Homework Set 5. Due Friday September 30 at 10.30 am

1. If $\gamma_{5}=(\underbrace{1, \cdots 1}_{m}, \underbrace{-1, \cdots,-1}_{n}$ and

$$
\begin{equation*}
H \gamma_{5}+\gamma_{5} H=0 \tag{1}
\end{equation*}
$$

show that the Hermtian matrix H is of the form

$$
H=\left(\begin{array}{cc}
0 & C \tag{2}\\
C^{\dagger} & 0
\end{array}\right)
$$

with C a $m \times n$ matrix. Also show that the nonzero eigenvalues occur in pairs $\pm \lambda$ and relate the eigenvectors corresponding to this pair of eigenvalues.
2. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \tag{3}\\
1 & 2 & 1 \\
0 & 1 & 3
\end{array}\right)
$$

a) Calculate $\operatorname{det} A$.
b) Calculate the adjugate matrix of A.
c) Use this to find A^{-1} and check that $A A^{-1}=1$.
3. This is a numerical problem. Using Mathematica construct an ensemble of 1000100×100 Hermitian random matrices with probability distribution

$$
\begin{equation*}
P(H)=c e^{-N \operatorname{Tr} H^{2}}, \quad N=100 \tag{4}
\end{equation*}
$$

a) Make a histogram of the eigenvaliues.
b) Show that the histogram is fitted by a $\sqrt{R^{2}-x^{2}}$. What is the value of R ? c) What is the area below the curve? Interpret the number.

