Solutions of HW 9

1. Consider

$$
S_{N}(x, y)=\sum_{k=0}^{N-1}(x-y) T_{k}(x) T_{k}(y)
$$

we have recursion $\times T_{n}=b_{n} T_{n+1}+a_{n} T_{n}$

$$
+b_{n-1} T_{n-1}
$$

$$
\begin{aligned}
& S_{N}(x, y)=(x-y) T_{N-1}(x) T_{N-1}(s)+S_{N-1}(x, y) \\
&=\left(b_{N-1} T_{N}(x)+a_{N-1} T_{N-1}+b_{N-2} T_{N-2}(x)\right) T_{N-1}(y) \\
&-T_{N-1}(x)\left(b N-1 T_{N}(y)+a_{N-1} T_{N-1}(y)+b_{N-2} T_{N-2}(y)\right) \\
&+b_{N-2}^{\prime}\left(T_{N-y}(x) T_{N-2}(y)-T_{N-2}(x) T_{N-1}(y)\right) \\
& \text { if } b_{N-L}=b_{N-L} \\
&= b_{N-1}\left(T_{N}(x) T_{N-1}(y)-T_{N-1}(x) T_{N}(s)\right)
\end{aligned}
$$

2) 2.12 of 6 s
a)

$$
\begin{aligned}
\frac{\pi\left(\xi_{n}\right)}{\xi_{n}-\xi_{\nu}} & =0 \text { for } \mu \neq \nu \\
& =\Pi^{\prime}\left(\xi_{n}\right) \text { for } u=\nu
\end{aligned}
$$

3) Polynomial oviNe defines uniquer which an hero by N parameters which an he cero
c)

$$
\begin{aligned}
& E_{N-1}(x)=P_{N}(x) \underbrace{Q(x)}_{\text {order-1 }}+R(x) \text { order } N-1 \\
& \text { just division of } f_{2 N-1} \text { by } P_{N}
\end{aligned}
$$

a) $f_{2 r-1}\left(x_{0}\right)=P_{N}\left(x_{0}\right) Q\left(x_{2}\right)+R\left(x_{21}\right.$ y
e)

$$
\begin{aligned}
& \int F(x)^{w(x)} d x=\int_{\hat{a}}^{b} w(x)^{1} R_{(x)} \\
& \text { orthogonality }
\end{aligned}
$$

we $\operatorname{Pr}(x)$ for $H(x)$ in a

$$
=\int_{\omega}^{b} f_{i x-1}\left(x_{\nu}\right) \frac{P_{N}(x)}{P_{N}\left(x_{\nu}\right)\left(x-x_{\nu}\right)}=\sum_{\nu=1}^{N} w_{\nu} f\left(x_{\nu}\right)
$$

3.

:= FullSimplify[D[D[HermiteH[n, x]*Exp[-x^2/2], x], x], x * HermiteH $[-1+n, x]==1 / 2 * \operatorname{HermiteH}[n, x]+(n-1) \operatorname{HermiteH}[n-2, x]]$ $]=e^{-\frac{x^{2}}{2}}\left(-1-2 n+x^{2}\right) \operatorname{HermiteH}[n, x]$

