
Electromagnetism 1

Torque on a cylinder

The constitutive relation is a relation between the macroscopic electrical current
density in a medium and the applied fields. Recall that for a normal isotropic
conductor at rest in an electric (E) and magnetic field (B) the constitutive relation
in a linear response approximation is known as Ohm’s law: J = sE .

a) (2 points) For most materials, a symmetry principle forbids a generalized
Ohm’s law in the rest frame of the material of the form:

J = sE + sBB . (1)

Explain.

b) (6 points) By making a Lorentz transformation for small velocities, deduce
the familiar constitutive relation for a normal conductor moving non-relativis-
tically with velocity u in an electric and magnetic field from the rest frame
constitutive relation, Eq. ().

c) (4 points) Now consider a solid conducting cylinder of radius R and conduc-
tivity s rotating rather slowly with constant angular velocity w in a uniform
magnetic field Bo perpendicular to the axis of the cylinder as shown below.
Determine the current flowing in the cylinder.

d) (8 points) Determine the torque required to maintain the cylinder’s constant
angular velocity. Assume that the skin depth is much larger than the radius
of the cylinder.

Bo

!
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Solution

a) Parity forbids a constitutive relation including a magnetic field. Specifically,
sB would have to be a pseudo-scalar, since J is a vector and B is a pseudo-
vector. But, if the interactions of the medium are invariant under parity, and
the ground state is parity symmetric, then medium expectation value of any
pseudoscalar quantity is zero.

b) In a frame where the conductor is at rest

J = sE (2)

the charge density r = 0. Make a Lorentz transformation from the con-
ductor’s rest frame to the lab frame, i.e. a frame moving with velocity �u
relative to the conductor, so that the lab observer sees the conductor moving
with velcoity u. We have

Jµ = Lµ
n Jn . (3)

Here the J are the currents in the conductor frame, J are the currents in the
lab frame.

To first order in u the Lorentz transformation matrix is

Lµ
n =

 
g gu

gu g

!
⇡

 
1 u
u 1

!
(4)

Thus
J ⇡ u r

|{z}
=0

+J = sE (5)

We need to use the Lorentz transformation rule to relate E to E and B.

The transformation rules for the E and B fields are

Ek =Ek (6)

Bk =Bk (7)

E? =gE? � gu/c ⇥ B (8)

B? =gB? + gu/c ⇥ E (9)
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and the inverse results

Ek =Ek (10)

Bk =Bk (11)

E? =gE? + gu/c ⇥ B ⇡ E? + u/c ⇥ B (12)

B? =gB? � gu/c ⇥ E (13)

So the constitutive relation becomes to first order

J = s(E +
u
c
⇥ B) (14)

Clearly the constitutive relation takes the form J = s f where f is the Lorentz
force.

c) Using the result
J = s(u/c ⇥ Bo) , (15)

we find in cylindrical coordinates

J(r, f) = �s
wrBo

c
cos fẑ . (16)

We see that the electrons (which carry negative charge) flow up the cylinder
at f = 0 and down the cylinder at f = p.

d) The Lorentz force on the current induces a torque:

t =
Z

d3r r ⇥
✓

J
c
⇥ Bo

◆
, (17)

=L
Z

rdrdf


J
c
(r · Bo)� (r · J/c)Bo

�
, (18)

where L is the length of the cylinder. The second term in square braces
integrates to zero while the first terms gives

t =L
Z R

0
rdr

Z
df


(�s

wrBo
c2 cos fẑ)(r cos fBo)

�
, (19)

=� Lẑ
�
pswR4B2

o
�

4c2 . (20)

This is the torque by the magnetic field on the cylinder. To maintain a
constant angular velocity we need an external torque per unit length of

t

L
= +ẑ

�
pswR4B2

o
�

4c2 . (21)
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Notes:

• An alternative way to derive this is to equate the work done per time by the
external torque, t · w, with the energy dissipation

t · w =
Z

d3r
J · J

s
(22)

=L
sw2

4c2 B2
o pR4 (23)

• We next evaluate this numerically for copper. Expressing the torque in terms
of the skin depth (which is taken from Wikipedia):

d =

r
2c2

sw
= 6.5 cm/

p
fHz (24)

We find
t

L
=

R4B2
o

d2
p

2
(25)

Converting to MKS and Tesla

B2
o !

B2
o

µo
= 1

J
m3 8 ⇥ 105

✓
Bo

Tesla

◆2
(26)

So we find

t

L
⇡ 3 N

✓
R

cm

◆4 ✓ f
Hz

◆✓
Bo

Tesla

◆2
with R ⌧

6.5 cmp
f in Hz

(27)

It is also interesting to calculate the current flowing through each hemi-cylinder
of the wire.

I
c
=
Z

rdr
Z p/2

�p/2
dfJ(r, f)/c (28)

=�
2
3

s
wR3Bo

c2 ẑ (29)

=�
4
3

R3Bo
d2 (30)

Or in MKS
I
c
!

p
µo I (31)

B !
B

p
µo

(32)
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which evaluates to a shockingly large current

I =�
4
3

R3Bo
d2µo

(33)

=310Amps
✓

f
Hz

◆✓
B

Tesla

◆✓
R

cm

◆3
(34)
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Electromagnetism 2

Oscillating current on a ring

A current is driven through a ring of radius R in the xy plane (see below). Us-
ing complex notation, the current has a harmonic time dependence, J(t, r) =

e�iwt J(r), and the spatial dependence is J(r) = I0 sin(f) d(r � R)d(z)f̂ .

z

x

y

�

a) (4 points) Sketch the current flow at time t = 0 and t = p/w, and determine
the charge density r(t, r). Show that it corresponds to an oscillating electric
dipole, and determine the electric dipole moment.

b) In the long wavelength limit, and in the radiation zone, determine each of
the following quantities in the xz plane at y = 0 :

(a) (6 points) The vector potential A(t, r) in the Lorentz gauge.

(b) (4 points) The magnetic field B(t, r).

(c) (4 points) The (time averaged) angular distribution of the radiated power,
dP/dW.

c) (2 points) What is the polarization of the radiated electric field when viewed
along the z axis ?
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Solution

We use Heavyside-Lorentz units.

a) Using current conservation, ∂tr +r · J = 0 and a harmonic time depen-
dence, r(t, r) = e�iwtr(r),

� iwr(r) = �r · J(r) = �
1
R

∂

∂f
Jf . (1)

Thus
r(r) = �

Io cos f

�iwR
d(z)d(r � R) (2)

Note, the charge distribution gives rise to a net dipole moment

p =
Z

d3rr(r)r =
IoR
�iw

(�px̂) (3)

pointed along the negative x̂ direction. If this is recognized then the remain-
der of this problem is just quoting the results of the electric dipole radiation.

b) a) In the dipole approximation we have

A(t, r) =
e�iwt+ikr

4pr

Z
d3r0 J(r0)/c

=
e�iwt+ikr

4pr

Z
rdrdfdz f̂ (I0/c) sin f d(r � R)d(z) . (4)

With f̂ = � sin fx̂ + cos fŷ we obtain

A(t, r) =
e�iwt+ikr

4pr
R(I0/c)p (�x̂) , (5)

=
e�iwt+ikr

4pr
�iw

c
p (6)

b) Then

B = r⇥ A , (7)

= n ⇥
1
c

∂

∂t
A(t, r) , (8)

=
e�iwt+ikr

4pr
(n ⇥�x̂)(�ikR)(I0/c) (9)

=
e�iwt+ikr

4pr
cos q(�ŷ)(�ikpR)(I0/c) (10)
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c) The radiated power is

dP
dW

=
c
2

Re(r2n · (E ⇥ B⇤)) . (11)

With E = �n ⇥ B, we have

n · (�n ⇥ B)⇥ B⇤ = |B|2 , (12)

and

dP
dW

=
c
2

r2
|B|2 (13)

=
c

32p2 cos2 q (pkRI0/c)2 (14)

It is perhaps useful to convert to MKS units:

I0
c

!
p

µo I (15)

c !
1

p
µoeo

(16)

and using
p

µo/eo = 376 Ohm we find

dP
dW

= 376 Watts
✓

I0
amps

◆2 (kR)2

32
cos2 q (17)

c) Since the magnetic field is in the �ŷ direction, for light propagating along
the z axis the electric field is in the �x̂ direction, i.e. along the direction of
the dipole moment.
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Electromagnetism 3

Parameters of an electron tube

Consider an idealized electron tube (diode) consisting of infinite planar cathode
and anode separated by a distance D in the z direction (see below). The cathode
(at z = 0) may be regarded as an infinite supply of free electrons at rest. The
anode (at z = D) is at potential +V relative to the cathode. (V is sufficiently small
that Newtonian physics applies.) The device is evacuated, so that only electrons
are between the two electrodes. The current through such a device is determined
by the flow of the charge of these electrons from the cathode (z = 0) to the anode
(z = D).

D

+V

0

a) (10 points) Use Poisson’s equation, the equation of continuity, and the con-
servation of energy to derive a differential equation for the electric potential
F(z) in steady state. Make sure you have the sign correct, and state the
boundary conditions explicitly.

b) (6 points) Find F(z) and use it to determine the current density J as a func-
tion of the parameters of the problem and physical constants. Hint: Try a
scaling solution of the form F(z) µ zb.

c) (4 points) Put in numbers for a centimeter-sized device and an anode poten-
tial of 300 volts to estimate the impedance typical of electron tube circuits.

Solution

a) Let v(z) = speed of electrons at distance c from the cathode.

Total energy of electron = mv(z)2/2 � eF(z) = 0, so v(z) = (2eF(z)/m)1/2.
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Continuity: Current density J = v(z)r(z) is constant, independent of z.

Poisson: r2F = �
r

e0
(1)

d2F
dz2 = +

|J|
e0v(z)

=


|J|
e0

r
m
2e

�
F(z)�1/2. (2)

Boundary conditions are F(0) = 0, F(D) = V. Note that there is no bound-
ary condition on dF

dz at z = 0.

b) Hypothesize a solution of the form F(z) = Azb.

d2F
dz2 = Ab(b � 1)zb�2 = KA�1/2b�1/2. (3)

(Here K is the factor in square brackets in equation 2.)

This works if b � 2 = �1/2, i.e., b = 4/3 and 4
9 A3/2 = K. The solution is

F(z) =
✓

9J
4e0

◆2/3 ⇣m
2e

⌘1/3
z4/3. (4)

The boundary condition that F(D) = V leads to

|J| =
4e0
9

r
2e
m

V3/2

D2 . (5)

c) To substitute units, insert a factor of c = 1/pµoeo, note that

mec2 = 0.5 MeV = 0.5 ⇥ 106 eV ,

and recall that
p

µo/eo = 376 W. We find (using (e · V = 300 eV)

|J| =
4
9

✓
V

376 W

◆
1

D2

r
2e · V
mc2 (6)

= 121
Amps
meter2

✓
V

300 Volts

◆3/2 ⇣cm
D

⌘2
(7)

So taking the plate area to be 1 cm2

V
I

= 1.59 ⇥ 376 W

r
mc2

e · V
D2

Area
(8)

= 25000 W
r

300 Volts
V

✓
D2/Area

1

◆
(9)
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