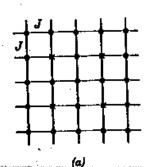
Migdal-Kadanoff approximation. Consider a two-dimensional Ising model on a square lattice without external field:

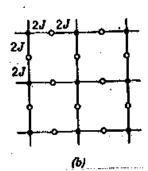
$$E(s) = -J \sum_{\langle i,j \rangle} s_i s_j$$

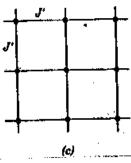
The Migdal-Kadanoff approximation consists of two steps, illustrated in the sketches. First, the sites marked by an \times in sketch (a) are removed. To compensate for this, the remaining bonds are doubled in strength, so that the Hamiltonian becomes

$$E(s) = -2J\sum_{\langle l,j\rangle}' s_l s_j$$

where the prime indicates that this Hamiltonian is defined on the lattice shown in sketch







(a) Make a renormalization-group transformation by summing over the spins on the sites indicated by open circles in sketch (b), to end up with the lattice of sketch (c). Show that one obtains a nearest-neighbor Ising model on the new lattice, with Hamiltonian

$$E'(s) = -J' \sum_{\langle i,j \rangle} s_i s_j$$

such that the partition differs from the original one by only a constant factor. Put kT = 1. Defining x = 2J, x' = 2J', derive the recursion relation

$$x' = \frac{1}{2}(x^2 + x^{-2})$$

(b) Recall that in the one-dimensional Ising model the first points are trivial ones at $x^* = 0^0$ and $x^* = 1$. Show that in addition to these, there is a new fixed point. Expanding x' in its neighborhood, show

$$x' - x^* = \left(x^* - \frac{1}{x^{*3}}\right)(x - x^*)$$

Show that the new fixed point is unstable.

(c) Calculate the exponent ν in terms of x^* .