Midterm, PHY 505, March 26, 2021, 8.00-8.55

- 1. The questions in this problem should be answered in no more than a couple of lines.
 - a. What is the magnetic field corresponding to the vector potential $\vec{A} = B_0(y, x, 0)$? Explain your result.
 - b. What is the surface charge density of a capacitor filled with a medium with dielectric constant ϵ and potential difference of V? The distance of the plates is a.
 - c. Using that $\vec{B} = \frac{q}{c}\vec{v} \times \vec{r}/r^3$ show that \vec{B} is a pseudovector.

2. Consider a spherical shell with radius b and surface charge distribution $\sigma = \sigma_0(\cos\theta + \frac{1}{2}\sin\theta\cos\phi)$. Find the electric potential for r > b and r < b.

3. Consider a nonconducting charged hollow cylinder with radius b that rotates with angular frequency ω about its axis. The surface charge density is σ .

- a. What is the electric field for r < b and r > b?
- b. What is the magnetice field for r < b and r > b.
- c. What is the energy per unit length of the electric field and of the magnetic field (the energy density of the magnetic field is obtained by replacing $\vec{E} \rightarrow \vec{B}$ in the energy density of the electric field)?