Homework Set 4. Due Friday September 23 at 10.30 am

1. Consider the matrix

$$
\left(\begin{array}{cc}
a & b \tag{1}\\
\lambda a & \lambda b
\end{array}\right)
$$

a) Calculate $\operatorname{ker}(A)$.
b) Calculate $\operatorname{Im}(A)$.
c) Calculate $\operatorname{ker}(A)^{\perp}$
d) Is $\mathcal{R}_{2}=\operatorname{ker}(A)+\operatorname{Im}(A)$? Is $\mathcal{R}_{2}=\operatorname{ker}(A)+\operatorname{ker}(A)^{\perp}$? $\operatorname{Is} \operatorname{Im}(A)=\operatorname{ker}(A)^{\perp}$?
2. Show that for $n \times n$ matrices a, b, c and d

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \tag{2}\\
c & d
\end{array}\right)=\operatorname{det} d \operatorname{det}\left(a-b d^{-1} c\right)
$$

3. Consider the matrix

$$
H=\left(\begin{array}{cc}
0_{m} & C \tag{3}\\
C^{\dagger} & 0_{n}
\end{array}\right)
$$

with C a $m \times n$ matrix and 0_{k} a $k \times k$ matrix of zeros.
a) Calculate the kernel of H. Hint: consider first the case $m=2$ and $n=1$.
b) What is the rank of H ?

