
1 Homework 2, due February 19, 2020

The Hamiltonian of this problem is the nearest neighbor Ising model

H = −κ
2

∑
〈ij〉

SiSj −H
∑
i

Si, (1)

where the sums run over all N spins.
a) Explain that you cannot just use the Hubbard-Statonovich transformation as you did last
week, and argue that you need a redifinition of the zero of energy.
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with A a real symmetric positive definite matrix and B a vector.
c) Use this identity to show that
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d) Calculate the integral by a saddle point approximation with solution χ̄k and show that
the magnetization at site k is given by

mk = tanh βχk. (5)

e) Show that the mean field value of S is given by
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f) Calculate the mean field approximation to the Gibbs free energy from the Legendre trans-
form

Γ(mi) = S̄ +
∑
i

Hi(mi)mi, (7)

and show that the equation of state is given by

Hi =
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∂mi

. (8)


