1.

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 10} \int \frac{1}{x+i \varepsilon} \varphi(x) d x=\lim _{\Sigma-10} \int \frac{x-i \varepsilon}{x^{2}+\varepsilon^{2}} \varphi(x) d x \\
& =\lim _{\varepsilon \rightarrow 0} \int \frac{x}{x^{2}+\varepsilon^{2}} \varphi(x)-\lim _{\varepsilon \rightarrow 0} i=\frac{(\varphi(0)+x \varphi(0))}{x^{2}+\varepsilon^{2}}+\cdots \\
& =\lim _{\varepsilon \rightarrow 0} \lim _{\delta \rightarrow 1}\left[\int_{-\infty}^{\delta}+\int_{\delta}^{\delta} \int_{x^{2}+i^{\prime}}^{\infty} \varphi(x) d x \text { terms higher or her for } \varepsilon \rightarrow 0\right. \\
& \left.+\int_{-8}^{\delta} \frac{x}{x^{2}+\varepsilon^{2}} \varphi(x) d x\right]-i \int \frac{\varepsilon d x}{x^{2}+\varepsilon^{2}} \mathscr{f}(0) \\
& \begin{array}{l}
\because\left(\frac{\delta^{3}}{e^{2}}\right) \rightarrow 0 \\
\text { (take } \delta \rightarrow 0 \text { first }
\end{array}
\end{aligned}
$$

on siderchany $\lim _{\delta \rightarrow 0}$ and $\sum_{i \rightarrow 0}$
$\Rightarrow P\left(\frac{1}{x}\right)-\pi i \delta(x)$

Solutions of Itrmework set \#7
3.1 a) $y_{1}=u(x)$ is solution of $g^{\prime \prime}+V(x) y=0$

Trial solution $y=u$ -

$$
\begin{aligned}
y^{\prime} & =u^{\prime} v+u v^{\prime} \\
y^{\prime \prime} & =u^{\prime \prime} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime} \\
& =-v v^{0} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}
\end{aligned}
$$

diff. aq; - $v u^{2} v+2 u^{\prime} v^{\prime}+u v^{\prime \prime}+V y v=0$

$$
\begin{aligned}
& \Rightarrow 2 u^{\prime} v^{\prime}+u v^{\prime \prime}=0 \\
& \Rightarrow 2 \frac{u^{\prime}}{u}=-\frac{v^{\prime \prime}}{v^{\prime}} \\
& \Rightarrow 2 \frac{d \log u}{d x}=-\frac{d \log v^{\prime}}{d x} \\
& \Rightarrow \log u^{2}=\log \left(v^{\prime}\right)^{-1}+c^{\prime}
\end{aligned}
$$

$$
\text { or } u^{2}=\frac{c}{v^{\prime}} \Rightarrow
$$

$$
\begin{aligned}
& \text { or } u=\frac{c}{v^{\prime}} \Rightarrow v=\int \frac{c}{u^{2}} d x^{\prime} \\
& \frac{d v}{d x}=\frac{c}{u^{2}} \Rightarrow u^{2}=u(x) \int_{c}^{x}
\end{aligned}
$$

\Rightarrow second solution $y_{2}^{2}=u(x) \int_{x}^{x} \frac{c}{u^{2}(x)} d x^{\prime}$
Wronskion

$$
\left|\begin{array}{ll}
y_{1}, y_{4} \\
y_{i}^{\prime} y_{L}
\end{array}\right|=\left|\begin{array}{ll}
u & u \int^{x} \frac{c d x}{u^{2}} \\
u^{\prime} & u^{\prime}-j^{x} \frac{d x}{u^{2}}+\frac{c}{u}
\end{array}\right|
$$

$$
=u u^{\prime} S^{x} \frac{d x}{u^{2}}+c=0 \text {, bat then } y
$$

only vamilhs if $c=0$, bat then $y_{2}=0$ which is the trivia solution
3.15
or, $y_{2}=c$

$$
\begin{aligned}
& \Rightarrow \quad y_{1}^{\prime \prime}+2 y_{1}^{\prime} y_{2}^{\prime}+y_{2}^{\prime \prime}=0, \quad y_{1}^{\prime} y_{2}+y_{1} y_{2}^{\prime}=0 \\
& -p_{1} y_{1}^{\prime}-p_{2} y_{1}+2 y_{1}^{\prime} y_{2}^{\prime}-p_{1} y_{2}^{\prime}-p_{2} y_{2}=0
\end{aligned}
$$

whonskien

$$
\begin{aligned}
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right| & =y_{1} y_{2}-y_{2} y_{1}^{\prime} \\
& =y_{1} y_{2}^{\prime}+y_{1} y_{2}^{\prime} \\
& =2 y_{1} y_{2}^{\prime}
\end{aligned}
$$

$$
\frac{d W}{d x}=-\frac{p_{1}}{p_{0}} W=-p_{1} w
$$

$$
\Rightarrow 2 y_{1}^{\prime} y_{2}^{\prime}+2 y_{1}^{\prime} y_{2}^{\prime \prime}=-p_{1} 2 y_{1} y_{2}^{\prime}
$$

$$
\Rightarrow \quad g_{1}^{\prime} y_{2}^{\prime}+y_{1}\left(-p_{1} y_{2}^{\prime}-p_{2} y_{2}\right)=-p_{1} y_{1} y_{2}^{\prime}
$$

$$
\Rightarrow y_{1}^{\prime} y_{2}^{\prime}-p_{2} y_{1} y_{2}=0
$$

$$
\Rightarrow \quad y_{1}^{\prime} y_{2}^{\prime}=p_{2} \subset
$$

$$
\Rightarrow \quad y_{1}^{\prime \prime} y_{2}^{\prime}+y_{1}^{\prime} y_{2}^{\prime \prime}=p_{2}^{\prime} c
$$

$$
\Rightarrow\left(-p, y_{1}^{\prime}-p_{2} y_{1}\right) y_{2}^{\prime}+y_{1}^{\prime}\left(-p_{1} y_{2}^{\prime}-p_{2} y_{2}\right)=p_{2}^{\prime} c
$$

$$
\Rightarrow \quad-p_{1}\left(y_{1}^{\prime} y_{2}^{\prime}\right)^{2}-p_{2}\left(y_{1} y_{2}^{\prime}+y_{1}^{\prime} y_{2}\right)=p_{2}^{\prime} c
$$

$$
\Rightarrow-r_{1} p_{2} 2 c-p_{2} 0=p_{2}^{\prime} c
$$

$$
\Rightarrow \quad 2 p_{1} p_{2}=p_{2}^{\prime}
$$

3.1 c

$$
\begin{aligned}
& y^{\prime \prime}+\frac{x}{(x+1)^{2} x^{2}} y^{\prime}-\frac{(x+1)}{x^{2}} y=0 \\
& \Rightarrow p_{1}=\frac{1}{x(x+1)} \quad p_{2}=\frac{(x+1)^{2}}{x^{2}} \\
& p_{2}^{\prime}=\frac{2(x+1)}{x^{2}}+\frac{2(x+1)^{2}}{x^{3}}=\frac{-2(x+1)}{x^{2}}\left(1-\frac{(1+x)}{x}\right. \\
& \leq 2 \frac{(x+1)}{x^{3}}=-2 p_{1} p_{2} \\
& \frac{d W}{d x}=-\frac{p_{1}}{p_{0}} W=-\frac{W}{x(x+1)} \\
& \Rightarrow \frac{d W}{W}=-\frac{d x}{x(x+1)}=d x\left(-\frac{1}{x}+\frac{1}{x+1}\right) \\
& =d(\log (x+1)-\log x) \\
& \Rightarrow W=c \frac{x+1}{x} \\
& \Rightarrow \quad y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=c \frac{x+1}{x}
\end{aligned}
$$

Slice the condition of bis satiffie, let as hook for solutions un il $y_{1} y_{2}=c_{2}$

$$
\begin{aligned}
& \Rightarrow y_{2}=\frac{c_{2}}{y_{1}} \quad y_{2}^{\prime}=-\frac{c_{2}}{y_{1}} y_{1} 1 \\
& \Rightarrow y_{1}\left(-\frac{c_{2}}{y_{1}^{2}} y_{1}^{\prime}\right)-\frac{c_{2}}{y_{1}} y_{1}^{\prime}=c \frac{x+1}{x} \\
& -\frac{c_{2} g_{1}^{\prime}}{y_{1}} \\
& -2 c_{2} \frac{d}{d x} \log y_{1}=c\left(\frac{c x+1}{x}\right)
\end{aligned}
$$

(3)
$\left(-\frac{d^{2}}{d x^{2}}+4 x^{2}\right) y=$

$$
\begin{aligned}
& y=e^{-x^{2}} \rightarrow \frac{d y}{d x}=-2 x e^{-x^{c}} \\
& \Rightarrow\left(-\frac{d^{\prime} y}{d x^{2}}=-2 e^{-x^{2}}+4 x^{2} e^{-x^{2}}\right. \\
& \Rightarrow\left(\frac{-x^{2} y}{d x^{2}}\right) y=2 e^{-x^{2}}=2 y \\
& \Rightarrow\left(4 x^{2}-2\right) y=0 \\
& \Rightarrow e_{0}=1 \quad P_{1}=0, \quad P_{2}=4 x^{c}-1
\end{aligned}
$$

$\Rightarrow \frac{d w}{d x}=0 \Rightarrow$ Wronskian dves not depend on X

Solutions $y_{i}=e^{-x^{c}}$ an y_{2}
$W=$ constant W

$$
\begin{aligned}
& \text { oustant w}-x^{2}\left(2 x y_{2}+y_{2}^{\prime}\right) \\
& \Rightarrow+w=e^{-x^{2}-x^{4} d e^{x^{2}} y_{2}}
\end{aligned}
$$

$$
\begin{aligned}
v & =e \\
& =e^{-x^{2}} e^{-x^{2}} \frac{d}{d x} e^{x^{2}} y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=e e^{2} d x \\
& \Rightarrow \frac{d}{d x} e^{x^{2}} y_{2}=w e^{2 x^{2}} \\
& \left.\int_{2} x^{2} d y\right) e^{-x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d}{d x} e^{x} y_{2}=w e \\
& \Rightarrow y_{2}=\left(c+\int_{e^{2}}^{x^{2}} d y\right) e^{-x^{2}} \\
& =\left(\int_{e^{2} y^{2}} d y\right) e^{-x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(c+\int_{x_{0}} e^{2} d y\right) e^{-x^{2}} \\
& =\left(\int_{2}^{2} d y\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y_{2}}{d x}=q^{x^{2}}+\left(\int_{x_{0}}^{x} e^{p y} d y\right)(-2 x) e^{-x^{2}} \\
& \frac{d^{2} y_{2}}{d x^{2}}=2 x e^{2}+2 x e^{+x^{-}}+\int_{x^{2}}^{x} e^{2-x} d y(-2) e^{-x^{2}} \\
& +\int_{x_{0}}^{x_{2 y}} e^{2} d y\left(+4 x^{L}\right) e^{-x^{\prime}} \\
& \begin{aligned}
= & -x x^{2}-2 y_{2}+4 x^{2} y_{2} \\
& +y^{2}
\end{aligned} \\
& =\left(4 x^{2}-2\right) y_{2}
\end{aligned}
$$

