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1 Random Matrix Theory

1.1 Introduction

We start with the simplest random matrix theory which is the Gaussian Unitary Ensemble. The

probability density of this ensemble of Hermitian N ×N matrices is given by

P (H)DH = N e−
Nβ
4

TrH†HDH. (1)

The Dyson index β denotes the number of degrees of freedom per matrix element. For a

Hermitian matrix we have β = 2. For a real symmetric matrix, β = 1 and for a self-dual

quaternian matrix, we have β = 4. This ensemble has a large symmetry: the probability

distribution is invariant under

H → UHU−1 (2)

with U a N ×N unitary matrix. This invariance is the reason for the simplicity and solvability

of this model.

The first property is that the probability distribution of the eigenvalues and eigenvectors

factorizes, i.e. if

H = UΛU−1 (3)

with Λ the diagonal matrix containing the eigenvalues, the probability distribution can be written

as

P (H)dH = PΛdΛP (U)U−1dU. (4)

To see this, we have to calculate the Jacobian from dH to U−1dU (the factor U1 guarantees

that the measure is invariant under U → V U and U → UV . So U−1dU is the Haar measure.)

Excercise. Proof that the Jacoian of the transformation δU → V δUV −1 is 1. Hint: Write the

determinant as a sum over permutations.

For the same reason, the Jacobian dH → U−1dHU is also one, and

dH ′ = UdHU−1 = U−1dUΛU + dΛ− ΛU−1dU. (5)

Note that U−1dU is anti-Hermitian,

(U−1dU)† = dU−1U = −U−1dU. (6)

So U−1dU has N2 degrees of freedom, the same number as the Hamiltonian. For k 6= l we have

δH ′kl
U−1dU kl

= Λk − Λl,

δH ′kl
δΛ k

= 0,

δH ′kk
U−1dU kl

= 0,

δH ′kk
δΛ k

= 1.

(7)
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The Jacobian is this given by

J =
∏
k<l

(λk − λl)2, (8)

resulting in the joint probability distribution of the eigenvalues

P (H)dH =
∏
k<l

(λk − λl)2e−
Nβ
4

∑
k λ

2
kU−1DU. (9)

We already see that the probability to find two degenerate eigenvalues is zero, while the proba-

bility goes to zero as the square of the distance between the eigenvalues. This property is known

as level repulsion. We also see that the eigenvectors are distributed uniformely over the Haar

measure.

The Jacobian is known as the vanderMonde determinant. It can be written as

∆(xk) =
∏
k<l

(xk − xl) =

∣∣∣∣∣∣∣∣∣
1 · · · 1
x1 · · · xN
...

...

xN−1
1 · · · xN−1

N

∣∣∣∣∣∣∣∣∣ . (10)

This allows us to add multiples of rows to a given row such that the determinant is expressed in

terms of monic orthogonal polynomials with respect to the weight function exp(−Nβ/8x2. This

makes it possible to perform the integration by using orthogonality relations, which is the basis

of the orthogonal polynomial method. We will discuss this in more detail later in the lecture.

We will first calculate the average spectral density corresponding to the the joint probability

distribution (9). There are many ways to do this, but let us determine the large N average level

density from a mean field argument. We consider the eigenvalues as particles in one dimension

with the eigenvalues identified as the positions of the partions. The action is thus given by

N

2

∫
ρ(x)x2 −

∫ ∫
dxdyρ(x)ρ(y)| log(x− y)|+ C

∫
dxρ(x), (11)

where we have added the last term because of the constraint that the eigenvalue density ρ(x) is

normalized. In the large N limit, the density is determined by the minimum of the action, and

is thus given by

N

2
x2 −

∫
dyρ(y) log |x− y| = C. (12)

By differentiation with respect to x we obtain

Nx = P

∫
dy

x− y
ρ(y), (13)

where the integral has to be interpreted and a principal value integral. The solution is given by

ρ(x) = Nπ
√

2− x2. (14)

This is the famous semi-circular spectral level density of random matrix theory.
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1.2 The Orthogonal Polynomial Method

Let us rescale the eigenvalues such that the joint probability distribution is given by

ρ(x1, · · · , xN ) = |∆({xk})|2e−N
∑N
k=1 V (xk) (15)

The simplest cases is the GUE with V (x) = x2. However, since a general potential does not

complicate the expressions, we will derive our results for arbitrary V (x). The Vandermonde

determinant can be written as

∆({xk}) =

∣∣∣∣∣∣∣∣∣
1 · · · 1
x1 · · · xN
...

...

xN−1
1 · · · xN−1

N

∣∣∣∣∣∣∣∣∣ . (16)

By the addition of multiples of rows of lower order which do not change the determinant, each

of the rows can be expressed in terms of orthogonal polynomials with respect to the weight

function exp(−V (x)), i.e.

∆({xk}) = N

∣∣∣∣∣∣∣∣∣
p0(x1) · · · p0(xN )
p1(x1) · · · p1(xN )

...
...

pN−1(x1) · · · pN−1(xN )

∣∣∣∣∣∣∣∣∣ . (17)

The orthogonal polynomials are defined by∫ ∞
−∞

dxe−NV (x)pk(x)pl(x) = δkl. (18)

For the GUE the corresponding orthogonal polynomials are the Hermite polynomials. The

normalization constant arises because in general the polynomials are not monic. It can be

determined from the overall normalization of the distribution function.

It is convenient to introduce wave-functions defined by

ϕk(x) = pk(x)e−NV (x)/2. (19)

The joint probability distribution can then be written as

ρ(x1, · · · , xN ) = N

∣∣∣∣∣∣∣
ϕ0(x1) · · · ϕN−1(x1)

...
...

ϕ0(xN ) · · · ϕN−1(xN )

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣

ϕ0(x1) · · · ϕ0(xN )
...

...
ϕN−1(x1) · · · ϕN−1(xN )

∣∣∣∣∣∣∣ . (20)

By multiplying the two determinants, we find that joint eigenvalue distribution can be expressed

as

ρ(x1, · · · , xN ) = N det
ij

[K(xi, xj)] (21)

where the kernel is defined by

K(xi, xj) =
N−1∑
k=0

ϕk(xi)ϕk(xj). (22)
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The kernel has the following elementary properties∫
K(x, x) = N,

∫
dyK(x, y)K(y, z) = K(x, z). (23)

The spectral density is obtained by integrating over all eigenvalues except one. Expressing

the determinant as a sum over all permutation of products of N matrix elements, one observes

that in each term each argument occurs twice. Performing the integrations by means of (23)

we arrive at the following expression for the spectral density (we choose the normaliztion factor

such that
∫
dxK(x, x) = N)

ρ(x) = K(x, x). (24)

Next we integrate over one of the eigenvalues, say x1. Writing the determinant as a sum

over permuations we obtain

ρ(x2, · · · , xN ) =

∫
dx1ρ(x1, · · · , xN )dx1∫

dx1

∑
σ

(−1)|σ|K(x1, xσ(1)) · · ·K(xN , xσ(N)). (25)

We can write the permuation as a product over cycles. If x1 is in a cycle of length 1, we obtain

N from the integral. What remains is the determinant of size N − 1. If x1 is in a longer cycle,

we get 1 from the integral. However the sign of the permutation changes giving a factor −1,

while N − 1 cycles give the same permutation of x2, cdots, xn. What remains is (1-N) times the

determinat of size N − 1. In total we thus find the determinant of length N − 1.

The two-point correlation function is obtained by integrating over all eigenvalues except two.

In this case one finds

R2(x, y) = −K(x, y)2 +K(x, x)K(y, y). (26)

Here, we have used that the total number of permutations for which 1 and 2 are in the same

cycle is the same of the total number of permutations with 1 and 2 in different cycles. This can

be seen as follows. In a cycle decomposition, a permutation with 1 and 2 in the same cycle can

be written as (1p2q)πr or (1q2p)πr for a sequence of numbers p and q and remaining cycles πr.

For 1 and 2 in different cycles we have the permutations (1p)(2q)πr and (1q)(2p)πr. From the

length of the cycles one immediately finds that the signature of the two groups of permutations

is opposite. It is also easy to see that the numerical factor for given p, q and πr is the same

is the two groups. This result determines (26) up to a overall constant. We observe that the

correlation function vanishes for x = y which also follows from the determinantal structure of

the correlation function.

To find the proportionality constant we notice that∫
dxR1(x)dx = N, (27)∫

dxdyR2(x, y) = N(N − 1), (28)

where the factor (N − 1) arise because all eigenvalues in the joint probability distribution are

necessarily different. The proportionality constant is thus as given in (26).
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2 The Resolvent

The resolvent plays an important role in random matrix theory. It is defined as

G(z) =

〈
Tr

1

z −H

〉
, (29)

where the brackets denote the average over the ensemble. For large z it can be expanded in a

geometric series as

G(z) =
∑
k

〈TrHk〉
zk+1

. (30)

The 〈TrHk〉 are known as the moments of the average eigenvalue density.

In terms of eigenvalues of H, the resolvent is given by

G(z) =

〈∑
k

1

z − λk

〉
. (31)

It is clear that G(z) is an analytic function of z except on the locus of the eigenvalues. The

spectral density is related to the resolvent as

rho(x) = lim
ε→0

1

2πi
[G(x+ iε)−G(x− i/epsilon)] (32)

This follows immediately from∫
dx

ε

(x− λ)2 + ε2
= δ(x− λ). (33)

2.1 Generalized Resolvents

Eynard [?] introduced generalized resolvents

W̄k(x1, · · · , xk) = Nk−2

〈
tr

1

x1 −M
1

x2 −M
· · · 1

xk −M

〉
. (34)

Topological expansion

W̄k(x1, · · · , xk) =

∞∑
h=0

N−2hW
(h)
k (x1, · · · , xk). (35)

2.2 Spectral Correlation Function

The two point correlation function is defined by

ρ2(λ, λ′) = 〈ρ(λ)ρ(λ′)〉 − 〈ρ(λ)〉〈ρ(λ′)〉. (36)

The correlation function ρ2(λ, λ′) includes a term in which the eigenvalues are equal, and

can thus be decomposed as

ρ2(λ, λ′) = δ(λ− λ′)〈ρ(λ)〉+R2(λ, λ′). (37)

The two-point correlation function satisfies the sum rule∫
dλρ2(λ, λ′) = 0, (38)

where the integral is over the complete spectrum.
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2.3 Unfolding

One frequently employs the integrated spectral density

N(E) =

∫ E

−∞
ρ(λ)dλ. (39)

Since N(E) jumps by one at the position of each eigenvalue, it is also know as the staircase

function,

Generally, the spectral density can be smoothened over a scale that is much larger than

the average level spacing. Let us denote the smoothened spectral density by ρ̄. Typically, ρ̄

depends on the specific properties of the system. Therefore one would like to eliminate this

dependence from the spectrum. This is achieved by the so-called unfolding procedure. The

unfolded spectrum is given by

λunf
k =

∫ λk

0
ρ̄(λ)dλ. (40)

One can easily verify that the average spacing of the unfolded sequence is equal to unity. To

compare the statistical properties of spectra to random matrix theory, it is essential to use

unfolded eigenvalues.

2.4 Number Variance

A convenient way to study the correlations of eigenvalues is to use the number variance. It is

the variance of the number of eigenvalues in a interval ∆E containing n̄ eigenvalues on average.

The actual number of levels in the interval is given by

n =

∫
∆E

ρ(x)dx, (41)

so that

n̄ =

∫
∆E
〈ρ(x)〉dx. (42)

The number variance is given by

Σ2(n̄) = 〈(
∫

∆E
〈ρ(x)〉dx)2〉 − 〈

∫
∆E
〈ρ(x)〉dx〉2

=

∫
∆E

dx

∫
∆E

dy [〈ρ(x)ρ(y)〉〈ρ(x)〉〈ρ(y)〉]∫
∆E

dx

∫
∆E

R2(x, y). (43)

We can easlily calculate the number variance for the first term in (37)

Σ2(n̄) =

∫
∆E
〈ρ(x)dx = n (44)

This is the result for the number variance in case the eigenvalues are uncorrelated.
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In the literature one also frequently uses the quantity Y2(λ, λ′) for the two-point correlation

function of the unfolded eigenvalues

Y2(λ, λ′) = −R2(λ, λ′), (45)

where the minus sign is conventional. If a smoothened average spectral density can be defined,

it is natural to expect that Y2 is translational invariant, i.e.,

Y2(λ, λ′) = Y2(λ− λ′). (46)

In that case, the number variance can be expressed as

Σ2(L) = L−
∫ L

0
(L− r)Y2(r)dr. (47)

2.5 The Spectral Form Factor

The spectral form factor is the Fourier transform of the two-point correlation function

K(τ) =

∫
dx

∫
dyeiτ(x−y)R2(x, y). (48)

For the first term in (37) we obtain

K(τ) =

∫
dx〈ρ(x)〉 = N. (49)

Because of the sum-rule (38), we have that

K(0) = 0. (50)

Because of the oscillatory exponent, the spectral form factor is very noisy which can be improved

by including a Gaussian cutoff ∼ exp(−(x− y)2/2/w2).

3 Average Spectral Density and Two-Point Correlator for the
GUE

In case of the GUE the potential is given by V (x) = x2. The corresponding orthogonal polyno-

mials are the Hermite polynomials. The correctly normalized wave functions are given by

N1/4√
2nn!
√
π
Hn(x)e−N

x2

2 . (51)

The spectral density is thus given by

ρ(x) =

N−1∑
n=0

√
N

2n
√
πn!

Hn(x
√
N)Hn(x

√
N)e−Nx

2
. (52)

This sum can be calculated exactly by means of the Christoffel-Darboux formula

N−1∑
n=0

Hn(y)Hn(y)

2nn!
=

1

2N (N − 1)!
[HN (y)HN (y)−HN−1(y)HN+1(y)]. (53)
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In the limit N →∞ we can use the asymptotic limit of the Hermite polynomials given by [?]

N1/4HN−k(x
√
N)e−N

x2

2

(2N−k(N − k)!
√
π)1/2

=

√ √
2

π sinφ
cos(N(φ− sin(2φ)/2)− (k − 1

2
)φ− π

4
) +O(1/N).

(54)

Here, cosφ = x/
√

2. This asymptotic result is valid for N → infty and k finite. If we use that

cosα cosα− cos(α+ β) cos(α− β) = sin2 β, (55)

we find for the spectral density to O(1/N)

ρ(x) =
N
√

2

π sinφ
sin2 φ =

N

π
(2− x2)1/2. (56)

We observe that the average spectral density has the shape of a semicircle, and is correctly

normalized to N .

Next we evaluate the two-point correlation function. In this case we use the Christoffel-

Darboux formula for different values of the argument

N−1∑
n=0

Hn(x)Hn(y)

2nn!
=

1

2N (N − 1)!

HN (x)HN−1(y)−HN−1(y)HN (x)

x− y
. (57)

We study the spectral correlation function in the microscopic limit, i.e. in the limit N → ∞
with (x− y)N fixed. Keeping only terms to leading order in 1/N we find for the kernel

K(x, y) =
1

π sinφ
[cos(Nζ(φ) + φ/2− π

4
) cos(Nζ(φ′)− φ/2− π

4
)

− cos(Nζ(φ′) + φ/2− π

4
) cos(Nζ(φ)− φ/2− π

4
)], (58)

where

ζ(φ) = φ− sin(2φ)/2, (59)

cosφ = x/
√

2, (60)

cosφ′ = y/
√

2. (61)

Using an addition formula for the goniometric functions we find

K(x, y) =
1

π sinφ

sin(Nζ(φ′)−Nζ(φ)) sinφ

x− y
. (62)

By inspection we find that the function ζ(φ) satisfies

dζ

dx
= −πρ(x)/N, (63)

where

ρ(x) =
N

π

√
2− x2. (64)
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In the microscopic limit x and y are close and we can make the approximation

Nζ(φ′) = Nζ(φ) +N(y − x)
dζ

dx
. (65)

For the kernel we thus find

K(x, y) =
1

π

sinπ(x− y)ρ(x)

x− y
(66)

The unfolded distance between two eigenvalues is given by

r = (x− y)ρ(x). (67)

This results in the unfolded two-point correlation function

Y2(r) =
sin2πr

π2r2
. (68)

The number variance is then given by

Σ2(n) = n− 2

∫ n

0
(n− r)Y2(r). (69)

The first terms of the r.h.s. cancels because
∫∞

0 drY2(r) = 1/2. The remaining integral is given

by

Σ2(n) =
1

π2
(log(2πn) + γ + 1), (70)

where the logarithmic dependence follows from the asymptotic behavior of Y2(r) (with sin2(πr)

replaced by its average).

Excercise 3.2. Show this result from the expression for the number variance given in lecture

1.

4 Classification of Random Matrix Theories

4.1 Unitary versus Anti-Unitary Symmetries

A symmetry in quantum-mechanics preserves the absolute value all scalar products of the system.

If U is a symmetry, then

|〈Uψ|Uφ〉| = |〈ψ|φ〉|. (71)

This give two possibilities

• 〈Uψ|Uφ〉 = 〈ψ|φ〉. In this case U is unitary.

• 〈Uψ|Uφ〉 = 〈ψ|φ〉∗ In this case U is anti-unitary.
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This is sometimes referred to a Wigner’s fundamental theorem [8].

For a Unitary symmetry U ,

[U,H] = 0, (72)

we can find a set of basis functions that diagonalize both H and and a commuting subset of the

generators Gi of U = expαkGg,

Hφkji = Ekφkji , Giφkji = gjiφkji , i = 1, · · · , p. (73)

In this basis, the Hamiltonian splits into blocks labeled by the quantum numbers gji . In random

matrix theory it is always assumed that the Unitary symmetries have been accounted exactly,

and we are considering an irreducible block of the Hamiltonian. And example is to consider all

states of a given spin and parity.

This leaves us with with the anti-unitarty symmetry. The best known anti-unitary symmetry

is time-reversal invariance, T . For integer spin this operators is given by complex conjugation

operator,

T = K, (74)

while for half-integer spin, it is equal to

T = Kσ2. (75)

A fundamental difference between these two cases is that

K2 = 1, (Kσ2)2 = −1. (76)

More generally an anti-unitary symmetry operator is given by AK with A a unitary symmetry.

We have that (AK)2 = AA∗ is unitary, and since we took care of the unitray symmetries, we

have that (A)2 = λI
The value of the Dyson index is determined by the anti-unitary symmetries of the system.

If there are no anti-unitary symmetries the Hamiltonian is Hermitean and the value of β = 2.

In case there are anti-unitary symmetries given by

[KA,H] = 0, (77)

with K a complex conjugation operator and A is an unitary matrix, we have to distinguish two

cases:

(KA)2 = 1 and (KA)2 = −1, (78)

corresponding to β = 1 and β = 4, respectively. We now show that these are the only two

possibilities.

Since KA is anti-unitary, we have that (KA)2 is unitary, and because all unitary symmetries

have already been taken into accoount, we necessarily have that

(KA)2 = A∗A = λI and |λ| = 1. (79)
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Therefore,

[A,A∗] = [A, λA−1] = 0, (80)

so that

λ∗I = (A∗A)∗ = AA∗ = A∗A = λI, (81)

and λ = 1 or λ = −1.

In the first case it is always possible to find a basis in which the Hamiltonian is real. Starting

basis vector φ1 we construct ψ1 = φ1 +KAφ1. Then choose φ2 perpendicular to ψ1 and define

ψ2 = φ1 +KAφ1. Then

(φ2 +KAφ2, ψ1)

= (KAφ2, ψ1)

= ((KA)2φ2,KAψ1)∗

= (φ2, ψ1) = 0. (82)

The next basis vector is found by choosing φ3 perpendicular to ψ1 and ψ2, etc.

In this base the Hamiltonian is real

Hkl = (ψk, Hψl)

= (KAψk,KAHψl)
∗

= (ψk, HKAψl)
∗

= (ψk, Hψl)
∗ = H∗kl. (83)

The best know anti-unitary operator in this class is the time-reversal operator. In that case

A is the identity matrix.

In the case (KA)2 = −1 all eigenvalues of the Hamiltonian are doubly degenerate. This

can be show as follows. If φk is and eigenvector with eigenvalue λk, then it follows from the

commutation relations that also KAφk is an eigenvector of the Hamiltonian with the same

eigenvalue. The important thing is that this eigenvector is perpendicular to φk,

(φk,KAφk) = (KAφk, (KA)2φk)
∗ = −(φk,KAφk). (84)

One can prove that in this case it is possible to chose a basis in which the Hamiltonian matrix can

be organized into real quaternions [?]. The eigenvalues of a Hermitean quaternion real matrix

are quaternion scalars, and the eigenvalues of the original matrix are thus doubly degenerate in

agreement with (84). The best known example of this Kramers degeneracy is for time reversal

invariant systems of half-integral spin but no rotational invariance. Then the time reversal

operator is given by Kσ2 with (Kσ2)2 = −1.

4.2 Classification of Random Matrix Theories

If we have no other constraints, we have three different possibilities for the Gaussian Random

Matrix theories with probability distribution

P (H)dH = e−
NβD

4
TrH2

(85)
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• There are no anti-unitary symmetries. Then the matrix elements of H are complex, and

the probability distribution is invariant under H → UHU−1 with U †U = 1. This ensemble

is known as the Gaussian Unitary Ensemble (GUE) with Dyson index βD = 2.

• The case (KA)2 = 1. Then the Hamiltonian is real, and the ensemble is invariant under

orthogonal transformation H → OTHO with OTO = 1. This ensemble is known as the

Gaussian Orthogonal Ensemble (GOE) with Dyson index βD = 1.

• The case (KA)2 = −1. Then the Hamiltonian is quaternion real or self-dual qauternion,

i.e

HT = τ2Hτ2. (86)

with τ2 a direct product of 2× 2 Pauli matrices σ2 So we obtain from H† = H

Hkl = H∗lk = q∗0,lk − iσkq∗0,lk (87)

and from the self-duality relation

Hkl = τ2Hlkτ2q0,lk − iσkq0,lk (88)

so that qk ∈ R. The probability distribution is invariant under unitary transformation

with

UT τ2U = τ2, (89)

which are the symplectic unitary matrices. This ensemble is known as the Gaussian Sym-

plectic Ensemble with Dyson index βD = 4.

4.3 Involutive Symmetries

x In addition to anti-unitary symmetries, the ensemble may also have involutive symmetries

I(IHI−1)I−1 = H. (90)

The first possibility is that anti-unitary transformation is an involution,

AKH(AK)( − 1) = −H. (91)

If (AK)2 = 1, then A can be absorbed in the ensemble so that

H∗ = −H, (92)

and H is purely imaginary. Because H is also Hermitian, it must be anti-symmetric. The

eigenvalues of this ensemble of random matrices occur in pairs ±λ for even N , while for odd

N there is one zero eigenvalue and all other eigenvalues also occur in pairs ±λ. In the Cartan

classification, this is the ensemble D.

The second possibility is (AK)2 = −1. Up to unitary transformations we then obtain

σ2H
∗σ2 = −H. (93)
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This is the ensemnble of anti-selfdual quaternion matrices. It eigenvalues come in pairs ±λ: If

Hφ = λφ, (94)

then

Hσ2φ
∗ = −σ2H

∗φ∗ = −λσ2φ. (95)

In the Cartan classification, this is the ensemble C.

4.4 The Chiral Ensemble

The second involution we are considering is

Γ5HΓ5 = −H. (96)

This is the chiral symmetry of the Dirac operator for even-dimensional matrices. Gamma5 is

the diagonal matrix with its first half diagonal elements equal to +1 and the remaining ones

equal to −1. A direct consequence of this symmetry is the H has the block structure

H =

(
0 W
W † 0

)
. (97)

It eigenvalues are double degenerate. If

Hφ = λφ, (98)

then

HΓ5φ = −Γ5Hφ = −λΓ5φ. (99)

If may happen that Γ5φ ∼ φ, then necessarily λ = 0. These are the zero modes of the Dirac

operator.

If there are no anti-unitary symmetries, the matrix elements are arbitry complex. Such a

matrix can be “diagonalized” by a principal value decomposition

W = UΛV 1, (100)

with U and V unitary matrices and Λ a diagonal semi-positive definite matrix. This ensemble

is known as the chiral Gaussian Unitary Ensemble (chGUE).

For the Dirac operator, the charge conjugation matrix for dimensions d with even d/2, is

an anti-unitary operator that commutes with the Dirac operator. The gauge field also may

have reality conditions, in the adjoint representation, they are real for any number of colors,

and SU(2) in the fundamental representation is also real. We have two posibilites in case

AK,Γ5] = 0,

(AK)2 = 1, and (AK)2 = −1. (101)

In the first case the off-diagonal block of H is real. This ensemble is invariant under W →
O1WO2 with O1 and O2 orthogonal matrices, and is know as the chiral Gaussian Orthogonal
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Ensemble (chGOE). In the second case, we can always find a basis in which the matrix elements

of W are quaternion real. This ensemble is invariant under W → S1WS2, with S1 and S2

symplectic matrices, and is know and the chiral Gaussian Symplectic Ensemble (chGSE).

The second case is when the anti-unitary symmetry operater does not commute with Γ5.

We still insist on the block-form (97) but can no longer conclude that the matrix elements of W

are real or quaternion real. Let us consider the anti-unitary operater Σ1K which anti-commutes

with Γ5. From the commutation relation with H we obtain

Σ1KHΣ1K = Σ1K

(
0 W
W † 0

)
Σ1K

= Σ1

(
0 W ∗

W T 0

)
Σ1

=

(
0 W T

W ∗ 0

)
. (102)

We thus find that W T = W which is a complex symmetric matrix. In the Cartan classification,

this is the ensemble CI.

The second case is the anti-unitary operator iΣ2K which squares to −1. Then we find

iΣ2KH(iΣ2K)−1 = iΣ2K

(
0 W
W † 0

)
(−iΣ2K)

= −iΣ2

(
0 W ∗

W T 0

)
iΣ2

=

(
0 −W T

−W ∗ 0

)
. (103)

This implies that W T = −W , so that W is a complex anti-symmetric matrix. In the Cartan

classification, this is the random matrix theory DIII

4.5 Classification of the Random Matrix Ensembles in terms of Symmetric
Spaces

The Random Matrix Ensembles in this section were classified according to the Cartan classifica-

tion of symmetric spaces. A symmetric space is a manifold such that every point is a fixed point

of an involutive isometry (i.e. xi → −xi). The Riemann curvature tensor is covariantly constant

in a symmetric space. A symmetric space is best characterized via the notion of symmetric pair.

A symmetric pair (G,H) is defined as a pair of a connected Lie group G and a closed subgroup

H such that an involutive analytic authomorphism σ of G exists with H ∈ Hσ, where Hσ is the

set of fixed points of σ. Then, with some additional conditions (see the book by Helgason [?]

for more details) the coset G/H is a symmetric space.

As an example, consider the group U(p+ q) and define Γpq as the diagonal matrix with the

first p diagonal matrix elements equal to 1 and the remaining q diagonal matrix elements equal

to -1. Consider the transformation

σ(g) = ΓpqgΓpq, (104)
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which is an involution because obviously σ(σ(g)) = g. One can also easily show that it is an

analytic automorphism. The set of fixed points of σ is the group U(p) × U(q). Therefore,

U(p+ q)/U(p× U(q) is a Riemannian symmetric space.

A symmetric space can be of the compact, noncompact or the Euclidean type with positive,

negative or zero curvature, respectively. Each of the random matrix ensembles discussed in this

section is tangent to one of the large classes of symmetric spaces. The complete classification is

given in table I [?] where only the symmetric space of the compact type is given

Table 1: Random matrix ensemble, corresponding symmetric space, and the value for β.

RMT symmetric space compact Lie-group structure β Matrix Tyoe

GOE AI U(N)/O(N) 1 Real Symmetric
GUE A U(N) 2 Hermitian
GSE AII U(2N)/Sp(N) 4 Quaternion Real

chGOE BDI SO(p+ q)/SO(p)× SO(q) 1 Chiral Real
chGUE AIII U(p+ q)/U(p)× U(q) 2 Chiral Complex
chGSE CII Sp(p+ q)/Sp(p)× Sp(q) 4 Chiral Quanternion Real
AZ-CI CI Sp(N)/U(N) 1 Chiral Complex Symmetric
AZ-D D SO(N) 2 Imaginary Anti-Symmetric
AZ-C C Sp(N) 2 Anto-Selfdual Quaternion

AZ-DIII DIII SO(2N)/U(N) 4 Chiral Complex Anti-Symmetruc

For example, for special unitary matrices we can write U = 1 + iH + · · ·. Therefore, the

Hermitean matrices are tangent to the space A (after dividing out a U(1) factor). As another

example, the generators of the class AIII are given by matrices with the structure (??).

5 The Replica Trick

The replica trik is widely used in random matrix theory as well as in the SYK model. There

are two main applications first, the calculation of the free energy of a disordered system

logZ = lim
n→0

Zn − 1

n
, (105)

and second to to calculate the quenched averages,

G(z) = Tr
1

z +H
lim
n→0

1

n

d

dz
detn(H + z). (106)

The rationale is that it is hard to calculate disorder averages of logZ or quenched averages, while

it is much easier to calculate the replicated partition function Zn or the average of a spectral

determinant. The idea is to calculate the average for integer values of n and then analytically

continue in n and take the limit n→ 0. According to Carlson’s theorem, if an analytic function f

is zero for positive integers n, then it is identically equal to zero under some conditions. Clearly

f(n) is not unique. For example sinπn vanishes for integer, and the conditions of the theorem

are to exclude such functions.
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There is another way the replica trick can work, namely if there is an recursion relation

relating the Zn. Then we can take the limit n→ 0 of the recursion relation to find the resolvent

[?].

Generally, the replica trick works for mean field calculations, and it is assumed that the

mean field solution is proportional to the identity in replica space.

5.1 Replica Calculation of the Resolvent for the GUE

The fermion determinant can be represented as a Grassmann integral

〈detn(z +H)〉 =

∫
dHe−

N
2
TrH2

∫
dψdψ̄e

∑n
k=1 ψ̄

k
i (z+H)ijψ

k
j . (107)

Because the Hamiltonian is Hermitian we only integrate over Hij with i < j. The diagonal

matrix elements have to be treated separately, but one can check that we get the right answers

by only considering the case i < J . The exponent becomes

−N
∑
i<j

HijHji +

n∑
k,l=1

ψ̄kiHijψ
k
j + ψ̄ljHjiψ

l
j

= −N
∑
i<j

(Hij −
1

N

n∑
k=1

ψ̄ki ψ
k
j )(Hji −−

1

N

n∑
l=1

ψ̄ljψ
l
i) +

∑
i<j

1

N

n∑
k=1

ψ̄ki ψ
k
j

n∑
l=1

ψ̄ljψ
l
i. (108)

We can now shift the integration variables

Hij → Hij +
n∑

k,l=1

ψ̄kiHijψ
k
j , (109)

and then do the Gaussian integral over Hij which just gives a constant. What remains is the

last term in eq. (108) which can be rewritten as

− 1

2N

n∑
k=1

n∑
l=1

n∑
i=1

ψ̄ki ψ
l
i

n∑
j=1

ψ̄ljψ
k
j . (110)

There is a factor 1/2 because we extended the sum fromi < j to all i and j. Next we consider

the integral ∫
dσe

N
2

(iσkl+ 1
N
ψ̄k·ψl)(iσlk+ 1

N
ψ̄l·ψk). (111)

Obviously, the value of this integral is a constant. If we expand the exponent and bring the

fourth order fermion term to the other side, we see that (110) can be written as∫
dσe

N
2
iσkliσlk+ 1

2
iσlkψ̄

k·ψl+ 1
2
iσklψ̄

l·ψk . (112)

If we take ψ̄k ≡ ψk∗ and use complex conjugation of the second kind

(ψ∗)∗ = −ψ∗, (113)
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we find that

(ψ̄k · ψl)∗ = ψ̄l · ψk, (114)

so that we can choose σ Hermitian. Therefor the two last terms in (??) are equal and we finally

obtain ∫
dσe

N
2
iσkliσlk+iσlkψ̄k·ψl . (115)

Now the integral over the Grassmann variables can be performed trivially resulting in∫
dσe

N
2

(iσkl)iσlk+NTr log(iσ+z).. (116)

We have that

d

dz
=
∑
k

d

diσkk
. (117)

After a partial integration, we thus find that the resolvent is given by

G(z) =
1

n

∑
k

(−iσkk). (118)

Next we calculate the integral over σ by a saddle-point approximation. The saddle-point

equation is given by

iσkl + [1/(iσ + z)]kl = 0. (119)

For the solution We use the ansatz

σ̄kl = σ̄δkl (120)

resulting in

iσ̄ +
1

iσ̄ + z
= 0. (121)

The solution is given by

iσ̄ = −z
2
± 1

2

√
z2 − 4 (122)

This results in the resolvent

G(z) =
z

2
∓ 1

2

√
z2 − 4, (123)

Where we have trivially taken the replica limit. Since the resolvent has to go as 1/z for z →∞
we have to choose the solution with the minus sign. The level density is given by

ρ(x) = − 1

π
=G(x+ iε) =

1

2π

√
x2 − 4. (124)

(there is a minus sign because we started with 1/(z +H)).
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5.2 Loop Expansion

We write

iσ = iσ̄ + iα. (125)

Then

G(z) = Ḡ(z) + 〈iα〉 (126)

with

〈iα〉 = lim
n→0

1

n

∫
dαe−

N
2
α2+NTriαiσ̄+NTr log(1−iσ̄iα)

= lim
n→0

1

n

∫
dαe−

N
2

(1−σ̄2)α2+NTriαiσ̄+N
∑
k≥3

1
k

(−1)k+1Tr(Ḡ(z)iα)k . (127)

The propagator is thus given by

αklαmn =
δknδml

N(1− Ḡ(z)2)
(128)

with vertices

−1

k
Tr(Ḡ(z)iα)k (129)

.

The 1/N correction is given by

− 1

N
lim
n→0

1

n
Ḡ3(z)

1

(1− Ḡ2(z))2
n2, (130)

and thus vanishes in the replica limit. In fact all corrections 1/N2k+1 vanish, and that is why

this expansion is callled a topological expansion.

Let us now evaluate the 1/N2 correction

−N 1

n

1

5
Ḡ5(z)〈TriαTr(iα)5〉

=
1

N2

Ḡ5(z)

(1− Ḡ2(z))3
. (131)

The crossed contraction in the five-point vertex allows only one free summation index resulting

in a finite replica limit.

5.3 Two-Point Function

The two-point function is given by

〈G(x)G(y)〉 = lim
n→0

1

n2

1

N2

d

dx

d

dy
detn(H + x+ iε)detn(H + y − iε) (132)

The generating function can be written as

detn(H + x+ iε)detn(H + y − iε) =

∫
dψdψ̄eψ̄

k,1(H+x+iε)ψk,1+ψ̄k,2(H+y−iε)ψk,2 (133)
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This partition function has an U(2n) and we will see that it is spontaneously broken to U(n)×
U(n) in the limit N →∞.

Going through the same steps as for the one-point function, we obtain the σ model.∫
dσe

N
2

(iσpqkl )iσpqlk +NTr log(iσ+z). (134)

It looks exactly the same as in the case of the one-point function, but σ now has the block form

σ =

(
σ11
kl σ12

kl

σ21
kl σ22

kl

)
(135)

and

z = (x, · · · , x, y, · · · , y). (136)

Since σ is Hermitian, it can be diagonalized

σ = UΛU−1. (137)

The results in the partition function

Z(x, y)

∫
dUdΛ

∏
k<l

(Λk − Λl)
2e−

N
2

∑2n
k=1 Λ2

k+NTr log(iΛ+z̄+U(z−z̄)U−1), (138)

where z̄ = (x + y)/2. We now do the Λ integral by a saddle-point approximation in the case

that x−y = O(1/N) so that the last term can be neglected in the saddle-point calculation. The

saddle point equation is given by

iΛ = − 1

iΛ + z̄
, (139)

which is solved by

iΛ = −z
2
±
√
z̄2 − 4. (140)

Becaue of the Jacobian, the leading contribution is obtained by taking half the solutions with a

+ sign and the other half with a − sign. This is consitent with the choice of iε.

For simplicity, let us look at the center of the spectrum, z̄ = 0. Then the resolvent is given

by

G(z̄) = (i, · · · , i,−i, · · · ,−i). (141)

Therefore the U(2n) symmetry is spontaneously broken to U(n) × U(n). If we expand the

partition function to first order in zz̄ we obtain the partition function for the Goldstone modes

Z(x, y)

∫
U(2n)/U(n)×U(n)

eiNTr(z−z̄)Γ5UΓ5U−1
. (142)

The integral is convergent because of the iε in z − z̄. This is the leading term of the chiral

Lagrangian for QCD in 3 dimensions. It is an Itzykson-Zuber integral which can be evaluated

analytically [?]. However, to do that we have to lift the degeneracies of Γ5, which makes the
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calculattion somewhat more involved. It is more instructive to calculate the integrald perturba-

tively. The matrix U can be parameterized as

U = e

 0 iW
−W † 0


(143)

with W a complex n× n matrix. We have that

Γ5U
−1 = UΓ5. (144)

We thus find

Z(x, y) =

∫
dWe(z−)̄TrWW † ∼ 1

(z − z̄)n2 ∼
1

(x− ȳ)n2 . (145)

We thus find the correlator

lim
n→0

1

n2N2

d2

dxdy
logZ(x, y) = − 1

N2(x− y)2
. (146)

6 Spectral Form Factor of the Circular Unitary Ensemble

The Circular Unitary Ensemble (CUE) is the ensemble of random Unitary N ×N matrices. It

eigenvalues are on the complex unit circle, exp(iθk) with joint probability distribution given by∏
k<l

(eiθk − eiθl)
∏
k<l

(e−iθk − e−iθl). (147)

The Vandermonde determinants can be written as∏
k<l

(eiθk − eiθl) det ei(k−1)θl
∣∣∣
1≤k,l≤N∏

k<l

(e−iθk − e−iθl) det e−i(k−1)θl
∣∣∣
1≤k,l≤N

(148)

Now we are ready to calculate the spectral form factor

〈TrU tTr(U †)t〉. (149)

To do that, we express the determinant as a sum over permutuations

det ei(k−1)θl
∣∣∣
1≤k,l≤N

∑
π

sign(π)eiπ0θ1 · · · eiπN=1θN ,

det e−i(k−1)θl
∣∣∣
1≤k,l≤N

∑
ρ

sign(ρ)e−iρ0θ1 · · · e−iρN=1θN , (150)

and

〈TrU tTr(U †)t〉〈
∑
k,l

eit(θk−θl) (151)
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The normalization integral is only nonvanishing if π = ρ and is thus given by N !(2π)N . For

t = 0 also on the case with π = ρ gives a nonvanishing contribution, so that the result is given

by N2. For the form factor at t 6= 0 we have to distinguish the diagonal and off-diagonal terms.

We have N diagonal terms, and in this case only π = ρ gives a nonvanishing contribution which

is equal to 1 for each of the terms (after dividing by the normalization. For k 6= l all terms give

the same contribution so that we can consider

N(N − 1)〈eit(θ1−θ2)〉 (152)

We split the permutation in a permutation of 0, 1 and the remaining N − 2 numbers, for which

we need to have π|N−2 = ρ|N−2. The integral over θ3, · · · , θN then gives (2π)N−2(N − 2)!. For

the first two we can have either

π0 = ρ0, · · ·π1 = ρ1, (153)

or

π0 = ρ1, · · ·π1 = ρ0. (154)

In the second case we have an minus sign due to the signs of the permuations. So we have to

calculate the expectation value

〈eiθ1(t+π0−ρ0)eiθ1(−t+π1−ρ1) (155)

11 Itzykson-Zuber integrals and the Duistermaat-Heckman the-
orem

In this chapter we discuss Harish-Chandra-Itzykson-Zuber integrals which, in the case of the

SU(N) groups are given by [9]∫
dUeiTrXU−1Y U = c

det eixkyl

∆(x)∆(y)
. (156)

Here, the integral is over SU(N) and X and Y are Hermitean matrices with eigenvalues xi and

yi and c is a normalization constant. The Vandermonde determinants are given by

∆(x) =
∏
k<l

(xk − xl). (157)

The general case of this remarkable formula was first derived by Harish-Chandra [13]. Below

we will derive this result in two different ways. First, via a diffusion equation, and, second, by

means of a saddle-point approximation. Remarkably, the saddle-point result turns out to be

exact. This is an example of the Duistermaat-Heckman [12] theorem which states under which

conditions a saddle-point approximation becomes exact.
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11.1 Derivation of the Itzykson-Zuber integral.

We consider the integral

ξ(A, t) =
1

(2πt)−n2/2

∫
dBe−

1
2t

Tr(A−B)2η(B), (158)

with A and B Hermitean matrices, and η(B) is an invariant function of B. By expressing the

trace in components one can easily show that ξ satisfies the diffusion equation

∂tξ =
1

2
∇2
Aξ, (159)

with initial condition

ξ(A, 0) = η(A). (160)

The matrices A and B can be diagonalized by a unitary transformation

A = UXU−1, B = V Y V −1. (161)

The nonzero matrix elements of the diagonal matrices X and Y will be denoted by xi and yi,

respectively. The Jacobian from the A variables to the U and X variables is given by

dA = ∆2(X)dXdΩA. (162)

where the angular degrees of freedom arec contained in ΩA. In terms of these coordinates the

Laplacian is given by

∇2
A =

1

∆2(x)
∂xi∆

2(x)∂xi +∇2
ΩA
. (163)

For an invariant function η(B), the function ξ(A, t) depends only on the eigenvalues of A and

thus satisfies the equation

∂tξ =
1

2

1

∆2(x)
∂i∆

2(x)∂iξ (164)

with initial condition

ξ(X, 0) = η(X). (165)

To solve this equation we make the substitution

F (X, t) = ∆(x)ξ(X, t). (166)

The second derivative of F is given by

∂2
i F = ∆∂2

i ξ + 2∂i∆∂iξ + ξ∂2
i ∆. (167)

The r.h.s. of this equation can be rewritten as

∆
1

∆2
∂i(∆

2∂iξ). (168)
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This results in the diffusion equation

∂tF =
1

2
∂2
i F. (169)

The solution of this diffusion equation is given by

F (X, t) = c
1

tn/2

∫
dY∆(y)e−

1
2t

∑
i(xi−yi)2η(Y ), (170)

with c an arbitrary constant. An invariant function is also a symmetric function of the eigenval-

ues. The exponent in this equation can be factorized in symmetric functions of the integration

variables and exp(
∑

i xiyi/t). Only the antisymmetrized part of the latter term contributes to

the integral. The result for F (X, t) is be valid for any invariant function η(Y ) of the eigenvalues

and the coefficients of η(B) in Eq. (158) and the ones that follows from F (X, t) should be the

same after antisymmetrization the exponential function. After multiplying out the squares in

the exponent of both sides of the equation we obtain∫
dUe−

1
2t

TrUXU−1V Y V −1
= ct(n

2−n)/2 det e−
1
2t
xkyl

∆(y)∆(x)
, (171)

which is the final result for the Itzykson-Zuber integral.

11.2 Semiclassical calculation of the Itzykson-Zuber integral.

In this section we calculate the Itzykson-Zuber integral by means of a saddle-point approxima-

tion. The saddle-point equations are given by

dTrXU−1Y U = 0. (172)

Using the product rule and dU−1 = −U−1dUU−1 we obtain

TrXU−1dUU−1Y U = TrXU−1Y dU. (173)

By equating the coefficient of dU on both sides of the equation we obtain

XU−1Y U = U−1Y UX. (174)

The solution of this equation is a permutation matrix, i.e.

UXU−1 = Xπ, (175)

where Xπ is the diagonal matrix with diagonal elements xπ(i). Of course we have

U−1Y U = Yπ−1 , (176)

which immediately proves our assertion that permutation matrices are solutions of our saddle-

point equations. From the definition of the integral it is clear that U ∈ U(N)/UN (1), and

saddle-points that only differ by a diagonal unitary matrix have not to be taken into account.

Let us next expand around the saddle-point,

U = Ūeiφ = Ū(1 + iφ− 1

2
φ2 + · · ·), (177)
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where φ† = φ. To second order in φ we obtain

TrXU−1Y U = TrXŪ−1Y Ū

+ −1

2
TrXφ2Ū−1Y Ū − 1

2
TrXŪ−1Y Ūφ2 + TrXφŪ−1Y Ūφ. (178)

The terms linear in φ vanish because of the saddle-point equations. Notice that Ū−1Y Ū and X

are both diagonal and commute. In terms of components the terms of second order in φ can be

written as

−
∑
i<k

φikφ
∗
ik(Yπ(i) − Yπ(k))(Xi −Xk), (179)

where we have used the Hermiticity of φ. Summing over all saddle-points we obtain

∑
π

e
∑
iXiYπ(i)∏

i<k(Xi −Xk)(Yπ(i) − Yπ(k))
. (180)

If we use that ∏
i<k

(Yπ(i) − Yπ(k)) = (−1)π
∏
i<k

(Yi − Yk), (181)

we obtain our desired result∫
dUeiTrXU−1Y U = c

det exkyl

∆(X) ∆(Y )
. (182)

It was first pointed out by Mike Stone [11], that the exact result coincides with the result

obtained by a saddle-point approximation.

11.3 Invariant Measure for U(2)/U(1)× U(1)

A U(2)/U(1)× U(1) matrix can be parameterized as

U =

(
x cos θ − sin θe−iφ

sin θeiφ cos θ

)
. (183)

To find the invariant measure, we have to calculate U−1dU . It is given by

U−1dU =

(
i sin2 θdφ (idφ cos θ sin θ − dθ)e−iφ

(idφ cos θ sin θ + dθ)e−iφ −i sin2 θdφ

)
(184)

We have to calculate the Jacobian from the θφ-variables to the (U−1dU)12 and (U−1dU)21

variables. It is equal to

J = 2| cos θ sin θ|. (185)
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11.4 The Itzykson-Zuber integral for SU(2)

In the parametrization (183, the exponent in the Itzykson-Zuber integral is given by

TrUXU−1Y = x1y2 + x2y1 + (x1 − x2)(y1 − y2) cos2 θ. (186)

This results in the Itzukson-Zuber integral

I = 2

∫ π

0
dθ

∫ 2π

0

dφ

2π
| cos θ sin θ|ex1y2+x2y1+(x1−x2)(y1−y2) cos2 θ. (187)

The integral over φ is trivial. The integrand has critical points at θ = 0, θ = π/2 and θ = π.

The integrand is a total derivative on each of these intervals separately, but cannot be written

as a total derivative globally. So we have

I =
1

2

∫ π/2

0
dθ

d

dθ

ex1y2+x2y1+(x1−x2)(y1−y2) cos2 θ

(x1 − x2)(y1 − y2)

−1

2

∫
π/2

2π/dθ
d

dθ

ex1y2+x2y1+(x1−x2)(y1−y2) cos2 θ

(x1 − x2)(y1 − y2)
.

(188)

The result of the integral due to the endpoints and is thus given by

2(ex1y1+x2y2 − ex1y2+x2y1)

(x1 − x2)(y1 − y2)
, (189)

which is the correct result for the for the Itzykson-Zuber integral. We observe that the integral

is localized at the critical points which coincide with the saddle-points of the integrand.

11.5 Connection with the Duistermaat-Heckman Theorem.

It is no accident that the saddle-point approximation for the Itzykson-Zuber integral gave the

correct result. The general conditions for the semi-classical exactness of phase-space integrals

were outlined in a theorem by Duistermaat and Heckman. The simplest example of this theorem

is given by the integral ∫ π

0
dθ sin θea cos(θ) = −2π

a
(ea − e−a). (190)

The exact answer for this integral follows immediately by observing that the integrand is a

total derivative. However, the result of this integral is entirely localized on the saddle-points

and is therefore semiclassical exact. Because the integrand vanishes on the saddle-points, the

saddle-point integration has to be performed with care and is given by

2π

∫ ∞
0

θea−aθ
2/2 +

∫ π

−∞
(π − θ)e−a+a(π−θ)2/2 =

2π

a
(ea − e−a). (191)

Since the integrand is localized at the critical points it suffices the expand the integrand up to

second order at these points.
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Both this example and the Itzykson-Zuber integral for SU(2) are of the general type

I =

∫
dθ|f ′(θ)|ef(θ). (192)

Locally the integrand is a total derivative and the contributions are localized on the critical

points, i.e. on the points where the Jacobian vanishes. The result of the integral is given by

I = −2ef(θ0) + 2ef(θ1) − 2ef(θ2) + 2ef(θ3) − · · · . (193)

However the points f ′(θi) = 0 are also saddle-points. Expanding to second order around the

saddle-points we obtain

I =
∑
i

∫
dθαi|θ − θi|ef(θi)− 1

2
(θ−θi)2f ′′(θi), (194)

where f(θ) = αi(θ − θi) in the neigborhood of a critical point. The saddle-point result for the

integral is thus given by

−2
f ′(θ0)

f ′′(θ0)
+ 2

f ′(θ1)

f ′′(θ1)
= 2

f ′(θ2)

f ′′(θ2)
+ 2

f ′(θ3)

f ′′(θ3)
− · · · . (195)

We observe that the saddle-point integration is exact if α = f ′′(θi). One can easily verify that

this condition is satisfied for the examples considered above.

In general we have an integrand that can locally be written as a total derivative. However is

we exclude the critical points in the integration domain the integrand can be written as a total

derivative globally.

I =
∑
k

∫
Ckε

dω =
∑
k

∫
∂Ckε

ω, (196)

where the Ckε are spheres of radius ε around the critical points. The integrand is therefore

localized at the critical points. At these points the saddle-point approximation becomes exact.

In coordinates where the mixed derivatives vanish the condition for the exactness of the saddle-

point approximation is that the ratio of the product of the αi and the product of the second

derivatives is equal to unity.

As an example let us again consider∫
sinθdθdφea cos θ = −1

a

∫
d(dφea cos θ) = −1

a

∫
∂C(0,ε)

dφea cos θ − 1

a

∫
∂C(π,ε)

dφea cos θ. (197)

Taking into account that the orientation of Cε is opposite on both sided of the sphere, we again

find the same final answer. The reason that an infinitesimal integration interval gives a finite

ansewere is that φ varies by a finite amount (2π) around this circle. This happens only at the

North pole and the South pole of the sphere.

For the case of SU(2) we also have a critical point at θ = π/2. The reason is that at this

point the unitary martrices become independent of α.
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12 Eigenvectors

For the invariand random matrix theories, the eigenvectors are distributed according to the Haar

measure. For the Gaussian Orthogonal ensemble, this means that the joint distribution of the

components is given by

δ(
∑
α

c2
α − 1). (198)

The distribution of a single component is obtained by integrating over the remaining ones. This

can be done by changing to 2N -dimensional polar coordinates,

x1 = cos θ,

x2 = sin θ cosφ1,

x3 = sin θ sinφ1,

x4 = sin θ sinφ1 cosφ2,

x5 = sin θ sinφ1 sinφ2,

· · · (199)

The measure is given by

dΩ = sin2N−2 θ sin2N−3 φ1 · · · sinφ2N−3. (200)

so that the probability of the first component is given by

P (x)dx = δ(x− cos θ) sin2N−2 θdx = (1− x2)Ndx ≈ e−x2/N . (201)

This distribution is know as the Porter-Thomas distribution.

Another measure of eigenvector components is the so called strength distribution or the local

density of states (LDOS). If eigenvector are expanded in a basis as

ψk =
∑
α

ckαφα, (202)

it is defined as

ρα(E) =
∑
k

|ckα|2δ(E − Ek). (203)

For the invariant random matrix ensembles, the eigenvalues and eigenvectors are statistically

independent so that the average LDOS is equal to the average density of states.

12.1 Survival Probability

The time evolution of a quantum state initially in state ψ(0) is given by

φα(t) = e−iHtφα(0) =
∑

ckαe
−iEkψk. (204)

The survival probability or return probability is defined as

Wα = |〈ψ(t)|φα(0)〉|2 =
∣∣∣∑ |ckα|2e−iEkψk

∣∣∣2 . (205)
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It can be expressed in the local density of states as

Wα =

∣∣∣∣∫ e−iEtρα(E)

∣∣∣∣2 . (206)

If we average Wα over all basis states, we get the spectral form factor

1

N

∑
Wα =

1

N

∣∣∣∣∣∑
k

e−iEktψk

∣∣∣∣∣
2

. (207)

12.2 Participation Ratio

The participation ration is defined as∑
α

|ckα|4/
∑
α

|ckα|2. (208)

We normally assume that the states are normalized to 1, so the the denominator can be ignored.

A more useful quantity is the inverse participation ratio (IPR) which is define as

IPR =
1∑

α |ckα|4
. (209)

If we have a state of length N with N − p components equal to zero, and p components equal

to 1/
√
p it is given by

IPR = p. (210)

Another observable to charactetize wave functions is the multi-fractality index τq. It is

defined as

Pq =

∑
α |cα|2q

P
∑

α |cα|2
= N−τq . (211)

For the Porter-Thomas distribution we obtain

τq = q − 1. (212)

If we have a lattice of dimension d, then N = Dd, and the scaling dimension is given by d(q−1).

The anaomalous multifractality index is given by

τq = d(q − 1) + ∆q. (213)

13 Quantum Chaos and Random Matrix Theory

The first connection was made by means of the study of the Sinai billiard which is classically

chaotic. It would found by Bohigas, Giannoni and Schmidt that its are correlated by Random

Matrix Theory. This led to what is now know as the Bohigas-Giannoni-Schmidt conjecture:

If a system is classically chaotc its eigenvalues are correlated
according to Random Matrix Theory

.
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13.1 Semiclassical Argument

The semiclassical limit is the limit ~ → 0. In this limit, the level density becomes very large

or conversely, the level spacing approaches zero. In the limit, the spectral density can be

decomposed as

ρ(E) = ρ̄(E) + ρfluc (214)

where ρ̄(E) is obtained by locally smoothing of the spectral density which is well defined in the

semiclassical limit. The fluctuating part of the spectral density in the ~ → 0 limit is given by

[?]

ρfluc =
1

π~
Re
∑
j

Aj(E)eiSj(E)/~ (215)

The sum is over all periodic trajectories includng multiple traversals. The spectral form factor

is given by

K(τ) =

∫
dε

ρ̄
e2πτερ̄ 1

2π2h̄2

∑
jj′

AjA
∗
j′e

i(Sj′ (E+ε/2)−Sj(E−ε/2)/~ (216)

We consider the microscopic limit where ε scales as the average lebel spacing. Then we can

Taylor expand the action

Sj′(E + ε/2)− Sj(E − ε/2) ≈ Sj′(E)− Sj(E) + ε
dSj
dE

= εTj . (217)

In the semiclassical limit, ~ → 0, the terms exp(i(Sj(E) − Sj′(E))/~) are strongly oscillating

for j 6= j′. So the leading contributions come from the terms with j = j′. This is known as the

diagonal approximation. We thus find

K(τ) =

∫
dε

ρ̄
e2πτερ̄ 1

2π2h̄2

∑
j

A2
je
iεTj/~

=
1

2πρ̄~
1

π

∑
j

δ(2π~ρ̄τ − Tj)A2
j . (218)

Next we consider the quantity ∑
j

δ(T − Tj)A2
j , (219)

which is known as the Hannay-Ozorio de Almeida sum rule, and was first applied to the calcu-

lation of the spectral form factor by Michael Berry [?]. It is conceptually simpler to consider

the average

1

T

∑
j

δ(T − Tj)A2
jf(p, q), (220)

which is the average of f(p, q) along the trjectory in phase space. To have a well-defined average,

we have to consider a group of trajectories with period no more than ∆T away from T. For a
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chaotic system a classical trajectory covers all of phase space, and we know assume that the

trajectory covers the phase space also uniformely in time so that the sum (220) gives the phase-

space average of the function f(p, q) on the energy shell. For f = 1 we have

1

T

∑
j

δ(T − Tj)A2
j = 1. (221)

which is the Hannay-Ozorio de Almeida sum rule. Using this result, we find

K(τ) =
τ

π
. (222)

13.2 The Lieb-Robinson Bound

We consider a local bounded Hamiltonian H and derive an inequality for

‖ [eiHtA(x)e−iHt, B(0)] ‖ . (223)

From the Baker-Campbell-Hausdorff formula we obtain

eiHtA(x)e−iHt = A(x) + it[H,A(x)] +
(it)2

2
[H, [H,A(x)]] + · · · . (224)

If the Hamiltonian has a reach of R the first term that contributes is for kmin ≈ x/R. This

results in the bound

2 ‖ A(x) ‖‖ B(0) ‖ Npaths

∞∑
k=kmin

|(it)k|
k!

e−µk

≤ 2Npaths ‖ A(x) ‖‖ B(0) ‖ e−µx/R
∞∑
k=0

|(t)k|
k!

≤ 2Npaths ‖ A(x) ‖‖ B(0) ‖ e(vLBt−x)µ/R, (225)

where exp(−µ) is a bound for the hopping matrix elements of the Hamiltonian and vLB is

known as the Lieb-Robinson velocity or the butterfly velocity. Information cannot propagate

outside the Lieb-Robinson cone. This indeed has been observed numerically as well as in some

experiments.

The Lieb-Robinson bound is only valid for small times. We also have the upper limit

2 ‖ A(x) ‖‖ B(0) ‖ . (226)

13.3 Out of Time Order Correlators (OTOC)

What we have seen in the previous subsection is an example of an out of time order correlator.

For conjugate variables we have

[p(t), x(0)]2 ∼ {p(t), x(0)}20 =

∣∣∣∣ δp(t)δp(0)

∣∣∣∣2 . (227)

For a chaotic system the trajectories diverge exponentially so that∣∣∣∣ δp(t)δp(0)

∣∣∣∣ ∼ eλt (228)

where λ is known as a Lyapunov exponent. We thus find that out of time order correlators

increase exponentially but the increase is bounded by the Lieb-Robinson bound.
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14 Thermalization

The traditional way of defining thermalization is to emmerse a system in a much large heat

bath, and it is thermalized when the heat exchange with the heat bath has saturated. For a

closed system we cannot apply this argument.

The state of a system can be characterized by the density matrix

ρ =
∑

ak|k〉〈k|, (229)

which is normalized as Trρ = 1. The time evolution of the density matrix is given by

ρ(t) = e−iHtρ(0)eiHt. (230)

We consider a closed system with many more degrees of freedom in B, the complement of A,

than in A. To define the thermodynmic limit we have to take the number of degrees of freedom

of B to infinity. The equilibrium density matrix is given by

ρeq(T ) =
1

Z
e−βH =

1

Z

∑
k

e−βEk |k〉〈k|. (231)

where β = 1/kBT and Z is the partition function at temperature Z. The eigenstates of the

Hamiltonian are denoted by |k〉 with eigenvalues Ek. A system has thermalized if for all sub-

systems A the long time, large system limit is given by

ρA(T ) = ρA,eq(T ) (232)

with the density matrix of the subsystem given by ρA = TrBρ.

14.1 Eigenstate Thermalization

If a single eigenstate thermalizes the temperature is given by

Ek = 〈H〉Tk . (233)

We speak about eigenstate thermalization is for all subsystems A,

ρk,AρA,eq(Tk) (234)

with

ρk,A = TrB|k〉〈k|. (235)

Eigenstate thermalization can also be formulated in terms of expectation values of operators

[14],

Omn = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn (236)

with

Ē =
1

2
(Em + En), ω = En − Em, (237)

and SĒ) the entropy of the system. What is important that O(Ē), S(Ē) and fO(Ē, ω) are

smooth functions of Ē and ω̄. Rmn is a random variable wih zero mean and unit variance.

The thermal average of an operator in A is given by

Ō = TrAρeq(T )O = TrAρAOTrATrBρO = 〈n|O|n〉, (238)

which agrees with the definition of previous section.
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15 The Sachdev-Ye-Kitaev Model

This model, that is better know as the SYK model is defined by the Hamiltonian of N interacting

Majorana fermions,

H =
1

q!

∑
1≤αβγδ≤N

Jαβγδχαχβχγχδ, (239)

where the Jαβγδ are Gaussian distributed with variance given by

〈J2
αβγδ〉 =

J2(q − 1)!

N q−1
, (240)

and q = 4. The Majorana fermions satisfy the anti-commutation relations

{χα, χβ} = δαβ. (241)

These are the same anti-commutation relations as the Euclidean γ matrices, and therfore, the

χα can be represented a γ matrices in N dimensions. In general the interaction can be a q-body

ineraction, but in the above Hamiltonian (239) we have q = 4. Generally, we will take N and q

even, but this can be relaxed. For odd q the Hamiltonian is the supercharge of a super-symmetric

Hamiltonian.

For even N we have a well defined γ5 that anti-commutes with all γ matrices so that

[H, γ5] = 0. (242)

This implies that in a chiral basis, the Hamiltonian splits into two blocks.

15.1 Gamma Matrices

Gamma matrices in N dimensions can be constructed as tensor products of N/2 Pauli matrices,

and are 2N/2 × 2N/2 dimensional matrices. In total there are 4N/2 different γ matrices so that

each they span the space of 2N/2 × 2N/2 matrics. An example of an explicit representation of γ

matrices is given by

γ
(2)
1 = σ1, γ

(2)
2 = σ2, γ

(2)
3 = σ3. (243)

and using the recursion relation

γ
(d+2)
k = σ1 ⊗ γdk , for k = 1, · · · , d+ 1,

γd+2
d+2 = σ2 ⊗ 12d/2 . (244)

We can construct two anti-unitary symmetry operators (Note that the gamma matrices in

C1 are putrely imaginary while the gamma matrices in C2 are purely real.)

C1 = γ1γ4γ6 · · · γNK,
C2 = γ2γ3γ5 · · · γN−1K,

(245)
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where K is the complex conjugation operator (we really should have interchanged the labels

of γ1 and γ2 so that C1 would have been the product of the odd gamma matrices and C2 the

product of the even gamma matrices). They satisfy the symmetry relations

C1Kγµ + (−1)N/2γµC1K = 0, C2Kγµ − (−1)N/2γµC1K = 0. (246)

Since the Hamiltonian is sum of products of four gamma matrices, we have

[C1K,H] = 0, [C2K,H] = 0. (247)

We also have that

[C1K,C2K] = 0. (248)

Since C1KC2K ∼ γ5, these two symmetries are not independent, and we can choose one of

them as anti-unitary symmetry. We will choose C2K as anti-unitary symmetry operator. If N/2

is even we have that [γ5, C2K] = 0, so that γ5 and C2K can be diagonalized simultaneously.

Depending on the sign of (C2K)2 = ±1, this gives the GOE or the GSE. In four dimensions

we have (C2K)2 = −1 while in 8 dimensions (C2K)2 = 1. In 4k + 2 dimensions, the charge

conjugation operator is the product of 2k+ 1 γ matrices and anti-commute with γ5, and cannot

be diagonalized simultaneously. In a chiral basis, the matrix elements of the Hamiltonian are

complex and we expect GUE level statistics.

Since the charge conjugation operator anti-commutes with γ5, it has the form

C2K =

(
0 c2K
c∗2K 0

)
(249)

with c∗2c2 = −1. If

H

(
A 0
0 B

)
(250)

then the anti-unitary symmetries (247) result in the relation

B∗ = −c∗iAci, i = 1, 2. (251)

with c∗2c2 = −1. If

H

(
A 0
0 B

)
(252)

then the anti-unitary symmetries (247) result in the relation

B∗ = −c∗2Ac2, (253)

From the eigenvalue equation det(B − λ) = 0, we then see immediately that A and B have the

same eigenvalues.
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15.2 Hilbert Space

We can define creation and annihilation operators by

ck =
1√
2

(γ2ki+ γ2k+1), qquadc†k =
1√
2

(γ2ki− γ2k+1). (254)

Then

{ck, c†l } = δkl. (255)

So the c†k are the creation operators of complex fermions. The Hilbert space is the usual Fock

space with state k are empty or occupied. So in total we have 2N/2 states. Note that the SYK

Hamiltonian does not converse particle number, as can be seen by substituting the inverse of

(254) in the SYK Hamiltonian.

15.3 The q = 2 Hamiltian

The SYK Hamiltonian for q = 2 model is given by

H = i
∑
i<j

Jijγiγj . (256)

Since Jij is an anti-symmetric matrix, it can be brought into a standard form with only J ′k,k±1 6=
0. Using the unitary transformation that diagonalizes J to define new γ matrices, we can write

the Hamiltonian as

H = i

N/2∑
k=1

xkγ2k−1γ2k (257)

with xk the eigenvalues of J . All terms in the new Hamiltonian commute with each other and

can be diagonalize simultaneously. The eigenvalues of γ2k−1γ2k are ±1. The eigenvalues of the

Hamiltonian are thus given by

N/2∑
k=1

skxk (258)

with sk = ±1. By rewriting the Hamiltonian in terms of complex fermions

H =

N/2∑
k=1

xk(2ckc
†
k − 1). (259)

we see that the ground state is the state with all negative energy states filled.

15.4 Thermodynamics for q = 2

For q = 2 the SYK Hamiltonian is non-interacting with single particle energies given by ±xk.
The results in the partition function

Z =
∑

nk=0,1

e−β
∑
k=1Nxk(2nk−1 =

N∏
k=1

(eβxk + e−βxk)

=
N∏
k=1

eβxk
N∏
k=1

(1 + e−2βxk). (260)
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So

logZ = βE0 +

∫ 1

−1
ρ(E)dE(1 + e−2βE) (261)

with E0 the sum of the single particle energies and the single particle level density

ρ(E) =
N

π

√
1− E2. (262)

We thus have that

logZ = βE0 +
N

π

∫ π

0
dθ cos2 θ log(1 + e−2β sin θ). (263)

The low temperature limit is obtained by expanding the logarithm

logZ = βE0 +N
π

12β
. (264)

So the zero temperature entropy, which would be the constant term in logZ vanishes. The

hightemperature limit of the partition function is given by

logZ = βE0 +
N

2
log 2 + · · · , (265)

which is the logarithm of the total number of states.

15.5 Calculation of the Spectral Density

The most straigtforward way to calculate the spectral density is to use the moments to obtain

the Fourier transform of the spectral density,

ρ(t) =

∫
dEρ(E)eiEt =

∑ (Et)2k(−1)k

k!
M2k, (266)

where we have assumed that ρ(E) is an even function of E. In the limit that N � q, the indices

of the terms contributing to the Hamiltonian are almost always different, and we can assume

that the Γα commute. Summing over all Wick contractions we obtain

M2p = (2p− 1)!!Mp
2 . (267)

These are the moments of a Gaussian distribution.

15.6 Path Integral Formulation of the SYK Model

For Dirac fermions we know very well how to write down the path integral of fermion fields.

Just replace the fermion operators by complex Grassmann variables. For Majorano fermions

we replace the real fermion operators, which can be written as χ = c + c†, by real Grassmann

variables. The kinetic term of the Lagrangian is given by

L0 =

∫
dτχ(τ)

d

dτ
χ(τ). (268)
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We thus obtain the path integral

Z =

∫
Dχ(τ)e−

∫
dτχ d

dτ
χ−

∑
αβγδ Jαβγδχαχβχγχδ . (269)

The free energy can be obtained using the replica trick

logZ = lim
n→0

Zn − 1

n
. (270)

To calculate Zn we given the fields an extra index, the replica index. However, since thermo-

dynamic properties do no depend on the number of replicas, we will do the calculation for one

replica.

The integral over the Gaussian random variables can be done by completing square. Denoting

the variance by σ2 and using ∫
dJe−J

2/2σ2+JA ∼ e
1
2
σ2A2

(271)

we obtain

Z =

∫
Dχ(τ)e−

∫
dτχ d

dτ
χ+ 1

2
σ2

∑
αβγδ

∫
dτdτ ′χα(τ)χβ(τ)χγ(τ)χδ(τ)χα(τ ′)χβ(τ ′)χγ(τ ′)χδ(τ

′) (272)

Next we introduce new variables by inserting a δ function

δ(G+
1

N

∑
α

χ(τ)χ(tau′)) =

∫
DΣ(τ)e

1
2

∫
dτdτ ′Σ(τ,τ ′)(G(τ,τ ′)+ 1

N

∑
α χ(τ)χ(τ ′)). (273)

The integral over Σ(τ) has to be over the imaginary axis, but we continue it to real axis. We

thus find the partition function (we wrote it down for arbitrary q)

Z =

∫
Dχ(τ)e

−
∫ β
0 dτχ d

dτ
χ+σ2

q!

∫ β
0 dτdτ ′G(τ,τ ′)q+ 1

2

∫
dτdτ ′Σ(τ,τ ′)(G(τ ′,τ)+ 1

N

∑
α χ(τ)χ(tau′)

(274)

Now the the integral of χ(τ) can be done. It gives a Pfaffian. The action is thus given by

S = −
∫ ∫

dτdτ ′
[
N

2
Tr log(δ(τ, τ ′) + Σ(τ, τ ′)) +

N4σ2

q!
Gq(τ, τ ′) +NΣ(τ, τ ′)G(τ ′, τ)

]
. (275)

Because of our choice of the variance, N only appears as a prefactor. For large N we can evaluate

the integral by a saddle-point approximation.∫
dτ ′′(δ(τ, τ ′′)

d

dτ
+ Σ(τ, τ ′′))G(τ ′′, τ ′) = −δ(τ, τ ′,

Σ(τ, τ ′) = J2Gq−1(τ, τ ′) (276)

The second equation is valid point by point. Because the source term is translationally invariant,

the solutions of the Dyson-Schwinger equations are also translationally invariant. It is simplest

to solve these equation by Fourier transforming the first equation

Σ(t− s) =
1√
2π

∫
dteiE(t−s)Σ(E),

G(s− t) =
1√
2π

∫
dE′eiE(s−t′)G(E′). (277)
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After integration over s and then integrating δ(E − E′), the first equation becomes∫
dEΣ(E)G(E)eiE(t−t′) = − 1

2π

∫
dEeiE(t−t′). (278)

We thus find that

Σ(E)G(E) = − 1

2π
. (279)

We make the Ansatz

G(E) = −ib sign(E)/
√
|E|

α
. (280)

Then

Σ(E) = −i 1

2πb
sign(E)

√
|E|
−α

(281)

The Fourier transform of sign(E)
√
|E|α is given by

1√
π

∫
dEe−itEsign(E)

√
|E|

α
=
−i√
π

∫
dE sin(tE)sign(E)

√
|E|

α

=
−2i√
π

∫ ∞
0

dE sin(Et)sign(t)Eα/2

=
−2i√
π
t−

α
2
−1sign(t)

∫ ∞
0

dE sin(E)Eα/2Eα/2

=
−2i√
π
t−

α
2
−1sign(t) cos(απ/4)Γ(1 + α/2) (282)

Inserting this in the second saddle point equation, we obtain[
−i 1

2πb
(
(−2i)√

π
tα/2−1 cos(−απ/4)Γ(1− α/2)

](

q − 1)sign(t)

= −ib−2i√
π
t−

α
2
−1sign(t) cos(απ/4)Γ(1 + α/2) (283)

This gives that α = 2(1− 2∆) so that

G(t) = bsign(t)/|t|2∆. (284)

.

The coefficient b is also determined by this equation.

15.7 Diffeomorphism Invariance

The mean field equations are inhomogenous equations, and will have a unique solution subject

to boundary conditions. We see immediately that if G(t, t′) is a solution than also G(t+a, t′+a)

is a solution. So for translational invariant boundary conditions, we have that the solution only

depends on the difference of its arguments, ile G(t, t′) = G(t− t′). This also implies

G(t) = 〈χ(t)χ(0)〉 = 〈χ(0)χ(−t)〉 = −〈χ(−t)χ(0)〉 = −G(−t). (285)
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That is the reason we choose the Ansatz G(τ) ∼ sign(τ).

The saddle point equations have a much larger invariance – they are invariant under diffeo-

morphism τ → f(τ). We can easily check that if G(τ, τ ′) is a solution than also

(f ′(τ)f ′(τ ′))∆G(f(τ), f(τ ′)). (286)

is also a solution. Σ(τ, τ ′) is determined by the mean field equation while

Σ ·G =

∫
G(f(τ), f(s))Σ(f(s), f(τ ′′))(f ′(τ))∆(f ′(τ ′′))3∆df(s)

= −(f ′(τ))∆(f ′(τ ′′))3∆δ(f(τ)− f(τ ′′))

= −(f ′(τ))∆(f ′(τ ′′))3∆ 1

|f ′(τ)|
δ(τ − τ ′′)

= −δ(τ − τ ′′). (287)

We assumed that f(τ) is an increasing function.

This invariance can be used to construct a solution at finit temperature. A transformation

that maps [0, β] to the real axis is given by

f(τ) = tan
τπ

β
. (288)

Then

f ′(τ) =
π

β
cos−2 τπ

β
(289)

So

G(τ) = bsign(τ)(
β

π
)2∆ cos−2∆ τπ

β

1

tan2∆(τ(βπ )

= b(
β

π
)∆ 1

sin2∆(πτβ
). (290)

Note that f ′(0) = π/β.

Not all diffeomorphism do given a new solution,

(f ′(τ)f ′(0))∆ 1

(f(τ)− f(0))2∆
=

1

τ2∆
(291)

Therefore,

f ′(τ)f ′(0)

(f(τ)− f(0))2
=

1

τ2
(292)

or

d

dτ

1

f(τ)− f(0)
f ′(0) =

d

dτ

1

τ
. (293)

This gives

f ′(0)

f(τ)− f(0)
= c+

1

τ
, (294)
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which is solved by

f(τ) = f(0) +
c

f ′(0)
+

1

f ′(0)τ
. (295)

Since a translation τ → τ + a also gives a new solution, the full invariance group is given by

f(τ) = f(0) +
c

f ′(0)
+

1

f ′(0)(τ + a))
. (296)

This is Sl(2, R). So the Goldstone manifold is given by Diff(1,R)/Sl(2,R).

The time derivative breaks this invariance and we are now going to look for an effective

action with the same pattern of symmetry breaking. We require that the effective partition

function has the same transformation properties as the exact partition function.

To get an better idea about the soft mode action, we rewrite the noninvariant part of the

action as

S = −1

2

∫
dτdτ ′ log det(1− δ(τ − τ ′)∂τΣ−1) (297)

and keep only the lowest power in the derivative. We also use that to G = Σ−1 to this order in

the derivatives. We now calculate the effect of the reparameterizations on the actio

δS =
1

2

∫
dτdτ ′δ(τ − τ ′)∂τ (Gf −G)

& = −1
2

∫
dτdτ ′∂τδ(τ − τ ′)(Gf −G) (298)

Because of the δ-function, the integral only picks up contributions for τ ≈ τ ′. Near this point

the solution of the equations of motion is given by

b

|τ − τ ′|2∆
. (299)

Then

Gf −G = b

[
f ′(τ)f ′(τ ′)

(f(τ)− f(τ ′))2

]∆

− b

|τ − τ ′|2∆
. (300)

We now Taylor expand f ′(τ ′) in the numerator and (f(τ) in the denominator.

f(τ ′) = f(τ) + (τ ′ − τ)f ′(τ) +
1

2
(τ ′ − τ)2f ′′(τ) +

1

6
(τ ′ − τ)3f ′′′(τ)

f ′(τ ′) = f ′(τ) + (τ ′ − τ)f ′′(τ) +
1

2
(τ ′ − τ)2f ′′′(τ)− b

|τ − τ ′|2∆
. (301)

This results in

Gf −G = b

[
1 + (τ ′ − τ)f ′′(τ)/f ′(τ) + 1

2(τ ′ − τ)2f ′′′(τ)/f ′(τ)

((τ − τ ′)2(1 + 1
2(τ ′ − τ)f ′′(τ) + 1

6(τ ′ − τ)2f ′′′(τ))2

]∆

− b

|τ − τ ′|2∆

= b

[
1

(τ − τ ′)2
(1 + ((τ − τ ′)2 1

6
f ′′′(τ)/f ′(τ)− (f ′′(τ)/f ′(τ))2)

]∆

− b

|τ − τ ′|2∆

=
b

6
|τ − τ ′|2−2∆∆

(
f ′′′(τ)

f
′(τ)− 3

2

[
f ′′′(τ)

f
′(τ)

]2
)

b

6
|τ − τ ′|2−2∆∆{f, τ}, (302)
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where the expression between the curly brackets is the Schwartzian action. We thus find the

action

δS = − b

12

∫
dτdτ ′∂τδ(τ − τ ′)|τ − τ ′|2−2∆∆{f, τ}. (303)

Using s = τ ′ − τ and τ as new integration variables we obtain

δS =
b∆

12

∫
dτds∂sδ(s)|s|2−2∆{f, τ}

=
b∆

12

∫
dτ{f, τ}

∫
ds∂sδ(s)|s|2−2∆. (304)

To evaluate the constant, the delta function has to be regularized [?].

15.8 Large q expansion

In this section we discuss the large q expansion of the SYK model. In the action, q occurs as

1

q
GqΣ. (305)

For q →∞ this interaction term is suppressed and we can expand G about the free propagator

When we write

G =
1

2
sign(τ)(1 +

g(τ)

q
). (306)

Then

Σ = J2Gq−1 = J221−qsign(τ)(1 +
g(τ)

q
)q−1

= J22−qsign(τ)eg(τ) (307)

The constant b is given by

J2bqπ = (
1

2
− 1

q
) tan

π

q
≈ π

2q
. (308)

We have that

G(ω) =
1

−iω
+

1

2q
[signg](ω). (309)

so

1

G(ω)
= −iω +

ω2

q
[signg]ω = −iω − Σ(ω). (310)

Fourier transforming back we obtain

−∂2
τ [sign(τ)g(τ)] = −2qJ221−qsignτeg(τ). (311)

This differential equation can be solved

eg(τ) =
c2

J 2

1

sin2(c(|τ |+ τ0)
(312)

41



At very short times we should recover the free fermion result, so

g(0) = g(β) = 0. (313)

The solution that satisfies these boundary conditions is given by

eg(τ) =
cos2 πv

cos2(πv/2− |τ |/β)
, cosπv/2 = c2/J 2 (314)

The second equation comes from noticing that c = πv/β and c2/J 2 = cos2 πv/2.

Next we calculate the action of the large-q solution. Because of the deivative we calculate

J ∂J logZ and notice that because the partition function only depends on the combination βJ
we have that

J ∂J logZ = β∂β logZ. (315)

To obtain the free energy, we have to integrate this equation.

J ∂J logZ = J ∂J (−βF ) =
βJ 2

2q2

∫ β

0
dτeg(τ)

=
βJ 2

2q2

β

πv
cos2 πv

2

∫ β

0
dτ

d

dτ
tan(πv(1/2− |τ |/β))

=
βJ 2

q2

β

πv
cos2 πv

2
tan(πv/2) (316)

We now use the relation between v and βJ to obtain

dβJ
βJ

=
dv

v
+ dv

π

2
tan

πv

2
. (317)

This results in

v

1 + πv
2 tan πv

2

∂v(−βF ) = N
πv

q2
tan

πv

2
. (318)

The boundary condition of this differential equation is given by the condition that for v → 0

the zero coupling limit should be recovered. Then

−βF |J=0 = N
1

2
log 2. (319)

This results in the solution

−βF
N

=
1

2
log 2 +

πv

q2
(tan

πv

2
− πv

4
). (320)

We can calculate the entropy in the low temperature expansion. For β → ∞ we have that

v → 1. If we expand v = 1 + δv then

−πδv2 =
π

βJ
. (321)

and

−βF
N

=
1

2
log 2− π2

4q2
+
βJ
q2

. (322)

We find the remarkable result that the zero temperature entropy is extensive.
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16 Spectral Density of the SYK Model

16.1 Moments of the Hamiltonian

The moments of the Hamiltonian are given by

〈M2p =
1

L
TrH2p〉, (323)

where the average is over the Gaussian distributed couplings. A Gaussian integral is given by

the sum over all Wick contractions. If all Wick contraction are independent and the terms in

the Hamiltonian commute, and using the notation

H =
∑

JαΓα. (324)

we obtain

1

L
TrH2p = (2p− 1)!![

∑
α

〈JαJα〉]p, (325)

where we have used that Γ2
α = 1. We thus find

M2p = (2p− 1)!!M2
2 (326)

with

M2 =

(
N

q

)
σ2. (327)

These are the moments of a Gaussian distribution. This is a good approximation for N � q

when most of the terms in the Hamiltonian commute.

Next we use that a crossing a two contraction lines results in the factor

η = 2−N/2
(
N

q

)−1∑
β

Tr[Γα,Γβ] =

(
N

q

)−1 q∑
p=0

(−1)p
(
q

p

)(
N − q
q − p

)
. (328)

When we treat all contractions as independent, the moments are thus given by

M2p = Mp
2

∑
k

Ckη
k, (329)

where Ck is the number of diagrams with k crossings. This sum is known as the Riordan-

Touchard formula ∑
k

Ckη
k =

1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2

(
2p

p+ k

)
. (330)

These are the moments of the weight function of the Q-Hermite polynomials. The spectral

density is thus given by this weight function

ρQH(E) =
√

1− (E/E0)2
∏

k = 1∞
[
1− 4

E2

E2
0

1

2 + ηk + η−k

]
(331)

43



with

E2
0 =

4σ2

1− η
. (332)

Since the Q-Hermite approximation work so well, we can expand the spectral density as

ρ(E) = ρQH(E)(1 +
∑
k

akH
η
k (E/E0)) (333)

The Q-Hermite polynomials satisfy the recursion relation [?]

Hη
n+1(x) = xHη

n(x)−
n−1∑
k=0

ηkHη
n−1(x) (334)

with

Hη
0 (x) = 1 and Hη

1 (x) = x. (335)

The orthogonality relations are given by∫ E0

−E0

dxρQH(x)Hη
n (x)Hη

m (x) = δnmnη!, (336)

where pη! is the Q-factorial defined as

nη! =

n−1∏
k=1

(

k∑
s=0

(1 + ηs). (337)

This expansion is a generalization of the Gram-Charlier expansion – for η = 1 it becomes the

Gram-Charlier expansion.

17 The Maldacena-Qi Model

The Maldacena-Qi model is a model for an eternal wormhole. It is defined by two SYK models

coupled by an interaction. The fermions in each SYK model anti-commute. Specifially, we have

H = HL +HR + kS (338)

with

HL =
∑
abcd

Jabcdχ
L
aχ

L
b χ

L
c χ

L
d , HR =

∑
abcd

Jabcdχ
R
a χ

R
b χ

R
c χ

R
d , . (339)

and the interacting term which we will refer to as the spin operator, is given by

S = ik
∑
n

χLnχ
R
n (340)

The coupling term Jabcd of the left and right Hamiltonian are the same.
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For k = 0 the eigenstates of the model are given by the tensor product of the eigenstates of

HL and HR,

HL|m〉 = Em|m〉, HR|m〉 = Em|m〉. (341)

Then the eigenvalues of the unperturbed Hamiltonian are given by

(HL +HR)|m〉 ⊗ |n〉 = (Em + En)|m〉 ⊗ |n〉 (342)

We can also easily find the eigenstates of the spin operator by noting that each of the

terms, the product of two gamma matrices, commute. Therefore, they can be diagonalized

simultaneously. Since each term squares to 1/4, the eigenvaluse of each term are are ±12. The

energy of the ground state is thus −N/4, and the energy increases in steps of 1 until N/4 for

the excited states. The degeneracy of the eigenvalue −N/4 + p is given by

We can also prove this formally by introducing the raising and lowering operators

Γ±k = ΓLk ± iΓRk . (343)

Then

[S,Γ±k ] = [iΓRk ΓLk ,Γ
±
k ] = Γ±k . (344)

This implies that if

S|φ〉 = s|φ〉 (345)

then

SΓ+|φ〉 = (Γ+S + Γ+)|φ〉 = (s+ 1)Γ+|φ〉. (346)

We can also write the unperturbed Hamiltonian in terms of Γ±

ΓLaΓLb ΓLc ΓLd + ΓRa ΓRb ΓRc ΓRd =
1

16

[
(Γ+
a + Γ−a )(Γ+

b + Γ−b )(Γ+
b + Γ−b )(Γ+

b + Γ−b )

+(Γ+
a − Γ−a )(Γ+

b Γ−b )(Γ+
b − Γ−b )(Γ+

b − Γ−b )
]
. (347)

It is clear that the terms with an odd number of Γ± matrices vanish. Therefore, HR+HL raises

or lowers the spin by four units or does not change the spin. This implies that the Hamiltonian

has an S mod 4 symmetry

[ei
π
2
S , H] = 0. (348)

17.1 The Thermo Field Double State

This state is referred to as the TFD. Let us first look at the ground state of the spin operator.

We already know that the eigenvalue is equal to −N/4. Let us now choose the following gamma

matrices

ΓLk = Γk ⊗ 1,

ΓRk = Γ5 ⊗ Γk, (349)
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and the Γk are random matrices in N/2 dimensions. Let us now consider the expectation value

of S in the state

|gs〉 = c
∑
|m〉 ⊗AK|m〉 (350)

with |m〉 a complete set of states in the space of N/2 Majoranas which are also eigenstates of

Γ5,

Γ5|m〉 = χm|m〉, (351)

and A is an operator that is yet to be determined. The constant c is a normalization constant,

c = 2−N/8, which normalizes the state to 1. Then

〈gs|S|gs〉 = ic2
∑
k

∑
mn

〈m|ΓkΓ5|n〉〈Km|A†ΓkA|Kn〈

= ic2
∑
k

∑
mn

χn〈m|Γk|n〉〈n|(A†ΓkA)T |n〈

= ic2
∑
k

∑
mn

χn〈m|Γk|n〉〈n|ATΓ∗kA
∗|n〈

= ic2
∑
k

∑
mn

χn〈m|Γk|n〉〈n|ATCΓkC
−1A∗|n〈.

We have to produce a χn and eliminate C so that we can use completeness and Γ2
k = 1/2. Let

us try

A = ei
π
4

Γ5C. (352)

Then,

〈gs|S|gs〉 = ic2
∑
k

∑
mn

χn〈m|Γk|n〉〈n|(−C)ei
π
4

Γ5CΓkC
−1C∗e−i

π
4

Γ5C∗|n〈

= ic2
∑
k

∑
mn

χniχn〈m|Γk|n〉〈n|(−C)CΓkC
−1C∗|n〈.

We now can use completeness and the fact that Γ2
k = 1/2 which shows that the expectation

value is −N/4. Since the ground state is nondegenarate, we have that it is given by

|gs〉 = 2−N/4
∑
|m〉 ⊗ ei

π
4

Γ5CK|m〉 (353)

We are free to choose the states |m〉 other than they are eigenstates of Γ5. We now choose |m〉
the eigenstates of HR. Since

[e
πi
4

Γ5CK,HR] = 0 (354)

we also choose the states |m〉 to be eigenstates of e
πi
4

Γ5CK.

The TFD is now defined as

|TFD〉 = e−β(HR+HL)|gs〉
= 2−N/4

∑
e−β2Em |m〉 ⊗ ei

π
4

Γ5CK|m〉 (355)

The claim is that this state is a good approximation to the ground state of the coupled SYK

model at k 6= 0. The inverse temperature β is a parameter that can be obtained by minimizing

the energy of the state.
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17.2 Anti-Unitary Symmetry

In a standard representation, half of the γ matrices are real and the other half is purely imaginary.

Therefore we can choose the left γ matrices real and the right γ matrices purely imaginary. Then

the spin operator is real and HR and HL, both the sum of the product of q γ matrices, are real

as well. So the Hamiltonian is real, and the levels will be correlated according to the GOE in a

given S-mod 4 sector if the system is chaotic.

17.3 S mod 4 Symmetry

Let us do the explicit construction of the γ matrices. In we know the γ matrices in dimension

2(d− 1), then two γ matrices are new

Γ2d
2 = σ2

d−1︷ ︸︸ ︷
⊗1 · · · ⊗ 1

Γ2dd1 = σ1 ⊗ σ3

d−2︷ ︸︸ ︷
⊗1 · · · ⊗ 1

(356)

The other γ matrices are contructed recursively

Γ2d
k+2 = σ1 ⊗ Γ2d−2

k (357)

So the odd Γ matrices are real while the even Γ matrices are purely imaginary. Clearly

Γ2d
1 Γ2d

2 = iσ3 ⊗ σ3

d−2︷ ︸︸ ︷
⊗1 · · · ⊗ 1 (358)

is diagonal with eigenvalues ±i. The other products of even and odd Γ matrices are diagonal

recursively. Let us look at 2d = 4. Then

Γ1 = σ1 ⊗ σ3

Γ2 = σ2 ⊗ 1

Γ3 = σ1 ⊗ σ1

Γ4 = σ1 ⊗ σ2. (359)

We have thus shown that the spin operator is diagonal with eigenvalues given by

−N
4

+ p, p = 0, · · · N
2
. (360)

The Smod4 symmetry operator is thus given by

e
πi
2 (p−N4 ). (361)

Ignoring the overall factor exp(πiN/8), the eigenvalues are given ±i and ±1. Since this operator

commutes with the Hamiltonian, the Hamiltonian splits into four blocks.
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18 Hawking-Page Phase Transition

The gound state of the system is interpreted as an eternal wormhole with thermal excitations at

low temperatures. At a critical temperature the system turns into a two black hole phase. The

first order phase transition between these thwo phases is known as the Hawking-Page transition.

We can calculate the partition function of the spin operator,

Z =
∑
p

(
N/2

p

)
e−βk(−N

4
+p) = eβk

N
4 (1 + e−βk)N/2. (362)

This results in the free energy

−βF
N

= −βk
4

+
1

2
log(1 + e−βk) (363)

This is an integrable model and obviously, it cannot have a phase transition. However there is

a crossover at β = 1/k, which is the temperature difference between the ground state and the

first excited state.

This phase transition can also be studied in the ΣG formulation of the SYK model. The

action is given by [?]

− S
N

= logPf(∂τδab − Σab)−
1

2

∫
dτ1τ2

∑
ab

(
Σab(τ1, τ2)Gab(τ1 − τ2)− sab

J 2

2q2
(2Gab(τ1, τ2))q

)
+
ik

2

∫
dτ [−GLR(τ) +GRL(τ ] (364)

The sum is over L and R with sLL = sRR = 1 and sLR = sRL = (−1)q/2. We can again derive

the Schwinger-Dyson equations which can be solved numerically.

19 Special Topics

• Calculation of OTOC in SYK Model, see Maldacena and Stanford

• Nonlinear σ-model for SYK, Altland and Bagrets

• Lieb-Robinson Bound and the Butterfly Effect in Quantum Field Theories, D. Roberts

and B. Swingle, Phys. Rev. Lett (2016) 091602.

• P. Saad, S. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1903.11115.

• R. Jackiw, “Lower Dimensional Gravity”, Nucl. Phys. B252 (1985) 343356.

• J. Maldacena, S. Shenker and D. Stanford, A bound on chaos, JHEP 1608 (2016) 106.

arXiv:1503.01409 .

• Random Matrix Theory for QCD at nonzero chemical potential

• A. Andreev and B. Altshuler, Spectral Statistics beyond Random Matrix Theory, Phys.

Rev. Lett. 75 (1995) 902.
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• Liouville Theory for the SYK model, Altland, Bagrets and Kamenev

• P. Saad, S. Shenker and D. Stanford, JT Gravity and Random Matrix Theory.

• G. Parisi, Arrays of Josephson junctions and Q-Hermite polynomials, J. Phys. A: Math.

Gen. 27 (1984) 7555.

• A. Capelli and F. Colomo, Solving the frustrated spherical model with q-polynomials, J.

Phys. A: Math. Gen. 31 (1998) 3141
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