Note also that (8.5.38) leaves gq, unchanged.
We now return to (8.5.36), with the insertion (8.5.37) and the space
components of the vector potential equal to zero. The equation is

~g"E + eAg)* + 0,0,87 + m]y = 0. (8.5.42)
4 J

The vector potential A° will be given (in non-rationalized units) by

~8,878,A° = 47j° (8.5.43)
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where j° is the charge density of —as a model—a heavy proton:

S AR =8 (8.5.44)

where —g; is the determinant of the three-dimensional matrix g
g3 = — detgij (8545)

Since both (8.5.42) and (8.5.43) are spatially covariant equations, we
can transform them to the form

[—gm(l‘: +eAg)? — V2 + mZ_J x=0 (8.5.46)
and
63(x’) ;
V2A% = 47e, (8.5.47)
! vV 8oo

so that

Aow_,el’g,. d Ao = — Voo 2 8.5.48)
= \/g);or/ an 0= oo - (8.5.

The eigenvalue equation is now

(e

ee,
N

2
> - V24 mz>x =( (8.5.49)
’

and Vg™ E = Eg, the solution of the eigenvalue problem in the absence
of a gravitational field. Taking the difference of two states, we find, with
AE = ﬁ,w(),

\/Eﬁ_ﬁ Wy = Wy, (8550)

$0 Vgon wg = wy, for the two atoms that are exchanging the signal. Thus,
in the sun, where

goo=1+2¢, (8.5.51)

with ¢ the gravitational potential, goy << 1, whereas on Earth gg, will be
much closer to 1. Therefore, the light emitted by the solar atom will have
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a lower frequency w, than wg, the frequency that would be observed for
the same atom in a field-free region. This calculation shows how general
covariance produced a mechanism for the gravitational red shift.

8.6. CURVATURE

We are now ready to confront the inconsistency of the linear field theory
with which we have been working. The clue is the equivalence principle.
We have seen that the equivalence principle for particle motion or electro-
magnetic field equations could be guaranteed by making the equations
generally covariant with respect to the second-rank tensor g,.,. However,
for g, to transform like a tensor, it must satisfy covariant equations. The
problem is therefore to construct a covariant function H** of the g's
and their derivatives and set it equal to the assumed source —presumably
stiil the correctly calculated stress tensor for matter, Th . If so, the
equation must be something like

2
H“”( ,%5, 3;3, g ) AT (8.6.1)
X

The immediate problem is that the obvious way —introducing the covariant
derivatives g .., —does not work, since they are all zero.

There is, however, a tensor function of the g’s that we can construct.
We take advantage of the covariant derivatives of a vector field V*:

Ve, =0a,V*+ T8V (8.6.2)
and
V#;,,;,\ = (’))\V}‘lV + I”/L\Lo' U;» - F;,,V‘L:,. (863)

so that the tensor V* ..., — V*.,., is given by
VA = VP = 01 (8,VF + T V) + T4, 0,V + T V)
=3, (\VH TR, V) = Th(ay Ve + TV
= (0.4, = 3,05, )V + (D4 D0y — T4 T, ) VT
=R" V" (8.6.4)

where

Runv}\ = a)\l—":r) - 81*1—15\2) + F&La' (:'-71 - Fﬁqrin (86,5)
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Since V* ..., is a tensor and V" a vector, R¥ ., is a tensor. It is called the
curvature tensor. It has the following properties.

First, if the tensor g, describes a space-time metric, and any compo-
nent of R%,, is different from zero in a finite region, then no coordinate
change can transform g, to pseudo-Euclidean form. This is true since if
it could, and since all the components of R%,. vanish in the pseudo-
Euclidean system, and since R%,, is a tensor, all the components of
R%,, would have had to vanish in the original coordinate system.

Second, the converse, which we shall not prove, also holds: If all
components of R% . are zero in a finite region of space, then it is possible
to introduce a coordinate system that transforms g, to pseudo-Euclidean
form in that entire region.

Third, the translation to the gravitational field g, follows: If any
component of R%,, is diffcrent from zero in some region of space-time,
there is no coordinate transformation that eliminates the gravitational field
in that entire region. Conversely, if all the components of R*%,, are zero,
one can find a pseudo-Euclidean coordinate system, in which g,,,, = n,... in
the entire region, the gravitational field ¢, is zero, and the gravitation-
free laws of special relativity hold. The curvature tensor R%,, carries the
invariant reality of the gravitational field.

In order to decide on the equations to be satisfied by R%,,, we need
to know some of its general properties. These are most easily studied in
the local coordinate system that makes g,, = n,, and r’)gw,/f’)xA =0. In
that coordinate system, at the chosen point,

R =R =0a,T0, -0,
1
= 5 nmak(a#g,,, + 0,80 (’).,g}“,) —{k < 1} (8.6.6)

The covariant curvature

—_ T
R/\[J.I’K - gATR VK Y

1
R = 5((';Kawg“,, + 0,008 e — 00rgpr — 0,0,80c) - (8.6.7)

We can read off from (8.6.7) the symmetry properties of R, since
Ry is a tensor, they will hold in general. Thesc are:

1. Ra. i antisymmetric in exchange of v and «.

2. Ry, 1s antisymmetric in exchange of A and p.

3. R, 18 symmetric in exchange of the pair (Ap) with (vk).
4. There is one more algebraic relation:
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R/\p.w( + R/\K;u' + R/\VK;J. = 0~ (86-8)

Equation (8.6.8) only adds one constraint (in four dimensions) since
if any two of the four indices are equal, the sum is identically zero by the
symmetry properties 1-3.

We can now calculate the number of independent components of
R ).« by considering R, @ a symmetric 6 X 6 matrix—six being the
number of values the antisymmetric pair (Au) and the pair (v«) can take.
This number of components is

6 x5

+ 6 =21.

Subtracting the single constraint (8.6.8), we get exactly the expected
number, 20 (see the discussion in Section 7.7).

There is in addition one more identity, but this time it is differential
rather than algebraic, the Bianchi identity,

Ry T (cyclic permutation of vkt) = 0 (8.6.9)
or in the locally flat coordinate system

RY).... + (cyclic permutations of vkr) = 0 (8.6.10)

ARVK.T

which 1s easily verified from (8.6.7).
Two more tensors can be constructed from R, .. by tracing. Note
that the symmetry properties of R,,... permit only one trace (to within a

sign):
R,=8""Rauun (8.6.11)
so that

R(;Pz = nAl’R())\MVK
1
= E(axaug + 0,078k~ 90 8w — 9,078 ) (8.6.12)

which is symmetric in (i, k); a second trace gives the curvature scalar

R =g"" R .
=" RO =9,0"g — 0" 0" g p (8.6.13)

Here, g = "' gux-
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8.7. THE EINSTEIN FIELD EQUATIONS AND THE
PRECESSION OF ORBITS

We recognize in (8.6.12) and (8.6.13) the two components of the equations
for ¢,, that we found in (8.2.21) (setting u = 0). That is, remembering
8uv = Mt 2A ¢, we found

R = 2RO = = XTI (8.7.1)

where T? ,, is the matter stress tensor in the locally Minkowskian coor-
dinate system. As in Section 8.4, the left-hand side of (8.7.1) is identically
conserved:

a“(Rﬁ{L’ - 32'*—“12(‘”) = 0. (8.7.2)

Notice that now, however, (8.7.1) is consistent, because the right-hand
side T4 is also conserved (the s are all zero!).

The covariant equation that follows from (8.7.1) in a general coordin-
ate system is

o x (8.7.3)
The conservation law (8.7.2) becomes
g
(R"“ - R> =0, (8.7.4)
2

which, of course, is the reflection of the Bianchi identity on the properties
of the second-rank tensor R**, However, the right-hand side of (8.7.3)
also has vanishing covariant divergence, since it is constructed from the
covariant matter (including electromagnetic) Lagrangian as discussed in
Section 7.8. The equations are therefore formally” consistent.

Note that in arriving at the field equation (8.7.2), the weak field
assumption has not been made, although it is clearly the case that the
weak field (small ¢,,) limit of (8.7.3) reproduces (8.2.21); however, in
this limit, the right- and left-hand sides are no longer consistent with the

“They are only formally consistent since the same kind of point singularity that occurs
in other relativistic ficld theorics occurs here.
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particle equations and must be supplemented by the higher-order terms
coming from the nonlinearities in R,, and T,,. We turn now to that
problem, with the goal of finding the next approximation to the gravi-
tational potential produced by the sun, and in particular of finding the
correct value of the coefficient C in (8.5.22).

We wish to expand (8.7.3) in powers of the potential V = GMg/r,
which by the virial theorem is ~v?, and therefore small for v/c < 1. We
see from (8.5.21) and (8.5.12), since W ~ 1, that we need g only to first
order in V, but gy to the next order. Thus, we must find the next
correction to ¢oq.

We write

R R4 REL -
where R} is linear in ¢, R® quadratic, etc. In turn, g, is calculated as
B g+ gt

where g4 = s, 8w~ &l = 240, a1
b= L)+ PO+ (8.7.5)
with ¢!, given by (8.4.27):

_AM@ t;.LV

& X — X,

o) = (8.7.6)

with fy = t1 = 1, = t33 = 1, all other components zero. We expand by
expressing R'" as a function of ¢ and R as a function of the known
¢'"; we then solve the resulting inhomogeneous equation for ¢‘>.

Before carrying out that procedure, we observe that (8.7.3) provides
us with an exactly conserved, symmetric tensor 7**, which is a nonlinear
function of the ¢ field and a suitable candidate for the stress tensor of the
coupled system. Since

g
Ry~ —é‘—”—R(” =Gy

is identically conserved fi.e., 3 G{) =0, where 8* is not the covariant
derivative, but the ordinary derivative], we must have that

ur 2%

is also exactly conserved. Further, since T7#" includes contributions from
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all nongravitational sources {point particles, electromagnetic field, etc.)
that reduce to known forms in the ¢ coordinate system, the conserved
tensor 7" correctly describes the exchange of energy and momentum
between gravitational and other degrees of freedom. The tensor 7#”
therefore makes it possible to calculate conventional energy, momentum,
and angular momentum fluxes of gravitational radiation. In the present
application, it makes it possible, by using (8.7.3), to calculate the next
approximation to g, [as defined in (8.5.9)] and from that and (8.5.22) the
precession of the planetary orbits.

We choosc a gauge (coordinate system) in which ¢® satisfies the
same linear gauge condition as ¢V, that is,

1
" P = anqu (8.7.8)
where ¢ = ¢} and all contractions are carried out with M- Then

1
R = Ea,,a"g,“ = 10,0" P (8.7.9)
and

1
R® =iapa”g= 18,0" . (8.7.10)

Equation (8.7.3) is therfore

2
,\<ava”¢w -~ %n,mava“qb) == AT~ (Rﬁfg - (—5’“—“25)—)) + 0($?)
+0(2¢1). (8.7.11)

[Note that (8.7.11) would become an exact equation if instead of R‘?, we
wrote R — R".] Proceeding systematically, we rewrite (8.7.3) as

)
R‘,}Q—I’L”R“)+R53—MR(2)—5—'ﬂR<”: NPT+ -
2

: . (87.12
5 ( )

where
0) _ 1)y . 1
g =mu. gll=2x¢l), etc

We note that R is zero outside the source to lowest order. Since contri-
butions inside the source will give corrections to the 1/r potential, which

causes no precession, they can be ignored. Then the equation we have to
solve is
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T’ v v
Rﬁf3(<l>(2)) - _5_R<1)(¢(2>) + Rﬁfv’(d)“’) - Z’E“_R(2)(¢(l)) =0 (8.7.13)

or

RO(¢™) = - RO(¢™M) (8.7.14)

and, in the chosen gauge,

A3 ,07 ¢4, = —RE(o"). (8.7.15)

We first find a general formula for R and then specialize to the case
at hand:

Rym=0,T%, = 9,TA, + TS, TA, — T9. T2, (8.7.16)
and
R 1
4)\2 - 5 d))\d{anau‘;qu - a)\aud’(rn - a/\an(ﬁpur + a/\aod)p,n}

¢/\r 3”({),\
2 4

1
- Eand)/\uauqs(r)\ + (aA )(a ¢an + 811 ¢ap arrd)p.n)

1
+ Z(am: + ondy = 0 Bun (0a b+ I — 0 don).  (8.7.17)

In (8.7.17), ¢ stands for ¢*, and all raising is done via #*”. However,
note that with this convention

gty =" - 200 (8.7.18)
although

gAJ-V = n/.LV + 2A¢uvs
since

8urg" = O
We now specialize to the case at hand: Weset u =1 =0,4d, =d, =

0 since we are looking for time-independent solutions. This leaves (note
the gauge condition on ¢'"),

R(") 1 . 1 -
T A A G A $0) (080 — 9" o )- (8.7.19)
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The first term in (8.7.19) will be proportional to V?¢qy and, hence,
confined to the source; it therefore does not contribute to the precession.
There remains

R(()tz)) = —2)\° da d’g HAcb(,(, = 2)‘2(V¢00)2 (8~7-2U)

and (8.7.15) becomes
~VAdi = —20%(V o)’

or
A MG
@ _ Mo
Voo = a2 (8.7.21)
and
3xg2
@oAMo A, p (8.7.22)

64mrt

where A and B are integration constants that do not affect the precession.
Our formula for gq is then

2 45 g2
_2A M®+ A 1\{07 =142V +2V? (8.7.23)
8r Rare

g =1

where

AMMo__GMg

8rr r

V =

is the nonrelativistic potential of the sun.
We now return to (8.5.20) for the orbit equation. Setting W ~ 1 — ¢,

we find
(@) +L12:L2(1 _2‘/)<__(—1-—_€)_‘__2_1>
de L 1+2V+2V

2¢ 2V 6V°
= _EWZE + ? (8.7.24)

The nonrelativistic equation would be

(] 20
de L?

where E is the total energy, E = (mv?/2) + V. Thercfore, the equivalent
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potential for our problem is V.= V — 3V?, and the precession is given
by the solution

2
u=B+u cos<1 — 3<~G~i@> )6 (8.7.25)
which returns to the same value of u at

g= 277(1 + 3(%)3 (8.7.26)

for a forward precession of 6m(GMc/L)* per revolution.

Note that L ~ rv and GMo/r ~ v?, so that the precession angle is of
order (v/c)’, equivalent to the scale of fine structure in atomic physics.
(See Problem 8.8.)

Note also that the second-order contribution to g, was —2V? out of
a final 6V°. However, that division is not gauge-invariant; transformations
of the form r' = f(r) can shift contributions between different orders, since
both first- and second-order potentials give precession of order (v/c)>.

We close this section by constructing an action integral for (8.7.3).
The Lagrangian density for the field g, must be an invariant. The simplest
guess is, of course, R itself. We therefore try the action

S _ Jd“x\/g R, (8.7.27)
(44

where « is to be determined from the known equation of motion, with

m dx} dx,
Smmtcr:—E—pJ'da' — WX —£
< P da',,g“ (xp) do,

(8.7.28)

We can verify our guess most simply by transforming, at a given
point in space, to the coordinate system that is pseudo-Euclidean in the
immediate neighborhood of that point. It is easily seen that Vg R differs
by a derivative (or equivalently by an integration by parts) from a function
of the g,,’s which is bilinear in the first derivatives of g,.'s. Therefore,
at the chosen point, we may set g,., = 7, in the Lagrangian, since the
variation in g, , will be multiplied by derivatives of the g,,’s that them-
selves vanish. We may not set the derivatives equal to zero in the Lagrang-
ian, since this variation will lead to second derivatives, which do not
vanish, in the equations of motion. However, since the local equations in
this coordinate system are given by the weak field equations (8.2.21) (with
u® =0), the Lagrangian must be given by the weak field Lagrangian,



376 Gravity

(8.3.9). One verifies easily that the equality holds with 1/a = 167 G. Note
that the sign of the curvature scalar is an odd function of the sign of g,
Therefore, choosing g, to have positive space components would result
in a negative sign for «.

8.8. GRAVITATIONAL RADIATION

The equation satisfied by the gravitational potential ¢*” is given by
(8.4.14). In the harmonic gauge, it is given by (8.4.22):

A 0N P = —ASH” (8.8.1)
where

SHY = T‘“/—%n’“’T (8.8.2)

and T*" is supplemented, as in (8.7.7), to make it exactly conserved:
4, T#*” = 0; this leads to the harmonic gauge condition on $*":
v 1 v
a,5"" = 58 S, (8.8.3)
where
§=58= S (8.8.4)

As usual, we choose the retarded solution, to which we return shortly.
First, we discuss the radiation itself.
The propagation equation (for finite u, which we consider first) is

(a)\a)\ + Mz)(ppl' - (')Aa;)d))\w - a)\av¢)\p + apaud)

~ou((928" + 1) b~ %8P doy) = 0. (8.8.5)

By applying the operator 4” to the left-hand side of (8.8.5), we find the
constraint equation

/‘Lz(apd)ﬂu - av¢) =0

or, since u” # 0,
3" b, = 8, (8.8.6)

Equation (8.8.5) can therefore be rewritten as
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(a/\aA + ,LL2> ¢pl’ - Gpavd) - nﬂvl“l’zd) = 0 (887)
The trace of (8.8.7) gives

wo=0 or =0, (8.8.8)

and, thus, from (8.8.6)
°¢,, =0. (8.8.9)
Equations (8.8.8) and (8.8.9) were the starting point of our investigation

of tensor fields, so it should not be a surprise that we have recovered
them. The propagation equations are thus

(020" + u?) =0 (8.8.10)

which with the five constraint equations leaves five propagating modes;
one sees from the Fourier transform constraint equation (with k, = w and
ki =k, =0)

wdoo + ko =0, (8.8.11)
Wi + ks = 0, (8.8.12)

and
¢oo — i3 — du — $2 =0, (8.8.13)

that one can conveniently take as dynamical variables ¢,>, @13, @23, @33,
and ¢, — ¢2.. The other components can then be found from (8.8.11),
(8.8.12), and (8.8.13).

We turn next to the gravitational field, with u = 0. We note first that
the four constraint equations (8.8.6) cannot be derived and, in fact, will
not usually hold. There are, however, four constrained variables. We see
directly from (8.8.5) that no second time derivatives of ¢oq and ¢, occur,
so that ¢y, and ¢y, are constrained variables. The second derivatives that
do occur are of the six linearly independent components ¢, @3, ¢o3,
b1 + GPan, b1y + P33, and @y + P33, We still have the four freedoms of
gauge choice, so that we can eliminate four more components, leaving us
with two propagating modes. We now proceed to carry out the reduction.
The wave equation (8.8.5) in wave number space is

kzd)ptv - kAk;u.d))\u - kAkV(b)»p. + k}Lkl'¢ - nuv(k2¢ - kakﬂd)aﬁ) =0.
(8.8.14)
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Taking the trace of (8.8.14) shows that the m,, term can be dropped,
leaving

K2, — k'kdry = Kk brp + Kk = 0. (8.8.15)
Consider first k2 #+ 0. Then

ﬂﬁ _ k;Lkv

b = k* %dm SRl (8.8.16)
and the gauge transformation
G P T kb +KLE, (8.8.17)
with
&s—%}—"—%k—lgf (8.8.18)

reduces every component to zero.
Therefore, only k* = 0 modes propagate. They, however, must be in
the harmonic gauge, as we now show! Since k% = 0, (8.8.15) becomes

ko, t kg, =k, k¢ (8.8.19)

where III“_ = kA(b“,,\.
We solve (8.8.19) by letting

Y, = k;d’ + e (8.8.20)
so that
ke, + ke, =0. (8.8.21)

Clearly, the only solution of (8.8.21) is €, = 0. For example, go to a
Lorentz system where no component of &,, is zero. Then k€, (no sum)

must be zero, as must €,,; since €,, is a four-vector, it is zero in general.
So,

g, =, (8.8.22)

which is the harmonic gauge.
Within the harmonic gauge, we can eliminate the four ¢, ’s by the



8.8. Gravitational Radiation 379

gauge transformation

¢0;L_) ¢0y. + §p.k0 + fokﬂ (8.823)
with
__ 9w
o ™
and
1 ¢()Ok1’>
iz T T 8.8.24
¢ k0< o ok ( )

This leaves (8.8.22) as a further constraint:
k.
k¥, = 5 . (8.8.29)
First, take v = 0. This gives k*¢ o = ko $/2, so that ¢ = 0 and, thus,

0.

ok
Kbui= k="

From k’¢;; = 0, we see that for i = 3, ¢33 = 0. Since ¢ and g are also
Zero, S0 is ¢, + ¢1o. We are thus left with the two propagating compo-
nents ¢;; — ¢ and ¢ 5.

We can understand these degrees of freedom by studying their trans-
formation properties under a rotation about the z-axis:

x=x'cosf—y'siné, y = x'sin 6+ y’ cos (8.8.26)

)
ox ax . a3 . d
— =cos 4, —— = —sin 6, %Y~ sin a, and —yj=cos 9.
ax’ ay’ ax’ dy
Thus, since ¢,,, is a tensor,
oL, = X (8.8.27)
my ax’“ Hx”’ oA 0.

and
(L= cos® B¢, + sin? Bdyy + 2sin Hcos O, (8.8.28)
5> = cos> B¢pa + sin® Opy; — 2 sin B cos B¢z, (8.8.29)
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and

@), = — cos Osin Bpy, + cos Bsin Oy, + (cos® 6 — sin® 6)b. (8.8.30)
so that

b ; b2 _ C0520<¢11 ‘2‘ 4>22> + sin 206,

and

¢y = cos 206, — sin 20¢ 5 d’”

(8.8.31)

Evidently, the linear combinations

b1~ P

5 * l¢m

transform by a phase 26:

<%2%+m>:4%% %+m> (8.8.32)

2

These components are said to have helicity *2 (h = +2), respectively.
We note that the helicity should be proportional to the projection of the
wave angular momentum in the direction of propagation. The normaliz-
ation for a classical plane wave would be

J.w
h=-——. 8.8.33
" ( )

This is analogous to the case of the clectromagnetic field that we
studied in Section 3.8. Therc we found 2 = %1 for the propagating modes,
and we explicitly demonstrated the relationship (8.8.33) for a suitable
wave packet.

We return to (8.8.1) and solve for the retarded gravitational radiation
emitted by a known source $*":

br(x) = — A JdJ'x' Grlx —x") S*"(x"). (8.8.34)
4
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Gr is given in (4.2.14). For a monochromatic source,

SHY = §4%(r, w)e "% + c.c.,

we have, for large r,

fwlr—1)

o

+ c.c. (8.8.35)
47r

with

enr = — A f dr’ e RTSH (e W) = S, (8.8.36)

and k,S*"(k) = 5 k*S(k).
The gravitational stress tensor 7%, is calculated to lowest order from
the last term in (8.7.11):

1 R)P
T [Rii’ _ (8w R) > ) ] (8.8.37)

Now (g,..R)? =n,.R? +21¢,.RY; since RV (¢P) =0, we drop it.

Our 74" is then given by

1 K
The = P<Rﬁl - ﬁg—R(Z)) (8.8.38)

with R given by (8.7.17).

As usual, we average 7, over a cycle of the radiation. In evaluating
the expression (8.7.17) for 7,., we may then substitute €, for ¢,, on
the left and €,,, for ¢, on the right, finally adding the complex conjugate.
With d,, — iku, we have, in harmonic gauge, with k,k* =0

4 \2.2p2)
(”—)4;2—@ = %e Ny ik = Kk € on — kK €o + knko€,n)

1

1 ,
—~ Ek“k,,e*"”ew + Z(k”e‘{* + kel —k7eks)

% (ko€h + kyeh —kre,,) +cc. (8.8.39)

*
= %k#k,}{eme e _ 6—25} +ee. (8.8.40)
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Evidently, the trace R™® of (8.8.40) is zero. Thus, we have for 7#"

wpm 2
= B e e T (8.8.41)
wyr

The expression for 77 is easily seen to be gauge-invariant (for e*”
in the harmonic gauge). Since we can choose € =0 and €, = 0, (8.8.41)
shows that the energy of the free field is positive.

The gravitational Poynting vector P, follows from (8.8.41). Since the

only amplitudes that differ from zero are €,,, €;; = — €, and €;;, we have
_ 2Kk 2 2+ 2len) 8.8.42
g_(47r)2r2{|6”‘ +|exn|” + 2] €] } (8.8.42)
Zk()k {‘611 - 6‘12|2 2}
= 2+ 8.8.43
(dmyr 2 ezl (8.8.43)

and the energy radiated per unit time and solid angle in the three-direction

1S

dw 2k'k — el

= 2{'6” el 2|m|2}. (8.8.44)
dtdQ)  (4m)’r 2 ,

To find the angular distribution of the emitted radiation, we must express
dW/dt dQ in invariant terms: We find

dw  2(k°)?

1 1 A A A A
drdQ (4)? {" ~leal* + el +5[€i1ktk1 [~ 2e,k ek,

2

+Eiik(1€j€;'kj+5?;]€(12j5(f} (8.8.45)

which, with k in the three-direction, yields (8.8.44). The total rate is given
by integrating (8.8.45) over d{). With

Jdﬂ kik; = =0 (8.8.46)

and

A A A A 4
JdQ kikkck,, = 1—: (8i8im + 8108 + 8 8;¢)  (8.8.47)
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the result is

X

DAY 6 (5 Lesp)
dt 4 15 '

(8.8.48)

We note here [as is already clear from (8.8.44)] that (8.8.48) responds
only to the quadrupole (i.¢., traceless) components of €;;, since, with

€ =qi + 8;€cl3 (8.8.49)
and qii = O,
1
€€~ gién‘ P =qyq5. (8.8.50)

Therefore, turning to (8.8.36), we have
€;= = A Jdr' e "M TTHr, ). (8.8.51)

For kr' <1, we can express the integrals over T,; in terms of moments of
the energy density 7. From the conservation of T,,,,

a*T,, =0, (8.8.52)

follows

~(k"?Too = 8,0, Ty (8.8.53)
and

N2y,

[aer, -7 a9
where

Qij= fdl' Tooxxj, (8.8.55)

with or without a subtracted trace. Also, although Q;; evidently depends
on the choice of origin of the coordinate system, it only depends on it
through the constant total energy, Jdr Too = W, and the center of energy
coordinate, J dr Ty, x, which depends linearly on ¢; since we are consider-
ing a finite frequency, neither of these terms will survive.
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Putting it all together, we find for the total radiation rate:

dwW 2 1
Y SN LO*—-210..17 1. 8.8.56
” SG(k)<Q,; X 3IQ,,{) ( )

At this point, we reinstate the velocity of light ¢:

W _2Gu*
da 5 ¢°

{Q:]Q?]< - %\Qii|2}, (8.8.57)

with @ the circular frequency of the radiation.

CHAPTER 8 PROBLEMS

8.1 The weak field gravitational red shift follows directly (both classi-
cally and in quantum theory) from the equivalence principle. Show
this by considering the emission and absorption of light, as follows:

8.2

(a)

(b)

Consider an emitter A and absorber B, both at rest, separated
by a distance L along a uniform gravitational field. Describe
the emission by A and absorption by B of a light signal from an
appropriately accelerated coordinate system. In that coordinate
system, the velocity of B when the light is absorbed will differ
from the velocity of A when the light is emitted; the light will
therefore be Doppler-shifted. Show that the Doppler shift
agrees with the expected gravitational red shift.

Consider an atom on the ground in a state of definite mass M,.
The atom emits a photon of frequency w and goes to a state of
mass M,. The photon, now with frequency w’, is absorbed by
an atom with mass M, at a height L. The atom now goes to a
state of mass M,. Using energy conservation, show that w’ has
the correct red shift.

Examine the effect of a rotating source on the gravitational field.

Consider a set of particles of equal mass m making up a rigid

sphere that is rotating with angular velocity w. The linear velocity
of a particle in the sphere is then

V, =0 XT,,

and the first-order (in w) addition to the stress tensor is an off-
diagonal component T,

For a spherically symmetric distribution of matter, the angular
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momentum of matter J of the sphere is given by
J=Ilw

where [ is the moment of inertia of the sphere
2
I:gfdrp(r)r2

with p the spherically symmetric density of matter in the sphere.
Now find the new gravitational potential outside the sphere. It
is given by

# = -2 Xr)

_877 r

(a) One suggested way of detecting the new potential would be to
measure the precession of the spin of a gyroscope in an orbit
around Earth.

Calculate the effect, starting from the last equation in Problem
8.2, keeping only the leading terms in v/c and ¢, in the equation
for d*x/dr*. Proceed by considering each point mass b in the gyro-
scope to be at a position x, = X +y,, where 2, y, = 0.

Expand in y,, to include only linear terms in y,, (this is legitimate,
since

y _ size of gyroscope spin velocity of gyroscope <

<1 and 2= 1.

r radius of orbit 4 velocity in orbit

Now sum over b. The y, and y, terms disappear and the internal
forces cancel by momentum conservation, leaving an equation of
motion for the center of the gyroscope. Subtracting this equation
from the original ones gives an equation for each d’y,/df* in terms
of the external gravitational field (Earth’s field) and the internal
forces.

Now calculate

dL 2 d2y;; d dys
f= X m = 2 muy, X =22,
g ST g T ey Ty,

The internal forces holding the gyroscope together cancel again,
this time by angular momentum conservation, leaving a right-hand
side having terms bilinear in y and y, and terms quadratic in y.
Assuming a spherically symmetric gyroscope, express the first in
terms of the angular momentum L itself; then show that the second
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is a time derivative. You should find

where I is the moment of inertia of the sphere,

X
q= 2GV x LJ“‘S‘[;)
’
and Q = ¢/2.

The time derivative makes no contribution in a periodic orbit
(or, for that matter, in any confined orbit, averaged over a long
time.) The final result is thus

dL

— = XL,
dt

showing that L precesses about the vector ) with angular velocity
Q). This precession is called the Lense-Thirring effect.

Remember: The spherical symmetry of the gyroscope yields the
identities

2 xixdx
[}
and
d Txixi=0
dt’a

(b) Calculate the precession rate {1 in relevant units for a satellite
experiment: arc-sec/year. Take the satellite at one Earth radius
in a polar orbit.

The effect you have just calculated is of special interest, since
it is distantly related to Mach’s principle, which to some extent is
embodied in Einstein’s gravitational theory. Mach proposed that
inertial frames are those frames that are at rest, or in uniform
motion, with respect to the total matter in the universe. Thus,
proximity to a large mass must distort the choice of inertial trame;
indeed, we know that to be the case, since the curvature tensor is
not zero near a gravitational source.

Near a large rotating source, the transformation to an inertial
frame should involve a rotation, so that a gyroscope would be
expected to precess about the rotation vector of the source. Your
result shows that this is not exactly true, since the precession vector
€} is not in the direction of J; however, the smallness of the effect
shows that the mass of the earth is much too small to compete with
the large-scale matter in the universe. Presumably, a large enough



Chapter 8 Problems 387

mass, properly configured and rotating, would drag the inertial
system around with it.

*8.4 (a) Starting from the equation of motion for a particle in a gravi-
tational field,

dZ I A v
oy . dxldx” G, do=Vg,,dx"dx" (1)
do? do do En

transform to a new independent variable dr. With v* = dx*/dr,
show that the new equation of motion is
dv*  v*uPg.s dv® v v vPua g,
o - g B8 _ 2 Yg ﬁ—rﬁ)\UVUA. (2)
dr  v7g,,v" dr 2 vg,av7
(b) Expand dv*/dr in characteristic vectors of the matrix
ME = v"vﬁgaB/v"g,,,,v". One of these is v®, with a characteris-
tic value of 1; call the three others, with a characteristic value
of 0, n7.
(c) Show that the n{ can be chosen as

n7 =g "Pu;g
where the three u,’s are orthogonal to v* and to each other:

U”’ui“ =0

w . .
ufu, =—96; (note minus sign!)

where uf' = n*"u,,.
Equation (2) now becomes, with dv*/dr = gv* + X, b;n*,

a,B
v vV V73, 8.0

2 b = K LOLN (3)

2 vog,aU"
with g remaining undetermined until a definite choice for dr
has been made.

The free choice of g arises from the circumstance that the
four components of (1) are not independent:

dx* - dx’
do 5*

[og

= constant = 1.

Since g may be freely chosen, only three of the resulting
equations are independent.

(d) Two obvious choices for 7 are time and proper time. Show how
g must be determined for each case. We will then continue with
7 chosen as the proper time, since that will give us a covariant
set of equations—the gravitational equivalent of the Lorentz
force law.
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(e)

8.5 (a)

(b)

(c)

8.6 (a)

(b)

Show how to project the coefficients b; from (3) and find (after
some work) the new equation of motion:
"
W " —v*g™v,) I, )
dr
where
1
r(r:—z_(avgtr)\+ a/\g(ru— arrgAv)UVUV' (5)

Note that the tensor g““ in (4) is not the tensor g, raised with
the Minkowski metric #*”. It is the matrix inverse of g,.:

g‘“)g av — 51; .
Remember for future applications. For weak fields,
Euv= Muw T 24,  but  gH' =" —20p*".

The covariant curvature tensor R,,,,, i$ antisymmetric in A <> g
and v<> 7; it is symmetric in Aux <> v7. Show that these condi-
tions make Q,uon = Rapwm + Ragur T Ry antisymmetric in
any pair of indices. Therefore, the equation Q .., = 0 consti-
tutes an extra constraint on R but only in dimensions four or
higher.

From the symmetry properties of R\, find the number of
independent components of R ..., in three, two, and one di-
mension(s).

Show that in two dimensions R ., can be expressed as
(g/\vg — 88 V)
Ropvn = “*M'_ig“‘_n*“— R,

and, therefore, the curvature R=2R;,/~g and R,,.,,=
(8rv8un =~ EanBu)RI2.

Extend the work of Section 7.7 to an arbitrary dimensionality
d. Calculate the number of conditions N, that must be imposed
in transforming the tensor g,, at x =x, to the form g,, =
Tuw + O((x — x0)®). Now count the number of parameters N,
available to carry out the transformation. Show that N, =
N, — N,, where N, is the number of paramecters of a Lorentz
transformation in 4 dimensions.

Now, in one, two, and three dimensions, compare the number
N/ of conditions imposed in transforming g, to the form g, =
Nur + O((x — x0)*) with the number of parameters N, available
to carry out the transformation. Show that N, =
N, — N, + Ng, where Ny is the number of independent compo-
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nents of the curvature tensor that you found in Problem 8.1
above.

Verify the statement made following (8.7.28) that justifies the for-
mula (8.7.27) for the gravitational action.

Consider an electron bound to a proton in a relativistic Coulomb
orbit. The proton generates a potential A, = — e/r, A = 0. Follow-
ing the technique of Section 8.5, find the orbit equation r =
f(8L,e*, m), where L is the electron’s angular momentum.

(a) Show that in one dimension the radius of curvature of a curve
y = f(x) at a point x is R = (1 + (y')*)**/y", where a negative
R signifies that the curve is concave downward. The radius of
curvature is here defined as the radius of the tangent circle that
has the same second derivative at the matching point.

(b) A two-dimensional surface is embedded in three-dimensional
space. It is described by an equation x; = f(x;, x2). Choose
aflox, and af/ax, to be zero at x; = x, = 0. Then f(x,, x2), near
x, x, = 0, can be expanded (with proper choice of axes) as

2

2

Xy X2 3
X1, X)) =—+— + O(x7).
fO,x2) R 2m, (x7)

Calculate the metric tensor g,,. (Note that g; = g’ = §; at x, =
X2 = O.)

(¢) Calculate the curvature tensor Rz, at x; = x, = 0 and from it
the curvature scalar R.

Define

aE*  agf ax*  pox”
—g—n,,ﬁ ¢ and g"”:——n“‘s‘—lg,
dxt ax” A" o€

Bpv™
where 7 is the usual 1, —1, —1, —1. Show that g*” is the inverse
matrix of g.,.

Consider a two-dimensional space, with metric
(d7)* = (dx1)” + f(x)(dx2)?,
$O
gu=1, 822 = f(x1), gi2=821=0.
Find the value of T'%, for all u, o, A.

(a) Consider a metric g;; = 1, g» = f(x,). Calculate the curvature
tensor R 22 and from it the scalar curvature R.

(b) Verify that for f(x) = sin x, R is constant. Verify that for f(x) =
x, R is zero.
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8.13 In the harmonic gauge, 9,0 = 19”4, the equation coupling ¢**

to T"" is
"
9,0 ¢* — 5 hd‘dp=—AT*  or 9,0 pH’ = — ASH
(1)

where

nv

ser=e -1
2

Show that (1) is consistent with the choice of gauge, in that

8,8 ==0"8.

[ S
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APPENDIX A

Vectors and Tensors

A.1. UNIT VECTORS AND ORTHOGONAL
TRANSFORMATIONS

A given orthogonal coordinate system determines an orthonormal set of
unit vectors in terms of which an arbitrary vector can be expanded. In
three dimensions, with €, €,, and €5 as the unit vectors,

A261A1+62A2+63A3. (Al.l)

The numbers A, 4,, and A5 are called the 1, 2, 3 components of the
vector A.

A useful simplification is achieved by introducing tensor notation, in
which a subscript takes on successively the values 1, 2, 3. Thus, (A.1.1)
would be written as

A=28A (A.1.2)

or

A=¢8,A; (A.1.3)

where in (A.1.3) the summation convention has been introduced. This
convention requires that a repeated index be summed, unless otherwise
stated. Notice that the dimensionality is now implicit. The tensor formal-
ism allows us to deal simply with any (finite) dimension.

The sum of two vectors A and B is defined as

A+B= é,‘(A,' + B,‘).
391
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The product of a scalar ¢ and vector A is defined as
cA = ¢;(cA,).

The unit vectors are orthonormal. That is, we define the dot, or inner,
product by

8 -8=29, (A.1.4)

where the Kronecker delta §; is defined by

5,,:{1 wi=j (A.1.5)
0 otherwise

The dot, or inner, product of two vectors is defined to be distributive
under addition. That is,

A-B+A-C=A-(B+C) (A.1.6)

for any three vectors A, B, and C. Therefore (remember the summation
convention),
A-B=¢A, &B,
= 8, A:B;
= A;B,;. (A.1.7)
Although we have introduced vectors as abstract objects, in two or

three dimensions we can visualize them as directed line segments in our
very own Euclidian space. Then, in two dimensions, we would write

A=AR +AR, (A.1.8)

and with 6 the angle between A and the x-axis, &,,

A,=Acos 0
A, = Asinf (A.1.9)
and
A*=AZ+AZ=A-A. (A.1.10)

A similar expansion for B,

B=B43, + B2, (A.1.11)
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with
B.= Bcos y and B, = Bsiny (A.1.12)
gives
A B = AB (cos #cos i + sin §sin )
=ABcos(8— ), (A.1.13)

the well-known relation of the inner product to the magnitudes of two
vectors and the angle between them.

We may consider a second orthogonal coordinate system with unit
vectors €. The new unit vectors can be expanded in terms of the old ones:

€ =08, (A.1.14)
Since the €, must be orthonormal,
8 =&+ €4 = 00,8, = 0,0}, (A.1.15)
In matrix notation, (A.1.15) can be written more compactly as
00" =1, (A.1.16)

where the ij matrix element of / is §; and the matrix elements of the
matrix O are O;,, and of its transpose O” are

(07), = 0. (A.1.17)

A matrix satistying (A.1.16) is called orthogonal, since it connects two
orthogonal coordinate systems.

The determinant of an orthogonal matrix must be 1. To see this,
we take the determinant of (A.1.16). This yields

det I = det(00")
= (det O)(det O7)
= (det O)* (A.1.18)
so that det O = *1.

It follows immediately that O has a unique inverse (as it must, since
we could have expressed the €;’s in terms of the €;’s)

o '=0" (A.1.19)
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so that also
oo =1. (A.1.20)

It is geometrically evident that any reorientation of the three unit
coordinate vectors, keeping their relative positions unchanged, can be
generated by a rotation. Since any rotation can be generated by a succes-
sion of small rotations, the determinant of the transformation matrix O
describing the rotation can never jump from 1 to —1. Therefore, when
det O = 1, O describes a rotation, whereas when det O = —1, O describes
a rotation followed by a single reflection, for example,

~l ~

¢, =8, ¢, =8, and e, =—€,. (A.12]

A.2. TRANSFORMATION OF VECTOR COMPONENTS

When we transform the base vector €;, we must transform the vector
components A; in such a way that the vector A itself remains unchanged:

A =lé,'A,' =‘éi'A,". (AZl)
From (A.1.14) we see that
@;A; = OgriéiAi' (A2.2)
so that
A,‘ - 0,”,‘A," (A23)

or, in matrix notation, with A as a column vector,

A=074 (A.2.4)

or

A'=0A (A.2.5)

so that the components A; transform exactly like the unit vectors €,. This
is a special property of orthogonal transformations. In general, the base
vectors transform differently from the vector components. Thus, if the
transformations on the €;’s is P, that is,

’é," = P,","é,' (A26)
and

@,-'A,v :’é,‘Ag, (A27)
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we again must have, as in (A.2.4),
A=PTA’ (A.2.8)
from which, in general,
A =(P"y 'A s PA (A.2.9)

except for orthogonal matrices. The transformation law of the base vectors
is called covariant, that of the vector components contravariant.

We define a vector under orthogonal transformations to be a set of
objects A; that transform according to (A.2.5). The prototype vector is
formed by the x, y, and z components of a point in space referred to some
origin.

The dot product of two vectors is independent of the coordinate
system:

A -B' = A,"B," = Oi/jO,»rkA,-Bk = A,‘B[ =A-B. (A210)

We call A-B an invariant, or scalar. There are also, of course, trivial
scalars, such as fixed numbers, mass ratios, etc. Note that the product SA4;
of a scalar § and a vector A; is a vector.

The importance of the transformation properties of vector components
for physics is that a linear relation between vectors is preserved under
coordinate transformations. Thus, if a physical law is

Ai = Bi’ (A211)
then obviously O;;A; = O;;B;, or
A," = B," (A2.12)

and the law is the same expressed in the new coordinate system. There-
fore, no experiment can tell us which coordinate system we are using. We
say this law of Nature is invariant (strictly, covariant) under rotations and
reflections. A simple way of describing what this means is the following:
Suppose we go to sleep in our laboratory and a playful genie turns our
laboratory around. There is no way that we can on awakening tell whether
and by how much we have turned. (Of course, there must be no nearby
unturned objects that might serve as references.) Physicists believe that
this property is exactly true of rotations: Space is isotropic.

A reflection of our laboratory puts more of a strain on our genie: She
would have to tear apart the laboratory and then reconstruct a mirror
image of it and everything in it (including us). Then, if the laws of Nature
are covariant with respect to reflections as well as to rotations, we would
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not be able to tell whether the deconstruction had taken place or not. Put
more simply and avoiding the painful deconstruction, we could not tell by
watching an experiment whether we were looking at the real world, or at
a reflection of the real world in a mirror. Unlike the case of rotations,
reflection invariance holds to a very good approximation for most pheno-
mena, but not exactly for any, and not even approximately for the weak
interactions.

A simple example of a vector law is Newton’s second law describing
the acceleration of a particle of mass m at position x; in the gravitation
field of a second particle of mass M at position y;:

dzx,- G(xi —yl)
m?ﬂ_: —mMm (A.2.13)

where m, M, G, t, and [(x, — y.«)°]*? are scalars, and x; and y, are vectors.
Note that the summation convention defines (x, — y«)* to be

(xx — yk)2 = (0 = Y Xk — Yi)
= % (cx = yu)(xx — yi) = (x — y)%, (A.2.14)

the square of the distance between x and y. Note also that x;(r) and
x;{(t + Ar) are vectors and, thus,

dt a0 At

is also a vector, as is dx;/d??, etc.

A.3. TENSORS

We define an nth-rank tensor to be a set of objects that transform like
products of n vectors. Thus if 7;, _; is an ath-rank tensor,

T;. = O - .- 0p:, T, (A.3.1)

A simple example of such a tensor is, in fact, a product of n vectors:
TH in - "4,'1B,'2 PPN Zin (A3.2)

which will obviously have the property (A.3.1). Note that a scalar is a
tensor of rank zero and a vector a tensor of rank one.
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Symmetry properties of tensors are invariant. Thus, if T,,,  ;, is sym-
metric (antisymmetric) under an exchange of i, and i,, then Ty . will
have the same property under exchange of ij and i.

We recall from (A.2.10) that the inner product A;B; of two vectors
A; and B, is invariant. The generalization of this rule to tensors is that the
trace with respect to any two indices lowers the rank of the tensor by 2.
The trace with respect to two indices is defined as

To(Tiyigkd) = Ty (A.3.3)
iJ

where, as always, the repeated index i is summed.

Laws of nature that are linear relations between tensors have the same
property as those between vectors, in that they do not permit experiments
to differentiate between coordinate systems.

We give a simple example of a tensor law. Suppose for simplicity that
in (A.2.13) we let M be a heavy immobile object at y = 0. Then (A.2.13)
can be written as

md>x; _ mMGgx;

=~ . A34
@ (A-34)
Now multiply (A.3.4) by x;:
d*x; Gx,x;
mx;— =~ mM (xi)S’lz’ (A.3.5)

interchange i and j, and subtract. The right-hand side of (A.3.5) vanishes,
and we are left with

d’x; dzx,)
m<x’ ar T ae
-4 m<x, ay _ x; &> (A.3.6)
dt dt dt

and we have a tensor conservation law;

d
=L,=0 A3
dr’ ( )
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where

Lj,-=m<x,-d—x-"‘—x,~ @l> (A38)

Equation (A.3.7) is a new way of writing the conservation of angular
momentum as the constancy of a second-rank antisymmetric tensor.

A.4. PSEUDOTENSORS

The connection between the second-rank antisymmetric tensor L;; (A.3.8)
and the usual angular momentum vector

L=mxXv (A.4.1)
is given by the equation
L,‘ = }Z‘Eijijk (A42)

where €, is totally antisymmetric in exchange of any two indices, and
€123 = 1. This uniquely determines all components of €:

l=¢€3 =€, = €231 = —€13= —€32] = —€133; (A.4.3)

all other components are zero.

One might suppose that € is a third-rank totally antisymmetric tensor.
To check, we calculate

E,'ljlk' = Oi’iOi'iOk’kEijk- (A44)

Since €, i totally antisymmetric in exchange of any two indices, €
must be a multiple of e. We can evaluate the multiple by calculating
€123

Eu:; = Oli02j03k€iik =det O (A45)

so that € is a tensor under rotations but has an extra change of sign under
reflections. It is called a pscudotensor. In contrast, as shown in Problem
(A.1), &; is a tensor.

Returning to (A.4.2), we see that L, transforms like a vector under
rotations, but has an extra sign change under inversions. It is called a
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pseudovector, or axial vector. This property corresponds exactly to that
of an ordinary vector cross-product, as in (A.4.1): Note that an inversion
(x — —x) takes v — —v, but L — L, which is not what a true vector should
do.

The pseudotensor € evidently makes possible the construction of
pseudotensors of any rank. For example, if A, B, and C are vectors, then

A-BxXC= EijkAiBj Ck (A46)

is a pseudoscalar.

A.5. VECTOR AND TENSOR FIELDS

In the previous sections of this appendix, we have considered single ten-
sors, vectors, and scalars. Examples are the angular momentum, the velo-
city and the energy of a body at some time, or the instantaneous electric
field at a given point in space.

We often wish to consider collectively objects associated with all of
space, for example, the density p(x) of matter at a given time. Since mass
and volume are scalars, p(x), the mass per unit volume, is also a scalar.
We call p(x) a scalar field. Similarly, we can consider vector fields—such
as the electric field—and, in general, tensor and pseudotensor fields of
higher rank.

Let us start with a scalar field p(x). The transformation rule for p(x)
is

p'(x') = p(x) = p(x(x")) (A5.1)

That is, the densities measured at the same point in both the primed and
unprimed coordinate systems are equal. In the primed system, we express
the density as a function of the primed coordinate x'. Therefore, the new
function p'(x’) is not the same function of x' as p is of x. Hence, the
notation p'(x’) in (A.5.1).

Differentiation of a scalar field produces a vector field. To see this,
let p be the scalar field. Then consider the gradient

Ai(x) = 5"— p(x). (A.5.2)

{

The instructions for calculating the gradient in the primed coordinate
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system would be, by the chain rule for partial differentiation,

An(x) = %p’(x')

ax;
= 90 9% (A.5.3)
ij ()x,-'
Recall that x; = O;,x;, so
Xj= (OT)ji'xi’ )
ax;
— = (Oy)ji’ = 01{,,
ax,"
and therefore,
A," = O,",‘Aj (A54)

which is the correct transformation law for a vector.

In general, differentiation of a tensor of rank n produces a tensor of
rank n + 1." For example,

0
B = — A;
0x;

where A, is a vector produces a second-rank tensor Bj. Note that the
antisymmetric tensor

¢ 3
0X; ox;
is related to the curl of A:
1
‘2‘€iij,'k = (V X A),. (A.5.5)

Since (d/dx;) A; is a tensor, its trace, (8/dx;) A;, is a scalar. Similarly,
the divergence of a tensor of rank n produces one of rank n — 1:

d
N Fil .
Ox,-l

=B . (A.5.6)

< in

'Warning: We have shown this to be true for orthogonal transformations. It is
specifically nor true for general coordinate transformations. (See Section 7.6.)
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A.6. SUMMARY OF RULES OF THREE-DIMENSIONAL
VECTOR ALGEBRA AND ANALYSIS

We list here, without proof, the most important of these.”
1. For any vectors A and B
A-B=ABcos§ (A.6.1)
where A is the magnitude of A,
A=(@A)"7,
B the magnitude of B and 8 the angle between them.

2. AXB=hHABsin# (A.6.2)

where fi is normal to the plane containing A and B, and in a

direction given by a right-handed screw going from A to B (through

the smallest angle between them). Right-handed is defined here by
the

coordinate system in which (A.4.2) iswritten: &, X &, = &;.

3, Ax(BXC)=A-CB-A-BC (A.6.3)

provided B and C commute.

4, A-BXC=AXxXB-C
A A, A,
=det{ B, B, B,]. (A.6.4)
¢, C C
5. Stokes’ theorem:
§d€‘A=JdS-V><A. (A.6.5)
C A)

Here, C is a closed path along which we take the line integral of

%For a simple discussion, see H. M. Schey, Div, Grad, Curl and All That, New York:
W. W. Norton, 1973.
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A, S is a surface bounded by C, and dS = dSi, with dS the surface
element and fi a unit vector normal to the surface, in a direction
given by a right-handed screw going around the circuit in the
direction specified by d €.

. Gauss’ theorem:

me-A=JdS-A (A.6.6)

s

where V is a volume bounded by S, and dS = dS#, as before, with
fi the outward normal.

. A vector E with V x E = 0 is the gradient of a scalar:

E=V¢. (A.6.7)

. A vector B with V- B = 0 is the curl of a vector:

B=VXxA. (A.6.8)

. The gradient operator in a general orthogonal coordinate system

41, 42, and g5 with unit vectors €., &,, and &; is given by

¢, o e, 9 é; 0
V - gl __. + 2 — 3 9
hidgr  h.dq, hidgs
where h; dg; is the increment of length in the ¢; direction. For
explicit calculation, one must remember that the #’s and €’s are, in

general, functions of the ¢’s. In particular, the Laplacian operator
V2 is given by

Vo (O (hhe D) 3 (s ), by 0))
h[hzh;; 6q| h] aq1 6(]2 hz 6q2 6q:; h3 (:)Q3 '

(A.6.9)

In spherical coordinates r, 8, ¢, h, =1, hg=r, and h, = rsin 6.

APPENDIX A: PROBLEMS

A.1 Show that §;; is a second-rank tensor.

A.2 Construct a second-rank tensor T, that is symmetric, has zero trace,

and is a function of only one vector and the Kronecker delta.
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Repeat Problem A.2, but for a third-rank tensor.
Repeat Problem A.2, but for a fourth-rank tensor.

Construct the most general third-rank tensor T,; that is a linear
function of a vector y, a bilinear function of a vector x, and antisym-
metric under the exchange of / and j.

Construct a third-rank tensor T;; that is a function of two vectors,
x; and y;, antisymmetric under exchange of i and j, and symmetric
under exchange of x and y.

Show that the triple scalar product, A -B X C, is given by
A, A, A,
A-BXxC=det{B, B, B.;,
¢, ¢ C

from which you must show that A-B X C is invariant under an
interchange of the dot and cross-product, that is,

A-BXC=AXB-C.

Using (A.6.3), show that the triple vector product is not, in general,
associative, that is,

AXBxXC)#(AXB)xC,

and find under what circumstances the inequality becomes an
equality.

Given a tensor Tj;,, symmetric (or antisymmetric) in i and j, prove
that the transformed tensor T;, - has the same property in i’ and

M2

]
Let Ty be a third-rank tensor. Show that Ty is a first-rank tensor.
Show that €;ik€itm = 5,-18,(,,, - 5,-,,,5,(,.

Use the result of Problem A.11 to prove the formula (A.6.3) for
the triple vector product.

Use the definition of A X B:
(A X B)l - e,‘jkA]'Bk,
to show that A x B is orthogonal to A and B.

Use the result of Problem A.11 to show that the magnitude of A X B
is given correctly by (A.6.2).

Show that the direction of A X B, as defined in Problem A.13,
satisfies the right-hand rule.
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A.16

A7

A.l8

A.19

A.20

A.21
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Suppose a body is spinning about a fixed point with instantaneous
angular velocity ®. That is, every point r, in the body has instan-
taneous velocity v, = @ X r,. The angular momentum L of the body
is

L=2m,,rp X (0 Xrp).

Show that the components of L are linear functions of the compo-
nents of w:

L,’ = I,'jw]'
where I;; is called the moment of inertia tensor. Show that [;; is a

second-rank symmetric tensor.

Using the fact [derived in (A.1.13)] that A - B for any two vectors
is given by AB cos 6, where 6 is the angle between them, show that

cos @ = cos 0,4 cos 5 + sin 6,4 8in 85 cos(@a — @)

where 0, and 65 and ¢, and ¢ are the spherical coordinates of the
vectors A and B, with 8 their polar angle and ¢ their azimuth.,

Derive a formula equivalent to the onc in Problem A.17 for the
angle between two vectors in a four-dimensional Euclidean space,
with polar angles 6, ¢, and ¢ for each vector, that is, A, = A cos 6,
As=Asinfcos iy, A, = Asinfsingcos d, and A; = Asin fsin ¢
X sin ¢.

From Gauss’ theorem, (A.6.6), prove
(a) J d*xVo = J dS¢
v 5
(b) Jd3xv><A=st><A
|4 N

for any function ¢ and vector A.

From Stokes’ theorem, show that if a vector A(x) has zero curl, then
A(x) is the gradient of a scalar ¢(x), with (x) given by

W(x) = Jd(ﬁ‘ A(X')

Xy

independent of the path from x, to x.

Let V be a volume bounded by a surface S. From Gauss’ theorem,
show that
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J(V¢)2d3x=J¢V¢'dS -fd/V2¢rd3x
v s v

from which prove that a vector whose divergence and curl are both
zero, and which vanishes sufficiently rapidly at «, must be zero
everywhere. Give the criteria for “‘sufficiently rapidly.”

A.22 From Gauss’ theorem applied to a small cube, derive the expression
(A.6.9).



CLASSICAL FIELD THEORY

ELECTROMAGNETISM AND GRAVITATION

Francis E. Low

© 2004 WILEY-VCH Verlag GmbH & Co.

APPENDIX B

Spherical Harmonics and
Orthogonal Polynomials

B.1. LEGENDRE POLYNOMIALS

The simple potential function

_ 1
[(X _ x/)Z]l/?.
can be expanded for small r'/r in a power series in r'/r, and for small r/r',

in a power series in that variable. In order to avoid confusion with the x
component of x, we here denote the magnitude of x by r:

d(x — x') = (B.1.1)

r=(x%)"2. (B.1.2)

We can test for the radius of convergence of the series by finding the
zeros of the function

D=(x-x)=r"+r?%-2rr'cos 8, (B.1.3)

where 6 is the angle between the vectors x and x'.
If we let #'/r = u, the equation D = 0 becomes

1+u’—2ucos9=0 (B.1.4)
whose solutions are
u=cosf*Vcos?—1=¢""°, (B.1.5)

The function ¢, considered a function of the complex variable u, is
406
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therefore analytic in u for |u| < 1 so that the power series in u is convergent
for u < 1. Thus, we may write

1 15
= (7 + r'* = 2rr' cos 0)”2 r ;o ( ) Pe(cos6)  (B.1.6)
for r <r’, and
1 i r ‘
b= S e —;‘ P¢(cos 6) (B.L.7)

for r>r'.

The function P,(cos 6) defined by (B.1.6) and (B.1.7) is clearly a

polynomial in cos 6 of degree ¢, even or odd in cos 8 according to whether
€ is even or odd. It is called a Legendre polynomial. It is also clear that
the function r‘P,(cos 0) is a polynomial of degree ¢ in the components x,
y, z of the vector x, with x’ held fixed. In particular, if we choose x'
as the polar axis of the x coordinate system, then rcos 8= z and r’
x% +y? + 2%, so that r‘P.(cos 8) is a polynomial function only of z and
r?. The function ¢ with the property (B.1.6) is called a generating function
for the P/'s.

We study some properties of the P/’s:

1. Since
vl _g (x#x') and V7? 1 __o (x#x'),
|x — x| |x — x|
(B.1.8)

(B.1.6) shows that the polynomial function of x, r‘P,(cos 6), is
harmonic; that is, it satisfies the equation

V2rP,(cos 6) = 0; (B.1.9)

Similarly,

P(cos 0) = (B.1.10)

£+1
r

2. In the forward and backward directions, the expansion (B.1.6)
becomes
!

N I

P(£1) = (x1)". (B.1.12)

¢_

_|r+r|

I

‘:[,_.

so that
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. Harmonic polynomials of different order are orthogonal. That is,

if
Vp,=Vgqe =0 (B.1.13)

where p, and g, are polynomials of order £ and £’ in x, y, z, then
the integral over solid angle, d(},

JdQP(CI€' =0, (£#+¢. (B.1.14)
Proof: Integrate over a spherical volume:

[ (pV’qe = qeVop)dr=0 (B.1.15)

so that

J(Ptvch* ~qeVpe)-dS=0 (B.1.16)
e
integrated over the spherical surface bounding the volume. Since
dS -V = r* dQ(8/dr), (B.1.16) becomes, with
pe=rY (Q) and q.=r"Z(Q) (B.1.17)

0=rrarige - e)j YiQ) Zo(Q)dQ  (B.1.18)

and the result is proved. In particular, Legendre polynomials P.(w)
and P,(w) with € # €' are orthogonal when integrated over w.
Here, w = cos 8, dw = sin 840, and dQ = dpdw, where ¢ goes
from @ to 27 and w now goes from —1 to 1.

4. The normalization integral for P, can be found by integrating

Ul —r'[%:
1
J af 2=277de ~ 21
Ir—r'| (r+r*=2rrw)
—
ﬁl (r+r')?

2rr’ (r—r)?

= 2ifllog(r' +r)~log(r' —r)] (B.1.19)
rr
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for r' > r. Here, the symbol log x stands for the natural logarithm
of x. Expanding in powers of r/r’, we have

dQ
) o)
[r=r'[* rr r r'
[2-1() 1)

- AR S U A T
' Lr 2\ 3\
_<_L_1(L)2_1<1>3...>}

roo2\r KAV
2 S

=4_7;[1+1<L) +1<£) + } (B.1.20)

r 3\ 5\r

¥

l [\

On the other hand,

e el 52 ) (5 o)

o 2¢
= 2—7;: 2 (L) fde,.n(W) Pe(w) (B.1.21)
r'e =0 \r'
so that, in all,
JP(W)P (W)dw=—2—6 (B.1.22)
o 2041 A

5. The P,’s are orthogonal polynomials of parity (—1)* and of order
¢ in w, with a weight function 1 on the interval w between =1 and
a normalization P,(1) = 1. Evidently, the P,/’s can be sequentially
constructed from these rules. Thus,

Po(w) =1 (B.1.23)
Pi(w)=w (B.1.24)
P(w)=a+ Bw?, (B.1.25)

etc.
P, is automatically orthogonal to P; orthogonality to Pg
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requires
1
J dw(e + Bw?) =0
-1
or

__B
a= -7 (B.1.26)

Together with P,(1) = 1, or o + B =1, (B.1.26) determines P, as

Py(w) = %wz - % (B.1.27)

This procedure can be continued to construct any finite-order Leg-
endre polynomial.

B.2. SPHERICAL HARMONICS

We return to (B.1.1) and expand directly in powers of x, y, and z using
the three dimensional Taylor’s theorem. That is, for r <r’,

L (—1)‘()(,;,,)61,’ (B.2.1)
r

|x —x'| =0 ¢!

or, in tensor notation,

¢ (=1 d 9 1
X—X)= 2 x e B.2.2
# ) o €1 T gy oxj,r' ( )
We define multipole fields of order € as
g ] a 1
¢ Lx)=—— (B.2.3)
ax;, axi,r

#'(x') is a symmetric tensor of rank €. It is also traceless, since con-
tracting on any pair of indices in (B.2.3) produces a V', which in turn
gives zero acting on 1/r'.

At a given point in space, we can count the number of independent
components of ¢'“ [i.e., the number of independent numbers we must
specify to determine all the components of ¢'*’]. That number is 2¢ + 1,
as we now show.
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We count first the number S(€, N) of components of an £th-rank
symmetric tensor in N dimensions. We call the number of x, components

ny, of x; components n,, etc. The number of independent components is
then

S N)=2-2-1. (B.2.4)

="h

The sum can be deduced from

S(z,N)= 2 S({,N)z‘

o

z”l... 2 Z"N

nN=0

o
)
€=0
=
)
n1=0

N

)

which is convergent for {z| < 1. We can recover the €th term in the series
by integrating the complex function 1/(27iz‘*') S(z, n) around the origin:

S(f,N):jgi;ffmS(z,N) (B.2.6)

_;_a:@_lﬁ)”
£loazf\1 -

_N-N+DH+- -+ (N+E-1)

z=0

€!
-1
= M_l_)_ (B.2.7)
(N -De!
which is the desired formula. For N = 3, we have
£+ 2)! + 1€ +
se,3) =€ _ (DD (B.2.8)

218! 2

The number So(€, 3) of independent components of a traceless sym-
metric tensor in three dimensions is

So(€,3) = 5(£,3) — S(£—-2,3)=2¢+ 1 (B.2.9)
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since the symmetry of S(¢, 3) assures that all traces are identical and since
the trace of an fth-rank symmetric tensor is an { — 2th-rank symmetric
tensor.

We return to (B.2.2), which we may write as

No S ED 5 N 3D b
d)(x - X ) = (20( e') Pfl()l( f1()11(’( ) = (g’() o1 Xiy - - ‘xi¢'¢§1()--‘i('(x )
(B.2.10)

where

DO

Pil I P xi] - 'xi( (B.Z.ll)

is a symmetric £th-rank tensor.

Since there are only 2¢ + 1 independent ¢'“”’s, there must be only
2¢ + 1 independent components of the P s that matter. We exhibit this,
making P, traceless by subtracting Krénecker deltas. These have no effect
on ¢, since

84 i 4=0. (B.2.12)
We illustrate the subtraction procedure for £ = 2. Define
PP =P - as; (B.2.13)
such that P$® = 0; that is,
3a=P?
and

— 1 —=
P®=PpP — ggl_jpgfk) (B.2.14)

= x,'x,' - % 8;,-7(2.

The above procedure, applied to P* of arbitrary rank, produces an €th-
rank, symmetric, traceless tensor, P{” ,(x), with 2¢ + 1 independent
components.

Since V*1/|x —x'|=0 for (x#x'), the polynomial product
P (x) o8 ,(x') must satisfy Laplace’s equation; since there are
2¢ + 1 independent ¢'”s and 2¢ + 1 independent P“”’s, each P> must
satisfy Laplace’s equation, that is,

VP =0. (B.2.15)
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We have thus shown that there exist at least 2¢ + 1 harmonic polyno-
mials of degree €: the PO i/’s. And we may write

_ <
(=1 PO O . (B.2.16)

" (' 72 o CR #3

Ik

d):

13

We show next that there are exactly 2¢ + 1 independent harmonic
polynomials of degree €. We proceed by writing an arbitrary polynomial
of degree { as

WO= X (x i)™ — i) a(my, my, my) (B.2.17)

my+mat+tmz=¢€

where the coefficient a(m,, m,, ms) is to be determined.
Suppose m; > m,; we then write

(x + iy)™(x — iy)™ = (x + iy)™ (X + )72 (B.2.18)
if m, < m,, we write
(x + iy)™(x — iy)™ = (x — iy)™ (X + yH)™. (B.2.19)

We can expand

Yo =2 ytém (B.2.20)

where, for fixed m =m; — m, >0,

GO = (x + iy 2 () a(my, my, ms). (B.2.21)

2mpt+tma=£6—-m

Note that m may take on values from 0 to €. The m, and m; values with
m, > m; add ¢ functions proportional to (x — i)™, so that in all we have
functions ¢“"™ whose azimuthal ¢ dependence (in spherical coordinates)
is e™™¢, with m taking on 2¢ + 1 values between *{. Note that functions
with different m values are orthogonal:

J PEM YR m) gy =, m#=m . (B.2.22)

We already know from (B.1.14) that ¢*™s of different € are orthogonal.

Finally, we show that orthogonality between different € values
determines “" to within a constant multiple; normalization determines
it to within a phase.
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We first note from (B.2.17) that
¥ O(—x) = (—D’"l*"’z g (x)
= (D). (B.2.23)
The transformation x — —x in spherical coordinates is given by
o— @+ m, 6—>m—6 (B.2.24)

so that, since e””® — (—1)"¢"* under the transformation (B.2.24), the
residual function in (B.2.21)

2 (2 + Y™ ™a(m,, ma, ms) (B.2.25)

must be multiplied by (—1)*~™ under the transformation z — ~z.
Factoring the r¢ dependence of “™, we define

e = résin!™lge™ P , . (cosb) (B.2.26)

where P, (cos 8) is a polynomial of degree £ — m in cos 8.' Under the
transformation r — —r, then,

I—)[,m(_cos 0) = (—1)6;’"’75,,,,(005 0) .

The functions (B.2.26) are already orthogonal for different m values.
If they are to be harmonic, they must also be orthogonal for different ¢
values. That is,

J PPl a0 =0, €#€ or m#+m'. (B.2.27)

Following (B.2.27), we construct, for each m, a sequence of ortho-
gonal polynomials of degrees € — |m| in z, starting with € =|m| and
containing only even or odd powers of z according to the parity (—1)"".
The weight function for the sequence is (sin'"!)? = (1 — cos? 8)\""!.

'We introduce the bar in the symbol 1;(_", because there exists a conventionally defined
symbol P, with a different normalization.
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TABLE B.1.
m\f 0 1 2 3 4
4 sin® ge%¢
3 ‘ sin’ § &% sin® 9™ cos 8
2 _ sin® §e%'* sin” §e** cos § sin® §e*¢(g cos® 6 + h)
1 sin ge'® sinfe'fcos 8  sinGe’¥(ccos’ 8+ d)  sinBe’?cos 6(jcos’ + k)
0 1 cos@ a cos’ 6+b cos 8(e cos’8 + f)
-1 sinfe ¢  sinBe ‘Pcos @
sin® g~ ¢

This is illustrated in Table B.1.

Evidently, there are just enough orthogonality relations to determine
all the coefficients to within a constant multiple. If we normalize these
functions to one, they are determined up to a constant phase. For some
purposes, it is convenient to choose

Pew=(-1)"P(pm, (B.2.28)

and we shall generally do so.

We have now constructed for each m a unique orthonormal set of
polynomials of degree ¢; since m ranges from —¢ to ¢, there are, for each
£, 2¢ + 1 polynomials. Harmonic polynomials may be chosen to have a
fixed m, since the Laplacian operator V* does not mix values of m, that
is,

V2 e meF(9) = e G(0). (B.2.29)

In addition, harmonic polynomials must be orthogonal for different
¢, a property by which they are uniquely determined, as we have just
shown. Therefore, our orthogonality procedure has determined the 2¢€ + 1
harmonic polynomials of each order.

The notation we use for the normalized functions is

Yem(8, @) =sin™9e™ P, . (w). (B.2.30)

B.3. COMPLETENESS OF THE Y, ,

We show first that the Legendre polynomials are complete, that is, that

2@f+1) f P(F-7)f(r')dQ’ = 4mf(r) (B.3.1)
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for f(r) a sufficiently well-behaved function of angle, and where the
vectors r’ and r have the same length: |r'| = |r| =1r.
We proceed by considering the integral

F=—JdS’-<V" 1 - >f(r’) (B.3.2)

r—r - [e" — ro)

where the surface S’ is a sphere of radius r. The vector r; is inside the
sphere, r, outside the sphere; for simplicity we take them to be colinear.
We will take the limit r;, - r and rg — r in two different ways.

Except for the singularities in the integrand (B.3.2) atr' =r;andr’' =
1o, the limit would be zero. We take the singularity properly into account
by expanding f(r') about r; in the first term of (B.3.2) {as f(r') =
fr)+ (' —r)-Vf+---] and about ro in the second. The terms with
r' —r; and r' — r, to the first and higher powers remove the singularity
and, hence, in the limit can be dropped. There remains

1 1
F=- J ds - V(——-f(ri) - ———f(ro))
v —r] Ir = rol
+ terms that go to zero, so that
lim F=4nxf(r). (B.3.3)

ri—r

+
ro—r

On the other hand, expanding 1l/|r —r;| in powers of r,/r and
1/|r = | in powers of r/ro, we have, from (B.3.2),

1€

d [ r{ r
F=~22fdﬂ’——< : ~—_—)p,"i."' '
r P dar’ rr(+l r(()+1 ((r r)f(r)

or

F= g Jdn'[(e + 1)(2)6 + e(i>MJ PG -#)f(r'). (B.3.4)

Ty

It is now safe to take the limit, which yields, as claimed,

4mf(r) = 2 (2€ + 1) J P.(F %) f(r') SV (B.3.1)

€

Next, we note that since r‘P,(f - #') is a harmonic polynomial of order
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¢, asis r'“P,(f- £'), we must be able to expand P,(F-#') in terms of the
Yem(Q)'s and Y, ,.(Q')’s, that is,

P %)= 2 anmYem(8 9) Vi (0, o). (B.3.5)

A

Since T:% = cos fcos 6" + sin Gsin 6 cos(¢ — ¢'), (B.3.5) must depend
only on ¢— ¢’ (not on ¢ + ¢'). Therefore, a,,,, must equal zero unless
m' = m, and (B.3.5) becomes

PuF )= 2 anYem(0, @) Yim(0,¢). (B.3.6)

Note that since P, is real and invariant under interchange of £ and ¥/, a,,
must be real. We perform two operations on (B.3.6):

1. Sett =’ and integrate over d}. We find
4 = 2 an. (B.3.7)
2. Now square (B.3.6):
PYUF#) = 2 @, Y e (Q) Y, (Q)
ny
X 2@k, Y E Q) Y (Q). (B.3.8)
my

3. Integrate over d{}. There results

47T E 2 2
= o) | Yem(2)1. B.3.9
=3 fan P | Ve (@) (839)

4. Finally, integrate over df}’ to find

(47")2 _ 2
Y g]am] . (B.3.10)

The unique solution of (B.3.7) and (B.3.10) is a,, = 47/(2¢ + 1). (See
Problem B.11.) Our final result is therefore

{
TSy () YY), (B.3.11)
26 + 1 m=-¢

P((??’) =
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The completeness theorem (B.3.4) for the P/s then tells us that any
function of angle can be expanded in the Y,,,.’s:

foy=3 &+ j P.(F- #)F(Q) A
¢ 47
or

f(Q) = gn Y{:,m(n)f Y,.(Q)f(Q)dQ. (B.3.12)

The Y,,.’s are sometimes referred to as spherical tensors. Recall the
Cartesian form of harmonic polynomials generated by the coefficients of
$s in (B.2.16):

P i, = (xiy...x;, — traces). (B.3.13)

These transform under rotations as €th-rank, symmetric traceless ten-
sors.
The Y,,.’s also have a simple transformation property, since a solution

of the Laplace equation must remain a solution under rotations. There-
fore,

Y em(Qr) = 2 Doy (R) 1 Y e (€0) (B.3.14)

where ) takes the 8, ¢ of the original coordinate system ({2) and changes
them to the 6, ¢ of the same point with respect to the new coordinate
system. The expansion coefficients D, . (R) define the transformation of
a spherical tensor.

APPENDIX B PROBLEMS

B.1 From the definition (B.1.6) of the P/s, show that P w=1)=
€€+ 1)/2.

B.2 Again using (B.1.6), show that with w = cos 8,
P(w=0)=0 for € odd
1

:(_1),,5---(;:—5)
n!

for £ even

where n = €/2, and the product5- -+ (n —3) = 1 for n = 0.
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Again using (B.1.6), show that the P/s satisfy the differential
equation

_d

d
[ 2y 2 =
. (1-w )dw P.(w) = €(€ + 1)} Po(w).

Again using (B.1.6), show that

({) + 1) P(+1(W) + €P[71(W) = W(2€ + 1) Pe(W)

and from that, show that
1
J PowP,dw =10
~1

unless ¢’ = £ = 1 and that

1

J Pepi(w)w Po(w)dw =

-1

200+ 1)
Q6+ 1D)(2¢+3)

Use the orthonormality of the Y,,,’s to construct all the Y, ,,’s for
£ = 4 as suggested by Table B.1.

Show that the function
P

P, 1)= <7(x +iy) — %_(x —iy) — 22)

for any 7 is a harmonic polynomial of order € and is a generating
function for the Y, ,.’s:

€
P((T7 r) = r[ E TmC(‘,m Y{.m(oy (P)

m=—¢
where the c.,,’s are constant coefficients.
Show from the results of Problem B.6 that
d .0 ' _
<"_ +1 _)"6 Yem=demt ' Yeotmes
ax ay
that

a .4 : _
<_ - —_) r[Yl',m = d,f‘.m rl ! Y("ﬁl,mAl s
ax ay
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and that
T Y= i Yo
where d, d’, and d" are €, m-dependent constants.
B.8 The charge distribution on a spherical surface is given by
o=A-r,

where A is a constant vector.
Find the potential

o) = | 2L a
r—r'|
and the field
E=-V¢

inside and outside of the sphere.

B.9 Verify by direct integration Newton’s theorem that the potential
outside a spherically symmetric charge distribution p,(r) is the same
as it would be were all the charge concentrated at the center. That
is, for r outside of the region in which p is nonzero,

[ar 24022

e—1'|
where Q = f dr’ p(r").

B.10 We know from (B.2.26) that r“Y¢,. is harmonic and of the form
r‘e™*f,..(0). Show from this that f,, satisfies the equation

1 d . d m?> }
———35in §— ~ + (0 +1 m = 0.
{sin oa0° " 0 e LET DI

B.11 Prove the statement made following (B.3.10), that (B.3.7) and
(B.3.10) imply a,,, = 47/(2€ + 1).
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Covariant vector, 254, 257
Current:
circuits, 70
in conducting fluid. uniqueness of. 77
continuous distribution of. 54
density. 47
displacement. 82
steady. 47-50
surface, 62
time-dependent, §1-134
Curvature:
defined. 367-368
independent components of, 369
symmetry propertics of. 368-369
Cylinder, charged. 36
Cylindrical wave guide:
TEM mode. 127
TE/TM modes. 128

Delta function. 3
Density:
charge 2,132
current, 47
energy. average, 105
345-349
magnetic moment, 5§
scalar. Lorentz, 261
tensor, Lorentz. 263
vector, Lorentz, 262
Diamagnetism. 65, 73-77
Driclectric tensor:
analyticity of, 90, 95
anti-Hermitian part, 94, 101
antisymmetric component of, 33
defined. 32
trequency dependence of, 96
Dipole:
clectric. 9
of classical atom in magnetic ficld. 125
moment per unit volume. 30
guantum caleulation of, 95
radiation of. 146-150
magnetic. 50
radiation of. 148
Doppler shift. 269
Dual tensor, 266

Einstein field equations, 370-376
Electrodynamics. covariant. 260-269
Electromagnetic field:
cquations of motion for a point charge
in. 269-271
in matter. 84-91

optical theorem for. 210-211
of point charge moving at constant high
velocity. 150
propagation. 102
scattering of. 208-240
tensor, 264
Electromotive force:
defined. 49
motional. 66
Electrostatics:
conductors:
in the presence of, 16-20
systems of, 20-24
Coulomb’s law. 1-9
energy:
in diclectric medium, 32-36
stress and, 12-16
fields in matter. 24-32
multipoles/multipole fields. 9-12
Elevator coordinate system, 356
Energy:
average density of. 105-106
balance in reflection and transmission.
125
conservation of, {4
i diclectric medium. 32-36
clectromagnetic. 91-95
in electrostatic ficld. 12-16
of gravitational ficld. 347
loss:
in circular acceleration, 280
in linear acceleration, 279
in magnetic field. 69-73
of magnetic moment in magnetic field.
63
of particle. in time independent field. 287
radiated. 143
of scalar field. 182
total radiated by relativistic particle. 169
of vector field. positivity of, 309-310
of vector multipoles, 227
Encrgy-momentum tensor, 273
Entropy. 34
Equivalence principle. 357
Extraordinary ray. 117

Factorization of wave equation. 201,
243-244
Faraday:
effect and coeflicient. 126
taw of induction. 68
Ferroelectric, 29
Field(s):
causal relationship between, 82



classical equations for. validity of.
24-25.153
with definite wave number. 103
electric. effective, 66
electromagnetic. see Electromagnetic
field
electrostatic, 2
in matter, 24-32
uniqueness of, 17. 43
functional. 19
gravitational. see Gravitational field
in isotropic materials, 102-109
Liénard-Wiechert. 165-170
macroscopic, 24
magnetic units for, 50
magnetostatic. S0-66
in matter, 61-66
uniform. 78
microscopic. 24. 6
scalar. see Scalar field
tensor:
covariant. 260
electromagnetic. 264
gravitational. 341
propagating modes of. 344
time-dependent, 81-134
uniform. 78
vector, 304-313. 39y
Fields and particles. interacting,
298-304
Finite time signal. 105
Flux:
of angular momentum, 228
clectric, 6
energy. of electromagnetic field. 93
energy. of gravitational field. 382
energy. of scalar field. 183
magnetic. 66
time-averaged. 105
time-integrated. 105
Force:
between circuits, 53
on currents, total, 72
on dielectric. 36
clectromotive, 66-69
generalized:
on circuit. 7{-72
on conductor. 21-22
Loreniz, 82
magnetic energy and. 69-73
of magnetic field on circuit, 51
radiation reaction, 178
volume, 34
Free energy. 34
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Functional. 19

Gas. dilute. 26
Gauge:
Coulomb, 135
harmonic, 354
invariance, 56, 135
Lorentz. 136
transformation. gravitational. 353.
378-379
Gauss law. 7-8. 36
Gauss™ theorem, 402
Gravitational field:
action for, 375
energy of, 347
interaction of. 356-367
Lagrangian density for, in linear theory.
345-349
orbit. precession of. 360
overview, 338-340
particles in. 349-356
propagating modes. number of, 377-378
rotating source for. 384
static. 358
weak field timit, 353
Gravitational redshift. 363. 384
Gravity:
curvature and, 367-370
Einstein ficld equations. 370-376
gravilational field. see Gravitational field
principle of equivalence, 357
radiation, gravitational, 376-384
tensor field. 341-345
Green's function:
electrostatic. 17
for massive scalar ficld. 188-191
for radiation:
advanced. 139
defined, 137-138
retarded, 138
Group velogity, 185
Gyromagnetic ratio, 59
Gyroscope. precession in gravitational
field. 385

Hall effect. 48
Hamilton's principle. 281
Harmonic(s):
function. 9. 407
polynomials. 408
spherical:
completeness of, 415-418
overview, 410-415
Helicity, 118~123
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Images. 38-39
Induction:
coefficients of. 70
clectromagnetic. 66-69
magnetic, 62
Infinitesimal transformation. 246
Infra-red divergence. 163
Initial conditions. consistency of. 89, 106
Interaction action. 298
Internal energy. 34
Invariance:
overview, 245-248
reparametrization. 285
Invariant volume element. 317

Kronecker delta, 392

Lagrange equations:
for fields. 291
for particles. 282286
Lagrangian:
for fields, 290-297
for gravitational field, 343
for particles. 281-284
relativistic. for particles in field. 284-290
Lagrangian density:
defined. 290
for clectromagnetic fields. 307
for gravitational fields, 345-349
higher derivatives in. 332
with nonlocal interaction. 333
Langevin-Debye equation. 64
Laplace’s equation, 9
Laplacian. in generalized coordinates, 322
Larmor precession, 73
Legendre polynomials:
defined. 406
gencrating function for, 407
Lense-Thirring effect. 386
Lenz's law, 65
Liénard-Wiechert
tields. 165170
potentials. 156-159
Light. bending of, 360
Lines of force. equation for. 44
Lorentz-Fitzgerald contraction, 252
Lorentz force. 52
Lorentz group. 252
Lorentz tensors, 257-260
Lorentz transformation. 248-256

Mach’s principle. 386
Muacroscopic cquations:
clectromagnetic. 88

electrostatic, 31
magnetostatic. 62
Magnetic moment:
density. 58
cnergy of. in magnetic ficld. 63
Magnetic dipole radiation. 148
Magnetic pseudopotential. 59
Magnetostatics. 47
Material discontinuity, boundary
conditions at. 88
Maxwell's equations, 81-83
Maxwell stress tensor, 15
Medium:
conducting, 48
semi-infinite. 107
Metric tensor. 315
Moment. dipole. see Dipole moment:
Quadrupole
Momentum:
angular. 121,227 277
clectromagnetic. 91-95
Monoaxial crystal. 116
Monochromatic signal. 105
Monopole. clectric. 9
Motional clectromotive force. 66
Multipole(s):
cleetric. total cross section for, 238
electrostatic. 9-12
fields. electrostatic, 9-12
magnetic. total cross section for, 238
magnetostatic. 56-61
scattering by a diclectric, 230-240
vector, 217-226

Nocther current, 292
Nocther's theorem, 282

Ohm’s law. 48
Optical theorem:
for electromagnetic field scattering,
210-211
generafized, 240
Orbit equation. in static gravitational
ficld. 358
Orbit precession in static gravitational
field. 360
Ordinary ray. 117
Orthogonal polynontials. 406, 409, 414

Parallel displacement. 31%
Paramagnetism, 63
Partial waves. for scalar field. 203-208
Particle(s):

in clectromagnetic field. 285-286



finite size charged. 124
in given scalar field. 33)
in gravitational field. 349-359
inferacting. 298-304
relativistic. 169, 284-290
scattering. 164
stowly moving point. 144- {46
in stress-cnergy tensor. 275, 352
in time-dependent fickd. 287
Permanent magnets, 63
Permeability, 63
Perturbation theory. for scattering:
by damped oscillator with radiation
reaction, 212-216
by diclectric. with dielectric constant
near 1. 216-217
Phase shifts. for scalar field.
203-208
Photons. equivalent. 150~156
Planck radius, 312
Planc:
charged. 37
wave, 109
Plasma:
dispersion law, 132
clectron. 134
Poincard group, 252
Poisson’s equation. 8
Polarizability:
atomic systems. 95
diamagnetic, 66. 75
clectrostatic dipole. 27-28
magnetic dipole. 64
quadruple. 28
tensor. 29
Polarization:
circutar, 104
elliptic. 104
lincar. 104
Polynomials:
harmonic. 408
Legendre:
defined. 406-407
generating tunction for. 407
orthogonal. 409-4 0
Potential:
cocfficients of. 20
complex. 240-24]
electrostatic. 4
Li¢nard-Wiechert. 156-159
magnetic. 58
scalar, 134~137
square well. 242
vector, 50, 134-137
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Poynting vector, 93, 160, 382
Proca equation. 306
Propagation:

in anisotropic media. 114-118

causal. 91. 109, 130

scalar field, equation for, 182

signal. 9t

of wave packetl. 185
Proper time. 261
Pseudo-Euclidean system. local

transformation to. 323-325

Pscudotensors, 260, 398-399
Pyroclectric. 29

Quadrupole:
clectric. 12, 40
magnetic. 79
radiation, 150, 380-384
Quantum theory. interpretation of classical
calculation. 153, 162

Radial wave functions. 198-203
Radiation:
Bremsstrahlung. low-frequency. 159-165
Cerenkov. 170-176
cyclotron. 170
dipaole:
clectric. 146-150
magnetic, 148
clectric quadrupole, 149
cquation. Green's functions for.
137-140
cquivalent photons, 150-156
by fixed frequency source, 140-144
gravitational. 376
emitted by a known source, 380
quadrupole. 383
Li¢nard-Wiechert. 165
by prescribed sources, 134-180
rcaction, 212
of scalar field. 190
signature of. 141
by slowly moving point particle.
144-146
Ratio. gyromagnctic. 59
Reflection. 109-113
Retraction. 109-113
Resistance:
of conductor. 48
internal, 49
Resolution. in particle scattering. 164
Rest system, 256
Retarded time, 157
Run-away solution, 214, 312
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Scalar density:
Lorentz. 261
weight of. 317
Scalar field:
cross section for scattering of. 193
defined. 182
energy of, 183
interacting. 301
massive. 188
optical theorem for, 194-197
partial waves for. 203
phase shifts for. 203
propagation equation for, 182
radiation of. 190
scattering amplitude for. 205
stress-energy tensor, 296. 301
theory. construction of. 32
Scattering:
amplitude for scalar field. 205
by conducting sphere. 241
by a damped oscillator. 212
by a dielectric with g near 1. 216
clectromagnetic field. 208-210
tormulation of, 191-194
length, 207
low-frequency limit of. 216
multipole. by a dielectric, 230-240
optical theorem:
for a scalar ficld, 194~ 198
for light. 210-211
partial waves, 203-208
perturbation theory of. 211-217
phase shifts. 203-208
resonant. 214-215
width for, 214-215
of scalar field. 181-188
Green's function for. 188-191
vector multipoles. 217-227
of wave packet, 183
Schrodinger equation, 96
Shielding. clectrostatic. 37
Skin depth. 110
Snell’s law. 109
Spacelike interval. 254
Sphere. charged. 36
Spherical Bessel functions, 199
Spherical harmonics, 39-40. 410
completeness of. 418
Stress:
in electrostatic field. 12-16
tensor, see Stress-energy tensor: Stress
tensor
Stress-energy tensor:
canonical. 291

construction of covariantly conserved.
symmetric. 293-295_300-304. 326331
electromagnetic, 273
for interacting scalar field. 296
for matter and gravity. 371-374
particle. 275,352
symmetric, construction of, 293
Stress tensor. See also Stress-energy tensor
magnetic. 72
Maxwell electrostatic. 15
particle, 352
Summation convention. 391
Superconductor. levitation of, 79
Superluminal velocity, 254
Sylvester's theorem, 11

Tensor. see specific types of tensors
angular momentum, 277
defined, 396-398
density. 263
stress-energy-momentum, 273

Thompson cross section. 216

Three-body electrostatic forces, 2

Timelike interval, 254

Time reversal. 99

Transformation:
infinitesimal. 246
Lorentz, 248-256

of electric and magnetic fields, 267
local, to a pseudo-Euclidean
coordinate system. 323

Uncertainty relation, 1835
Units:
electrostatic. 2
magnetic. S0

Variational derivative, 282
Variational principle. electrostatic field. 19,
43
Vector:
algebra and analysis. three-dimensional.
401-402
contravariant. transformation of.
313-314
covariant. 254. 257
density, Lorentz, 262
cnergy-momentum, 255-236
fields. 399-400
multipoles, 217-227
energy and angular momentum of.
227
polential. 56. 134-137
Poynting. 93. 160, 382



transformations. 391
unit. 391
Velocity:
group, 185
superluminal, 254
Virtual present radius. 167
Voltaic cell. 49

Index

Wave packet:
propagation of. 185
scattering of. 183
Wave zone, 141
Weizsacker, F.. 156
Width. of energy levels, 99
Williams. J.. 156
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