1. of $H=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$. Solutions of HW5

$$
\begin{aligned}
& H=(c b \\
& \gamma C H+H
\end{aligned}+\binom{A B}{-C-b}+\left(\begin{array}{cc}
A-B \\
C & -D
\end{array}\right)=0
$$

if $H \psi \quad \lambda \neq 0 \quad(\epsilon, \neq)=1$
then $1+\gamma_{5} \phi=\cdots,-\gamma_{5} H \phi$

$$
=-\lambda \gamma_{5} \phi
$$

$\Rightarrow \gamma 5 \phi$ is eigenvector with eigenvalue

$$
\left(\gamma_{5} \phi, \gamma_{5} \phi\right)=(\phi, \phi)=1
$$

so it can be nor malized
when $\lambda=0$ we have that γ_{5} 中 is so it is not a new eigenvector

SOLUTIONS OF HW5

a) $\operatorname{det} A=2$
2. b) $\operatorname{Adjg} A=\left(\begin{array}{ccc}5 & -3 & 1 \\ -3 & 3 & -1 \\ 1 & -1 & 1\end{array}\right)$
c) $A^{-1}=\frac{1}{2} A \operatorname{dg}(A)$
3. You have to do this yourself using Mathematica

