1. a) There is one eigenvector $(0,0,0)$ which cmnot be normalised So V^{-1} does not exist for diagonalization $A=V^{-1} \Lambda V$
b) The matrix is not diag zonalizuble $a_{0} 1+a_{1} A+a_{2} A^{2}=0$ only was the solution $a_{0}=a_{1}=a_{2}=0$. So. the minimum over polynomial equation is of $3^{r x}$ order.
It $5: \quad \mathbb{1}+-\frac{1}{4} A+\frac{1}{50} A^{2}-\frac{1}{2000} A^{3}=0$ the roots of $1-\frac{1}{4} x+\frac{1}{50} x^{c}-\frac{1}{2000} x^{3}=0$ are given $\operatorname{lng}_{\mathrm{y}} \quad x=10,10,20$,
They are repented, so the matritin not diagonalizabee
c) The Jor arm canonical form: given $B_{y} A_{y}=\left(\begin{array}{ccc}10 & 1 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 20\end{array}\right)=V^{-1} A V$

$$
\begin{aligned}
& \Rightarrow A V=V^{+1} \text { Ar } \quad \text { eco } V=\left(v_{1}, v_{2}, v_{1}\right) \\
& A\left(v_{1}, v_{2}, v_{z}\right)=\left(v_{1}, v_{2}, v_{3}\right)\left(\begin{array}{ccc}
10 & 1 & 0 \\
0 & 10 & j \\
0 & 0 & 2
\end{array}\right)=\binom{10}{10}, v_{1}+10 v_{2}, \\
& \left.\Rightarrow \begin{array}{l}
A v_{1}=10 v_{1} \\
A v_{2}=v_{1}+10 v_{2}
\end{array}\right\} \begin{array}{l}
\left.(A-10 \mathbb{1}) v_{1}\right)=0 \\
(A-10 \mathbb{1}) v_{2}=v_{1}
\end{array} \\
& \begin{array}{ll}
A v_{2}=v_{1}+10 v_{2} & (A-101) v_{1}=0 \\
A v_{3}(A-101)^{2}
\end{array} \\
& \Rightarrow V \left\lvert\,=\left(\begin{array}{ccc}
-1 & 1 & -3 \\
-3 & 0 & 1 \\
2 & 0 & 6
\end{array}\right) \quad(A-101)^{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=0\right.
\end{aligned}
$$

2. $f_{n}(x)=x+\frac{x^{L}}{n}$
c) Does not comerye uniformly, on \mathbb{R}
b) On $[-2,2]$ then $\left|F_{n}(x)-x\right|=\frac{x^{2}}{n}<\varepsilon$ if $n>\frac{4}{\varepsilon}$.
c) $\left|f_{n}(x)-f_{m}(x)\right|=x^{2}\left|\frac{1}{n}-\frac{1}{m}\right|$
not a Coaly sequence on \mathbb{R} but ~ Caky sequence on $[-2,2]$ then $n>\frac{4}{\varepsilon}$ and $m>\frac{4}{\varepsilon}$

$$
\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon
$$

3. $\quad f_{h}(x) \rightarrow f(x)$ on $[a, b]$ uniformely

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) \stackrel{?}{=} \int_{a}^{b} f(x) d x
$$

We lock at $\int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x$
$\forall \varepsilon, \exists N$ snot that $f_{n}(x)-f(x) \mid<\varepsilon$ on $[a, b]$

$$
\begin{aligned}
& \forall \varepsilon, \exists N \text { shot that } \mid f_{n}(x)-5(x) 1<(b-a) \varepsilon \text { for } n>N \\
& \Rightarrow \int_{n}^{b}\left|f_{n}(x)-f(x)\right|<(x)-f(x) \mid d
\end{aligned}
$$

and $\int_{a}^{b}\left(f_{n}(x)-f(x)\right) d x<\int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x$ $<\varepsilon(b-a)$ for $>^{n} N$

