1. Consider the matrix

$$\left(\begin{array}{cc}
a & b\\
\lambda a & \lambda b
\end{array}\right)$$
(1)

- a) Calculate $\ker(A)$.
- b) Calculate Im(A).
- c) Calculate ker $(A)^{\perp}$ d) Is $\mathcal{R}_2 = \ker(A) + \operatorname{Im}(A)$? Is $\mathcal{R}_2 = \ker(A) + \ker(A)^{\perp}$? Is $\operatorname{Im}(A) = \ker(A)^{\perp}$?

2. Show that for $n \times n$ matrices a, b, c and d

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \det d \det(a - bd^{-1}c)$$
⁽²⁾

3. Consider the matrix

$$H = \begin{pmatrix} 0_m & C \\ C^{\dagger} & 0_n \end{pmatrix}$$
(3)

with C a $m \times n$ matrix and 0_k a $k \times k$ matrix of zeros. a) Calculate the kernel of H. Hint: consider first the case m = 2 and n = 1.

b) What is the rank of H?